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ABSTRACT 

The pig has garnered more and more interest as a model animal to study various conditions in 

humans. The growing success of the pig as an experimental animal model is explained by its 

similarities with humans in terms of anatomy, genetics, immunology, and physiology, by their 

manageable behavior and size, and by the general public acceptance of using pigs for 

experimental purposes. In addition, the immunological toolbox of pigs has grown 

substantially in the last decade. This development led to a boost in the use of pigs as a 

preclinical model for various human infections including sexually transmitted diseases (STIs) 

like Chlamydia trachomatis. In the current review, we discuss the use of animal models for 

biomedical research on the major human STIs. We summarize results obtained in the most 

common animal models and focus on the contributions of the pig model towards the 

understanding of pathogenesis and the host immune response. In addition, we present the 

main features of the porcine model that are particularly relevant for the study of pathogens 

affecting human female and male genital tracts. We also inform on the technological 

advancements in the porcine toolbox to facilitate new discoveries in this biologically 

important animal model. There is a continued need for improvements in animal modeling for 

biomedical research inclusive STI research. With all its advantages and the highly improved 

toolbox, the porcine model can play a crucial role in STI research and open the door to new 

exciting discoveries. 

 

INTRODUCTION 

 

Animal models are crucial for propelling biomedical research inclusive the study of 

infectious diseases. Sexually transmitted infections (STIs) are a major health issue in humans 

and recent global surveys estimate that more than a million STIs are acquired every day, 
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worldwide (Gottlieb and Johnston, 2016; Looker et al., 2015a, 2015b, 2015c; Newman et al., 

2015). In 2012, an estimated 357 million new cases of infections by Chlamydia trachomatis, 

Neisseria gonorrhoeae, Treponema pallidum, and Trichomonas vaginalis, and 19.2 million 

new cases of Herpes simplex virus (HSV) type 2 occurred (Looker et al., 2015b; Newman et 

al., 2015). Researchers are developing vaccines against these STIs and use animal models in 

preclinical trials to: i) optimize vaccine formulation (antigen, adjuvant, delivery vehicle) and 

route of administration (e.g., intramuscular vs. mucosal); ii) determine an effective and safe 

vaccine dosage; and iii) assess the induced immune response to find immune correlates of 

protection and to detect detrimental immune responses. This preclinical development is of 

utmost importance since it maximizes the chances that a vaccine candidate will turn out to be 

protective and safe before it is applied to humans in the subsequent clinical phases. Careful 

selection of an appropriate animal model maximizes the chances that the results obtained in 

preclinical development translate into humans. For some STIs, such as Haemophilus ducreyi 

and genital herpesvirus infections, experimental animal models are well established, while for 

others this development is more challenging. Therefore, researchers are searching for new and 

better animal models. Besides the main animal models mice and non-human primates (NHPs), 

the pig has gained importance as an experimental animal model to study various human 

illnesses.  

Mice are easy to handle with an extensive biological toolbox making them the most 

frequently used animal model in biomedical research. A large number of vaccine candidates 

have been designed and assessed in mice (Bosio et al., 2012; McShane and Williams, 2014). 

While these advantages are useful for the design of vaccine candidates, physiological and 

immunological differences between humans and mice limit their biological relevance for 

preclinical vaccine studies including efficacy and toxicology testing (Bosio et al., 2012; 

McShane and Williams, 2014). Due to the limitations of the mouse model, most vaccine 
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candidates are tