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Abstract 

Background: Although the species-urban green area relationship (SARu) has been analyzed worldwide, the global 
consistency of its parameters, such as the fit and the slope of models, remains unexplored. Moreover, the SARu can be 
explained by 20 different models. Therefore, our objective was to evaluate which models provide a better explanation 
of SARus and, focusing on the power model, to evaluate the global heterogeneity in its fit and slope.

Methods: We tested the performance of multiple statistical models in accounting for the way in which species 
richness increases with area, and examined whether variability in model form was associated with various methodo-
logical and environmental factors. Focusing on the power model, we analyzed the global heterogeneity in the fit and 
slope of the models through a meta-analysis.

Results: Among 20 analyzed models, the linear model provided the best fit to the most datasets, was the top ranked 
model according to our efficiency criterion, and was the top overall ranked model. The Kobayashi and power models 
were the second and third overall ranked models, respectively. The number of green areas and the minimum number 
of species within a green area were the only significant variables explaining the variation in model form and perfor-
mance, accounting for less than 10% of the variation. Based on the power model, there was a consistent overall fit 
(r2 = 0.50) and positive slope of 0.20 for the species richness increase with area worldwide.

Conclusions: The good fit of the linear model to our SARu datasets contrasts with the non-linear SAR frequently 
found in true and non-urban habitat island systems; however, this finding may be a result of the small sample size 
of many SARu datasets. The overall power model slope of 0.20 suggests low levels of isolation among urban green 
patches, or alternatively that habitat specialist and area sensitive species have already been extirpated from urban 
green areas.
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Background
Urban expansion is a major driver of global environ-
mental change (Grimm et  al. 2008). Since 1950, rural 
populations in the majority of countries have grown 
slowly whereas urban populations have grown rapidly 
(United Nations 2014). In fact, it is expected that 66% of 

the world’s population will live in urban areas by 2050 
(United Nations 2014). Thus, a major sustainable devel-
opment challenge is to create environmentally healthy 
cities for the large number of people who will reside in 
urban areas in the near future. The provision of green 
areas within cities is a key issue in addressing this chal-
lenge. Green areas in cities are essential for biodiversity 
conservation because they constitute refuges that ena-
ble certain native taxa to persist in urban environments 
(Grimm et  al. 2008; Sukhdev 2013; Nielsen et  al. 2014). 
Thus, conserving and providing additional green areas 
is an efficient method to improve both human wellbe-
ing and biodiversity conservation in cities (Miller 2002; 
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Chivian and Bernstein 2004; Dunn et al. 2006; Fuller et al. 
2007; Stott et al. 2015).

Urban green areas are generally surrounded by built-up 
areas, and hence can be regarded as habitat-islands—rel-
atively isolated habitats in which biological interactions 
between green areas are reduced by matrices dominated 
by impervious surfaces (Tjørve and Turner 2009; Szlavecz 
et  al. 2011; Matthews 2015; Fattorini et  al. 2018a). As 
urban green areas can thus be viewed through the lens of 
island theory, it is expected that various island macroeco-
logical and biogeographical patterns should be observed 
in these systems (Matthews 2015; Fattorini et al. 2018a). 
For example, birds in urban green areas have been shown 
to follow the general pattern of increasing species rich-
ness with increasing island area, i.e. they are charac-
terized by positive species-area relationships (‘SAR’; 
Fernández-Juricic and Jokimäki 2001; Beninde et  al. 
2015). However, the factors influencing the way in which 
species richness accumulates with increasing island area 
in urban systems (the species-urban green area relation-
ship, hereafter referred to as the SARu) remains little 
explored. For example, although the power model, which 
describes a convex increase of the number of species with 
area (see example in Fig.  1b), has often been assumed 
and/or shown to provide the best fit to SAR data (Con-
nor and McCoy 1979; Drakare et  al. 2006; Watling and 
Donnelly 2006; Dengler 2009; Triantis et  al. 2012; Han-
ski et al. 2013; Matthews et al. 2016a; but see also Tjørve 
2009; Scheiner et  al. 2011), a critical examination of 
the performance of different SAR models to SARu data 
has rarely been undertaken (but see Natuhara and Imai 
1999), and a global scale analysis is lacking. More gener-
ally, whilst urban green areas can be regarded as habitat 
islands, and despite their relatively small size rendering 
them amenable study systems for testing island theory, 
few urban ecologists contextualize their work in terms of 
island biogeography (see Fattorini et al. 2018a, b).

A common aim of many SAR meta-analyses has been 
to analyze how and why the slope of the power SAR 
model (z) varies across datasets (Drakare et  al. 2006, 
Triantis et  al. 2012, Matthews et  al. 2016a), in a way to 
understand the rate of species loss with habitat loss and 
fragmentation. Moreover, many factors have been shown 
to play significant roles in determining the way species 
richness declines with area at the global scale (He and 
Legendre 1995; Tjørve 2003; Matthews et al. 2016a). For 
example, sigmoid SAR models may inform threshold size 
of green areas for species richness conservation, whereas 
positive linear models imply a continuous benefit of 
increasing green areas for species richness. Although the 
importance of area in driving green area species rich-
ness in cities has recently been discussed at the global 
scale (Beninde et  al. 2015), it is still unknown to what 

degree SARu characteristics (e.g. general form, z values 
from power model fits) vary across cities (see examples 
in Fig.  1), and what variables, including both biological 
(such as the traits of the taxon under study) and environ-
mental (such as the degree of connectivity amongst green 
areas) variables, drive this variation.

Here, we compare the fit of 20 competing SAR mod-
els to SARu data from 47 cities across five continents. 
Model performance was evaluated using three criteria: 
the number of times a model provided the best relative fit 
to a dataset, model generality and model efficiency (out-
lined below). We also examine whether the z value of the 
commonly used power SAR model varies systematically 
across cities. We tested three primary hypotheses:

1. Both ground nesting bird species and migrant bird 
species have been shown to be more sensitive to 
urban green area size than other types of birds (Park 
and Lee 2000; Zhou and Chu 2012). As such, we pre-
dict that the functional composition of local bird spe-
cies assemblages will influence the form of the SARu, 
resulting in steeper positive slopes (larger z values) 
in assemblages with a greater proportion of ground-
nesting species and/or migrants.

2. Datasets containing a large proportion of species 
with high dispersal ability, indicated by their body 
size, may result in shallower SARu slopes (smaller z 
values) due to the exchange of species among green 
patches, leading to a reduction in the importance of 
patch area (Hubbell 2001; Drakare et al. 2006).

3. Geographical variables have also been shown to 
affect the form of the SARu, and the SAR more gen-
erally. For example, the degree of isolation between 
green areas is expected to influence the form of the 
SARu. Thus, we hypothesize that a set of less isolated 
urban green areas may lower the slope and fit of the 
SARu by facilitating the movement of birds between 
green areas and thus reducing the importance of 
patch area (Fattorini et al. 2018a).

Moreover, we examine the influence of a variety of vari-
ables related to the dataset, including species traits, envi-
ronmental conditions and methodological constraints, 
on model performance, and the form of the SARu across 
datasets (Triantis et al. 2012; Matthews et al. 2015). The 
search for consistent SARu patterns, along with the iden-
tification of factors associated with variability in SARu 
form across cities, will provide useful information (such 
as improvement in our ability to predict the number of 
extinctions resulting from urbanization and habitat loss 
and fragmentation) for the development and conserva-
tion of green spaces in cities; a major conservation issue 
due to global urban expansion and intensification.
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Methods
Data collection
We searched scientific articles, theses and unpublished 
reports in Google Scholar, Scopus (1960‒2013), Biologi-
cal Abstracts (2002‒2011) and JSTOR (1913‒1999) dur-
ing 2013. More recently published articles (i.e. during 
2014 and 2015) found without a systematic search were 
also included. The inclusion of theses and unpublished 
reports was carried out to correct for any potential bias 
in effect sizes, because published studies tend to have 

significantly larger effect sizes than studies in the grey 
literature (Hopewell et al. 2007). We used the keywords 
[avian OR bird*] AND [green OR park OR cemeter* OR 
remnant* OR golf ] AND urban, in English as well as in 
Spanish. Finally, we searched for additional articles in 
reviews of urban birds (Fernández-Juricic and Jokimäki 
2001; Chace and Walsh 2006; Garden et al. 2006; Ortega-
Álvarez and MacGregor-Fors 2011).

We defined urban green areas as patches dominated by 
vegetation and surrounded by a matrix of built-up land 

Fig. 1 Examples of different species-urban green area models fitted with some of our datasets. a Linear model fitted with data obtained from 
Marseille, France, r2 = 0.52 (Lizée et al. 2011); b Power model fitted to data from Seoul, South Korea, r2 = 0.75 (Park and Lee 2000); c Kobayashi model 
fitted to data from Rennes, France, r2 = 0.53 (Croci et al. 2008); and d Weibull 3 model fitted to data from Santiago de Chile, Chile, r2 = 0.43 (Urquiza 
and Mella 2002)
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uses (Matthews et  al. 2016a). This definition included 
urban parks, remnants of native vegetation, golf courses 
and cemeteries. When full species lists were not reported 
in the paper, we contacted the authors directly for the rel-
evant data. In addition, for studies focused on a certain 
bird assemblage (e.g., forest specialists or migrant birds) 
or that excluded some species, such as the rock dove 
(Columba livia), the study authors were asked to provide 
the total number of species in each green area; otherwise, 
those studies were not considered in the analysis. How-
ever, studies that excluded waterfowl were considered for 
analysis because their low number in urban green areas 
probably did not affect significantly SARu parameters 
(Murgui 2007). Only those studies considering more 
than three green areas were included to enable analysis 
of variance calculations in a subsequent meta-analysis 
(see below). We were careful to include each dataset only 
once to avoid pseudo replication; thus, datasets used in 
two or more articles were included only once and, when-
ever data within a study were available for several times 
of the year (e.g. papers that analyzed seasonal dynamics 
of communities), we selected data only from the breeding 
season because they were the most commonly reported. 
For articles that did not provide species richness data, we 
contacted the source paper authors for the relevant data, 
or we took the number of species from graphics within 
the source papers using DataThief (Tummers 2006).

Whenever possible, we explored the lack of independ-
ence between green areas by using maps reported in 
each study or locating them using Google Earth when 
the name of the green areas was provided. Green areas 
separated by less than 100 m were considered non-inde-
pendent, because it was likely that the same individual 
bird would use both green areas (Blair 1996; Fernández-
Juricic 2001). In such cases, the green area with the high-
est bird richness was selected for the analysis and the 
other areas were discarded.

Biological and environmental variables
For each of the collected datasets, we obtained the fol-
lowing biological and environmental variables that could 
influence SAR parameters: (1) the proportion of migra-
tory species; (2) the proportion of bird species nesting 
at low or medium height, on shrubs or on the ground 
(hereafter ground nesting); (3) the mean length of all 
species; (4) the biome; (5) latitude of the city; (6) year 
of city foundation; (7) human population size of the city 
at the study time; (8) minimum distance to other urban 
green areas (hereafter called Isolation 1); and (9) mini-
mum distance to non-urban areas (hereafter called Iso-
lation 2). Non-urban areas are different land use types 
out of the city area that do not contain buildings or other 
impervious surfaces. Variables 1‒3 were calculated using 

information provided in each study; otherwise, we found 
the information in handbooks and field guides (Mitchell 
1957; Yamashina 1961; Peterson et  al. 1973; Wild Bird 
Society of Japan 1982; Hilty et  al. 1986; National Geo-
graphic Society 1999; Del Hoyo 1994–2011; Kazmierc-
zak and van Perlo 2000; Hume 2002; Hilty 2002; de la 
Peña 2010). Information about species body size was 
obtained from the Handbook of the Birds of the World 
(Del Hoyo 1994–2011), and we took the mean body size 
of all species in each study. Mean body size was a proxy 
of the dispersal ability of each species (Paradis et al. 1998; 
Sutherland et al. 2000). To obtain the biome classification 
of each study, we used the georeferenced map of Olson 
et al. (2001). Information on human population size, year 
of foundation of the city and latitude were obtained from 
the source articles or, in cases where these data were not 
provided, from Wikipedia. Year of foundation was an 
indicator of the time since birds species colonized cities 
and has shown to be positively related to their densities 
in urban areas (Møller et al. 2012).

Isolation measures (variables 8 and 9) were obtained 
using information in the source papers. First, where pos-
sible, we located each green area on Google Earth by 
using the information supplied in each article (maps, 
name of green areas); otherwise, we contacted the source 
paper authors for this information. Then, for each urban 
green area within a study, the minimum distance to 
another urban green area of at least 1  ha was obtained 
using functions in Google Earth Pro and the mean dis-
tance for all green areas was calculated (Isolation 1 met-
ric). Isolation 1 was only calculated for studies in which 
we obtained information on distance for at least 50% 
of the urban green areas. The minimum distance from 
all green areas within a study to the nearest non-urban 
area (Isolation 2) was obtained from maps provided in 
the source paper, or when the relevant data were not 
available, from Google Earth. Datasets without isolation 
data were still included to enable analysis regarding the 
importance of the other methodological and biological 
variables.

We also obtained biological data in regards to the num-
ber of species in each dataset: the minimum number of 
species on a green urban area in a dataset (Smin), the max-
imum number of species (Smax) and the range of species 
richness values (Sscale).

Methodological variables
For each of the collected datasets, we also derived the fol-
lowing methodological variables (Matthews et al. 2016a): 
(1) the number of green areas (Ni); (2) bird survey sam-
pling method; (3) the season when bird surveys were car-
ried out; (4) the smallest green area (Amin); (5) the largest 
green area (Amax); (6) the range of green area sizes (Ascale; 
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calculated as Amax/Amin); and (7) additional characteris-
tics of the study’s sampling method. The bird survey sam-
pling method was classified as one of: transects, point 
counts, both, or intensive search. The ‘both’ classifica-
tion related to studies in which point counts were used in 
small green areas, and transects in large green areas. The 
intensive search category related to studies that included 
multiple survey methods within individual green areas 
(e.g. transects and mist nets). The season the bird survey 
was undertaken was classified as one of: breeding season, 
non-breeding season, and both seasons. Finally, we made 
a classification of studies according to the following three 
aspects of the sampling methodology: (1) whether studies 
specified the sampling method technique; (2) the number 
of times each green area was sampled; and (3) whether 
the amount of sampling units increased with the size 
of the green area. Based on these classifications, stud-
ies were classified into three types: (1) stringent—stud-
ies that specified the sampling method, each green area 
was sampled four or more times, and the number of visits 
increased with green area size; (2) intermediate—stud-
ies that specified the sampling method but for which one 
of the other two conditions of stringent studies were not 
met; and (3) lax—studies that did not specify the sam-
pling methods and for which both the other two condi-
tions were not met.

Model comparison
Our analyses were focused on island species-area rela-
tionships (cf. Matthews et al. 2016a), that is, SAR/SARus 
in which each data point was an individual green urban 
area. For datasets in which we obtained the area and spe-
cies richness of each individual green area, we compared 
the fit of twenty SAR models using an information theo-
retic approach (Burnham and Anderson 2002) and the 
methodology outlined in Triantis et  al. (2012); see also 
Matthews et al. (2016a). With the exception of the linear 
model, the 19 SAR models were fitted using the ‘sars’ R 
package (Matthews et al. 2019) which contains functions 
to non-linear model fitting (see Triantis et al. 2012). The 
linear model was fitted using standard linear regression 
in R (R Core Team 2019). A given model fit was consid-
ered to be satisfactory if model residuals were normally 
distributed (using a Shapiro normality test) and homo-
scedastic (using Pearson correlations), and the optimiza-
tion algorithm converged.

For each dataset, we compared model fits using the 
Akaike information criterion corrected for small sample 
size  (AICc; Burnham and Anderson 2002). We considered 
the smallest  AICc value to represent the best model and 
all models within < 2 ΔAICc of the best model were con-
sidered as having similar support (Burnham and Ander-
son 2002). From these  AICc values we also calculated 

the  AICc weights  (wAICc) and combined them to form a 
model selection profile.

We determined the observed shape (linear, convex or 
sigmoid) of the best fitting model using the algorithm 
in Triantis et  al. (2012; note that the observed shape 
can occasionally be different to the general shape of the 
model). We determined if an observed fit was asymptotic 
using the method of Triantis et  al. (2012), whereby, for 
asymptotic models, we analyzed the fitted parameters to 
check whether the estimated asymptote was within the 
range of the data.

Considering the model fits across all datasets, we calcu-
lated model generality, efficiency and overall model rank. 
Generality was calculated as the proportion of datasets 
for which a model provided a satisfactory fit, whilst effi-
ciency represented the average  wAICc for all datasets in 
which a model provided a satisfactory fit. According to 
Triantis et al. (2012), the overall model rank was derived 
by standardizing generality and efficiency values [(crite-
rion value − mean criterion value)/standard deviation] 
and summing the resultant values. Based on the findings 
of Matthews et al. (2016a), as a final check to determine 
whether the overall ranks of the linear model and the 
power model were sensitive to the number of islands in 
a dataset, we undertook the model comparison using all 
datasets with seven or more islands and computed the 
model ranks. We then repeated this procedure using all 
datasets with eight or more islands, and so on, calculating 
the models ranks each time (see Matthews et al. 2016a).

Factors explaining variation in SARu patterns
Factors explaining variation in the model selection profile
Following Matthews et  al. (2016a), we used constrained 
analysis of principal coordinates (CAP; Bray–Curtis 
dissimilarity, 9999 permutations; Anderson and Willis 
2003) to assess whether any of our predictor variables 
explained variation in the model selection profile. CAP 
is a redundancy analysis of the results of Metric (Classi-
cal) Multidimensional Scaling, and it allows for the use 
of non-Euclidean distances, in this case Bray–Curtis dis-
similarity. If Euclidean distances are used, CAP analy-
sis produces the same results as a redundancy analysis 
(see Anderson and Willis 2003, for a full outline of the 
method). This was done twice, once considering the best 
fitting model, and once considering the best model shape 
(see Matthews et al. 2016a for further details).

For certain datasets, we were not able to obtain esti-
mates for all of the explanatory variables. Thus, we ran 
the aforementioned CAP analyses twice: once consider-
ing all datasets, but excluding the variables for which we 
did not have complete coverage, and once using all pre-
dictor variables and the subset of datasets for which we 
had data for all variables (n = 21; note that this involved 
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re-running the model selection with these 21 datasets as 
the  AICc values needed to be re-calculated). To deter-
mine which variables to include in the model, we tested 
for variable normality using histograms, and multicollin-
earity using variance inflation factors (VIFs). Several vari-
ables were log transformed (a constant, 0.1, was added to 
variables including zero values) to induce normality, and 
certain variables were removed due to multicollinearity. 
The year of foundation was transformed by first taking 
the absolute value of the oldest year of foundation in our 
dataset (a constant of 1 was added), and then adding this 
value to each year of foundation value. In summary, the 
following predictor variables were used for the all dataset 
analyses: city population (log transformed), year of foun-
dation (squared), latitude (squared), number of green 
urban areas (Ni, log transformed), the range of green 
area sizes (Ascale, log transformed), the minimum num-
ber of bird species in green areas (Smin, log transformed) 
and the range of bird species richness (Sscale, log trans-
formed). All VIFs were under 2. For the subset of datasets 
analyses, we used the same variables minus  Smin, with the 
addition of both isolation measures (log transformed), 
the proportion of migrant species (log transformed), pro-
portion of ground nesting species and mean body size 
(log transformed). Non-significant terms were removed 
using a backwards selection procedure in order to derive 
a minimum adequate model.

Factors influencing the fit and slope of the power SARu model
As the power model is the most widely used model in 
SAR studies, we also focused on the parameters and fit 
of the power model on its own. The power model is given 
by the equation S = cAz, where S is the number of spe-
cies, A is the area, and c and z are free parameters. In this 
paper, we used the logarithmically transformed version of 
the model, which describes a linear increase in logS with 
logA, with a given slope (z) and intercept (c) (Rosenzweig 
1985; Hubbell 2001).

We used the statistical technique of meta-analysis 
(Hedges and Olkin 1985; Rosenberg et  al. 2000) to test 
for heterogeneity in the fit (r, correlation coefficient) and 
the slope parameter of the power model (z), and to deter-
mine whether any of our biological and methodological 
variables were related to these properties. We focused on 
z as c has been shown to be dependent on sample size, 
making comparisons across datasets problematic (Rosen-
zweig 1985; Drakare et al. 2006). Using a statistical meta-
analytic approach, we estimated the overall magnitude of 
the power model parameters, giving us a measure of the 
‘effect size’. We obtained a weighted overall effect size by 
taking into account the sampling variance of each study; 
this is inversely proportional to the effect size of each 
SARu fit and slope (Rosenberg et al. 2000).

The effect size of the slope was the z value, and its vari-
ance was obtained by squaring the standard error (Dra-
kare et al. 2006). We obtained the z and r values from the 
published papers. Otherwise, we obtained data of bird 
species richness and green area size by using information 
in tables of the published papers, data from figures using 
Datathief or contacting authors of the papers. Then, we 
used the log transformed values of bird species richness 
and area in a simple linear regression model. The fit of 
the power model (r) was obtained by the square root of 
the regression coefficient. We used the Fischer-Z-trans-
formed correlation coefficients (rZ) as an effect size for 
the goodness-of-fit of the association between species 
richness and area (Rosenberg et al. 2000), where rZ = 0.5 
ln[(1 + r)/(1 − r)]. For rZ, the variance was calculated 
from the number of observations (N) as 1/(N − 3) (Boren-
stein et al. 2009).

Effect sizes were estimated using random-effect mod-
els, which are an appropriate approach in ecological stud-
ies (Gurevitch and Hedges 1999). For both the z values 
and rZ we calculated the global effect size. The signifi-
cance of the effect sizes was obtained by using 999 ran-
domizations of the effect sizes to calculate confidence 
intervals and evaluating the non-overlapping of bias cor-
rected confidence intervals (95% CI). To evaluate hetero-
geneity in effect sizes among case studies, the Q test was 
employed. Q tests were used to analyze the global hetero-
geneity among studies and the difference among studies 
related to categorical variables (Borenstein et  al. 2009). 
The relationships between effect size and the continu-
ous variables were analyzed by meta-regression, which is 
a weighted linear regression (Borenstein et al. 2009); the 
significance of the meta-regression was obtained using 
999 randomizations.

As it has been shown that studies with significant 
results are more likely to be published and, therefore, 
to be included in any meta-analysis, there is a chance of 
publication bias in our analysis (Borenstein et  al. 2009). 
We estimated the fail-safe number (Rosenthal 1979) that 
provides the number of non-significant cases needed to 
turn the results of a given meta-analysis non-significant. 
A high fail-safe number relative to the number of case 
studies suggests the absence of publication bias (Rosen-
berg 2005). A robust fail-safe number should be higher 
than 5n + 10, where n is the number of case studies in the 
meta-analysis. All meta-analyses were undertaken using 
Metawin 2.0 (Rosenberg et al. 2000).

Results
Of the 101 articles we found that analyzed bird communi-
ties in urban green areas, relevant information was found 
in 49 studies. These studies were published between 1976 
and 2015 (mean = 2004). Of these 49 studies, 44 were 
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conducted solely in urban parks, four in urban parks and 
golf courses or cemeteries, and one study was conducted 
only in cemeteries. A total of 17 studies (35%) were from 
Europe, 14 (29%) from South America, nine (18%) from 
North America, seven (14%) from Asia and two (4%) 
from Oceania (Fig.  2). Of the 49 studies, the sampling 
methodology employed was classified as stringent in 
22 (45%), intermediate in 17 (35%), and lax in 10 (20%) 
(Additional file 1: Table S1). For 46 studies, we obtained 
data on the area and species richness of each green area 
in the study (see below).

Multi‑model comparison and the best SARu model
Considering the 46 datasets with area and species rich-
ness data, we were able to perform model comparisons 
using 37 datasets. Eight of the remaining nine data-
sets were excluded as they had fewer than seven islands 
(seven is the minimum required to calculated  AICc with 
these 20 models; see Triantis et  al. 2012) and one data-
set was excluded as none of the twenty models provided 
a satisfactory fit to the data according to our criteria. 
Overall, the linear model provided the best fit to the most 
datasets (n = 10; Fig. 3a). In regards to the proportion of 
datasets in which a given model provided a satisfactory 
fit according to our criteria (i.e. our generality metric), 
the weibull4 model was the best ranked model (Fig. 3b), 
followed by a number of the other more complex models. 
However, the top 13 models all had very similar gener-
ality scores (Fig.  3b), indicating that most models pro-
vided satisfactory fits to the datasets. With respect to the 
efficiency metric, the linear model performed the best, 
followed by the power and Kobayashi models (Fig.  3c). 

Considering the overall model rank, the linear model was 
ranked first, followed by the Kobayashi and power mod-
els (Table  1). However, our analysis of model rank sen-
sitivity to sample size indicated that the overall rank of 
the linear model substantially decreased as datasets with 
fewer islands were iteratively removed (Fig.  4); in con-
trast, the rank of the power model (Fig. 4) and the Kob-
ayashi model was relatively insensitive to variations in the 
number of islands in a dataset.

With respect to the observed model shape, the aver-
age  wAICc of convex model shapes across datasets was 
0.77, compared to 0.12 for sigmoidal models and 0.20 
for linear models. The presence of asymptotic model fits 
was relatively rare (average  wAICc for non-asymptotic 
model fits = 0.68; average  wAICc for asymptotic model 
fits = 0.14).

Factors explaining variation in the model selection 
and shape profiles
All datasets
When the model selection profiles of all datasets using 
a subset of predictor variables (n = 37) were used as the 
response variable, and 0.05 was used as the significance 
threshold for predictor variables in the CAP analysis, 
the only significant predictor variable was the number of 
islands (F = 5.6; P < 0.001), and this explained only 8.5% of 
the variation in the data. The performance of the linear 
model was influenced by the number of green areas and 
the minimum number of species analyzed in each study, 
whereas the performance of more complex models such 
as Beta-P and Extended Power 1 were positively related 
to the number of green areas in each dataset (Fig.  5a). 

Fig. 2 Location of the case studies included in the meta-analysis
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Fig. 3 The performance of 20 species-area relationship models fitted to 37 urban green area datasets. Performance was measured in three ways: 
a the proportion of studies for which a model provided the best fit; b the proportion of studies for which a given model provided a satisfactory fit 
(generality); and c the average AICc weight for datasets that fitted satisfactorily a given model (efficiency). See Table 1 for model names

Table 1 The twenty SAR models compared in the model selection, including the number of parameters, general model 
shape, whether or not the model contains an asymptote, and the overall rank obtained based on the best fitting model, 
model generality and efficiency (see “Methods” section)

a The epm1 model can be either convex or sigmoidal in shape depending on the parameter values

Model No. parameters Model code Model shape Asymptotic nature Overall rank

Linear 2 linear Linear No 1

Kobayashi 2 koba Convex No 2

Power 2 power Convex No 3

Exponential 2 expo Convex No 4

Extended Power 1 3 epm1 Convex/Sigmoida No 5

Asymptotic 3 asymp Convex Yes 6

Monod 2 monod Convex Yes 7

Rational 3 ratio Convex Yes 8

Beta-P 4 betap Sigmoid Yes 9

Weibull-3 3 weibull3 Sigmoid Yes 10

Morgan–Mercer–Flodin 3 mmf Sigmoid Yes 11

Logistic 3 heleg Sigmoid Yes 12

Weibull-4 4 weibull4 Sigmoid Yes 13

Persistence Function 1 3 P1 Convex No 14

Persistence Function 2 3 P2 Sigmoid No 15

Extended Power 2 3 epm2 Sigmoid No 16

Gompertz 3 gompertz Sigmoid Yes 17

Chapman–Richards 3 chapman Sigmoid Yes 18

Power Rosenzweig 3 power_R Convex No 19

Negative Exponential 2 negexpo Convex Yes 20
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When model shape (i.e. vectors of wAICc summed across 
models for each shape) was used as the response varia-
ble, the only significant predictor was the minimum spe-
cies richness observed in a dataset (F = 2.0; P = 0.03), but 
again, this only explained a small amount of variation in 
the data (5.4%). The performance of the linear model was 
positively related to the minimum number of species in 
each dataset, whereas convex models were negatively 
related to that variable (Fig. 5b).

Subset of datasets including all predictor variables
Re-running the model selection using the subset of data-
sets that included data for all predictor variables (n = 21) 
resulted in the same qualitative results; that is, the lin-
ear model still provided the best fit to the most datasets 
and had the highest efficiency value (results not shown). 
Interestingly, when the model selection profiles of the 
subset of datasets that included data for all predictor var-
iables (n = 21) were used as the response variable, with 
a 0.05 significance threshold, the CAP model selection 
analysis did not find any significant variables for either 
the model selection profile or the model shape profile. 
That is, the final models only contained one variable that 
was not significant.

Factors explaining variation in the fit and slope 
of the power SARu model
We obtained 49 rZ values and 45 slope values. The mean 
global fit of the power model (Pearson correlation coef-
ficient) was 0.71 (CI 0.65, 0.75), explaining 50% of the 

variance in the data. There was no significant hetero-
geneity in rZ values among studies (Q = 49.34, df = 48, 
P = 0.42; see Additional file 2: Fig. S1a), suggesting con-
sistency of the fit at the global scale. Therefore, regardless 
of differences among cities related to size or geographic 
location, there was a similar rate of species increase with 
area. The fail-safe number was higher than the number of 
studies (5063 vs 255, respectively), indicating that there 
was no publication bias among studies. We found no sig-
nificant effects of the moderator variables on the fit of the 
SARu (Table 2).

The z value (slope) showed significant consistency 
among studies (Q = 47.10, df = 45, P = 0.39; see Addi-
tional file 1: Fig S1b) and the mean global value was 0.20 
(CI 0.17, 0.23), which is quite close to the canonical value 
of 0.25. The fail-safe number was again higher than the 
number of studies (3186 vs 255, respectively), suggest-
ing the absence of publication bias among studies. The 
slope values were unaffected by the moderator variables 
(Table 3).

Discussion
Our results show that increasing species richness with 
increasing area is a consistent pattern in urban green 
areas across cities worldwide. Beyond differences among 
cities related to size or geographic location, there was a 
similar rate of species increase with area. Although most 
of the SAR models provided reasonable fits to our SARu 
datasets, the linear model was the top ranked model 
overall, indicating a constant increase of species with 

Fig. 4 Change in model performance with the number of urban green areas (islands) in a dataset. Results for two models are displayed: a linear 
and b power models. Model ranks were first determined for all datasets with seven or more islands, and then for all datasets with eight or more 
islands, and so on, iteratively up to datasets with 20 or more islands
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green area size. However, the performance of the lin-
ear model was influenced by the number of green areas 
and the minimum number of species analyzed in each 
study. Arguably, the power and Kobayashi models were 
stronger models predicting the increase of species rich-
ness with area, indicating a decelerated increase of spe-
cies at the highest green area sizes. Put another way, our 
results suggest that species loss due to habitat fragmenta-
tion is faster at the smallest green area sizes.

Unlike previous reviews (Magle et  al. 2012; Beninde 
et al. 2015) and global scale studies (Pautasso et al. 2011) 
on biodiversity in urban areas, our analysis included a 
relatively high proportion of studies conducted in South 
America. The inclusion of Spanish key words in our 
search is probably the main factor determining the high 
proportion of South American studies. The lack of stud-
ies we found from Africa (see also Nielsen et al. 2014), a 

continent that has experienced substantial urban expan-
sion in recent decades (Seto et  al. 2011), is remarkable 
and highlights either a need for future data collection 
in Africa, or for meta-analyses to include key words in 
searches in a wider range of languages, or both.

Global variation of SARu model form
Our study showed that the way in which species richness 
increases with green area size was related to the number 
of green areas in each study. Species richness increased 
constantly with area in those case studies that contained 
the least number of green areas, as previously found by 
Matthews et al. (2016a). This may somewhat reflected a 
scale-dependency of SARs (i.e. the greater the number of 
green areas, the larger the spatial extent covered by the 
system of green areas within a city), although the amount 
of variation in the model selection profile explained by 
this variable was low. In the datasets with fewer islands, 
the addition of the intercept in the linear model may 
improve its performance relative to the power model 
which fixes the intercept to zero (zero area, zero spe-
cies). In contrast, the performance of the Kobayashi and 

Fig. 5 Constrained analysis of principal coordinates (CAP) analysis 
plots showing the effect of a the number of islands (logAn) in a 
dataset on the  AICc model selection profiles, and b the minimum 
number of species (logSmin) on an island in a dataset on the model 
shape profiles. CAP analysis is a redundancy analysis of the results of 
metric multidimensional scaling. The CAP analysis was undertaken to 
assess how much of the model selection profiles and model shape 
profiles were explained by our predictor variables (see “Methods”). 
Non-significant predictors were removed using a backwards selection 
procedure. Bray–Curtis dissimilarities were used in both cases

Table 2 Results of a weighted mixed-model meta-analysis 
assessing how  the  fit rZ of  the  power model species-area 
relationship varies between urban green areas in different 
cities, in relation to continuous and categorical moderator 
variables

The Q test (Q), degrees of freedom (df ), P values and the fail-safe numbers are 
depicted
a Biomes with only a single case study were excluded from the analysis

Variable Q df P Fail‑safe 
number

Population 0.32 48 0.248 5148

Foundation 0.17 48 0.618 4979

Latitude 0.20 48 0.664 4865

Season 0.10 48 0.957 4878

Biomea 7.84 46 0.419 4313

Methodology aspects 1.02 48 0.593 4971

Bird survey method 1.19 46 0.772 4273

Range of area size 0.06 48 0.336 4946

Minimum area size 1.10 48 0.196 5044

Maximum area size 0.22 48 0.253 4964

Number of green areas 0.06 48 0.328 4905

Isolation1 0.01 35 0.565 1654

Isolation2 3.45 38 0.987 2434

Migrants 0.69 38 0.865 3003

Ground nester 3.71 38 0.968 3236

Body size 0.12 38 0.733 2992

Minimum bird richness 0.73 47 0.697 4439

Maximum bird richness 1.44 47 0.854 4384

Bird richness range 1.21 47 0.801 4302
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power models, the next two highest ranked models, was 
not influenced by the number of islands. Both the Kob-
ayashi and power models have a convex shape, lack of an 
asymptote and are simpler than most of the other models 
examined, such as the rational model and the Lomolino 
model (Guilhaumon et al. 2010; Matthews et al. 2016a). 
Thus, in general our analyses indicate that simpler mod-
els outperform more complex models, i.e. those with 
higher numbers of parameters, when fitted to SARu data; 
this finding is consistent with previous quantitative com-
parisons of SAR form (Connor and McCoy 1979; Triantis 
et al. 2012; Matthews et al. 2016a). Moreover, the convex 
shape of these models and the lack of asymptote suggest 
that species loss due to green area loss is the fastest at the 
smallest green area sizes, whereas species increase with 
area is the slowest at the greatest green area sizes.

Several methodological constraints are known to influ-
ence the form of the SAR. For example, different func-
tions or shapes of SAR may exhibit scale-dependency 
(Drakare et al. 2006; Triantis et al. 2012), and the range 
of island areas can influence the suitability of different 

models to fit the SAR (He and Legendre 1995; Tjørve 
2003; Matthews et al. 2016a). Studies that cover relatively 
small and intermediate island sizes are expected to fol-
low exponential and power model shapes, respectively; 
whereas studies that span small to very large areas are 
expected to be better fit by sigmoidal models (He and 
Legendre 1995; see also Connor and McCoy 1979, for 
discussion). Nonetheless, our results showed no signifi-
cant effect of the range of green area sizes on model type 
or shape, although we found little support for sigmoi-
dal models in general in our SARu datasets. A possible 
explanation is that the majority of SARu datasets do not 
contain islands of the size predicted to generate sigmoi-
dal SAR patterns (He and Legendre 1995; Matthews et al. 
2015). In addition, the range of green area sizes within 
individual datasets may not be large enough to exert an 
effect on SAR forms.

Consistency in the fit and slope of the power model fitted 
to SARu
The average slope of the SARu power model, obtained 
after standardization for differences in sample size using 
a meta-analysis approach (global z = 0.20), was consist-
ent across cities worldwide. This value is towards the 
lower end of the range of values theoretically predicted 
for island archipelagos (z = 0.20‒0.35: Preston 1962; Mac-
Arthur and Wilson 1967; see Connor and McCoy 1979, 
for review), although our z value approaches the upper 
value for terrestrial or intraprovincial SARs (Rosenzweig 
1985). However, it is relatively low compared with that 
observed in terrestrial habitats for several taxa, includ-
ing birds (z = 0.25 for independent islands; see Fig.  1 in 
Drakare et  al. 2006), and in urban datasets for multi-
ple taxa (z = 0.27, Matthews et  al. 2016a). This suggests 
that, whilst urban green areas can be considered as iso-
lates (Szlavecz et al. 2011; Matthews 2015; Fattorini et al. 
2018a), as far as birds are concerned, urban green areas 
are distinguishable from other true and habitat island 
systems due to the relatively gradual rate of increase in 
species richness with area. This could potentially be 
the result of low turnover rates of bird species among 
patches within systems of urban green areas, which is 
consistent with the species-fragmented area relation-
ship perspective (Hanski et  al. 2013), but as we looked 
at island SARs as opposed to accumulation curves (Mat-
thews et al. 2016b), further tests are needed to evaluate 
this hypothesis.

Our results indicate that, on a global scale, the slope 
of the power model fitted to SARu data was significantly 
positive and consistent across different urban environ-
ments. This suggests both that the size of green areas is 
a fundamental determinant of bird species richness in 
cities worldwide, and that the habitat structure of green 

Table 3 Results of a weighted mixed-model meta-analysis 
assessing how  the  slope (z) of  the  power species-area 
relationship model varies between  urban green areas 
in different cities, in relation to continuous and categorical 
moderator variables

The Q test (Q), degrees of freedom (df ), P values and the fail-safe numbers are 
shown
a Biomes with only a single case study were excluded from the analysis
b Test performed after excluding a case study with exceptional distance to rural 
areas

Variable Q df P Fail‑safe 
number

Population 0.01 45 0.378 3069

Foundation 1.98 45 0.068 3128

Latitude 5.94 45 0.961 3317

Season 1.51 45 0.512 3093

Biomea 8.77 43 0.334 2984

Methodology aspects 1.14 45 0.600 2999

Bird survey method 5.71 42 0.098 1918

Range of area size 0.32 45 0.176 3105

Minimum area size 0.03 45 0.296 3129

Maximum area size 0.65 45 0.114 3134

Number of green  areasb 0.50 45 0.561 3032

Isolation 1 0.05 34 0.289 764

Isolation  2b 0.10 37 0.083 1027

Migrants 0.10 36 0.748 1813

Ground nester 5.11 36 0.978 1897

Body size 0.01 36 0.933 1831

Minimum bird richness 1.08 45 0.139 3215

Maximum bird richness 0.05 45 0.139 3115

Bird richness range 0.59 45 0.725 3075
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areas and the urban matrix across cities are likely simi-
lar, which results in a similar response of bird species to 
increasing patch area. Alternatively, bird communities 
inhabiting urban green areas in cities may have similar 
functional roles, such as feeding on seeds and fruits on 
midstorey or understory vegetation (La Sorte et al. 2018), 
which result in filtered assemblages that have little func-
tional roles in common with native bird communities 
(Evans et al. 2018; Vaccaro et al. 2019). Nonetheless, we 
found that the size of urban green areas explained about 
50% of the mean local variation in bird richness, and the 
slope and fit values were non-significant for approxi-
mately a third of the datasets (Additional file 2: Fig. S1a, 
b, see Additional file 3: Appendix), which is likely due to 
other predictor variables not considered in this study. 
Future studies are needed to assess whether other predic-
tor variables representing variation in habitat structure 
(related to nesting site availability) and primary produc-
tivity (related to food resources), such as vegetation vol-
ume (Chavez-Almonacid 2014), percent cover of native 
or non-native vegetation (Urquiza and Mella 2002; Gar-
affa et  al. 2009), NDVI (Bino et  al. 2008), habitat diver-
sity (Faggi and Perepelizin 2006), the distance to other 
green areas (Batllori and Uribe 1998; Urquiza and Mella 
2002; MacGregor-Fors and Ortega-Álvarez 2011) or the 
building cover surrounding green areas (Leveau and 
Leveau 2016), are also significant determinants of SARu 
parameters.

Several quantitative syntheses of SARs have found 
systematic variation in the parameters of the power 
model as a function of, amongst other things, the sam-
pling scheme employed, spatial scale, types of organisms, 
habitats or ecosystems studied, and matrix type (Rahbek 
1997; Drakare et al. 2006; Matthews et al. 2016a). How-
ever, contrary to our predictions, the different variables 
we examined had a negligible influence on the slope of 
the power model. For example, there was no significant 
effect of bird traits, such as migratory and nesting behav-
iors. A possible explanation for this finding is that migra-
tory and ground nesting species are responding to other 
environmental factors, such as the distance to rural areas 
(MacGregor-Fors et  al. 2010), the proportion of green 
areas in surrounding parks (Husté and Boulinier 2011; 
Leveau and Leveau 2016), or the presence of nest preda-
tors (Jokimäki and Huhta 2000). Our results also showed 
a lack of a significant effect of connectivity on the slope 
and fit of the SARus, in agreement with Beninde et  al. 
(2015) who also found no significant effect of stepping 
stones on bird diversity in urban areas.

Conclusions
The consistency of the SARu, in combination with the 
low average slope of the power model we have observed, 
may ultimately be associated with the occurrence of 
many synanthropic generalist species that respond to 
urbanization by increasing their abundance to the detri-
ment of habitat specialist species (Faeth et  al. 2011 and 
references therein), resulting in biotic homogenization 
(McKinney 2006). The elevated abundance of such urban 
adapted species along with the loss of habitat special-
ists in urban environments (Shochat et  al. 2006; Faeth 
et al. 2011) may promote a departure from lognormality 
and equilibrium conditions predicted by the power SAR 
model for geographical islands (Preston 1962; Connor 
and McCoy 1979), thus favoring a linear SARu. Given 
that green areas can be composed of non-native vegeta-
tion which may negatively affect bird habitat specialists 
(Munyenyembe et  al. 1989; Burghardt et  al. 2009), we 
recommend conserving or restoring native vegetation 
communities in urban green areas. Moreover, further 
studies are needed for a comprehensive assessment of 
the influence of species-abundance distributions on the 
shape of the SARu. Alternatively, the good performance 
of the linear model in our model comparison may simply 
be due to various characteristics of the datasets analyzed, 
such as the number of green areas sampled, or the mini-
mum number of species in a set of green areas. Overall, 
we suggest that management actions to increase the size 
of green areas would have positive effects on the conser-
vation of urban biodiversity worldwide.

Additional files

Additional file 1: Table S1. List of studies analysed with their environ-
mental and bird trait information and fit and slope values of each study.

Additional file 2: Figure S1. Forest plot for the fit (a) and the slope value 
(b) of the SAR in urban green areas.

Additional file 3: Appendix. List of papers used in the meta-analysis.
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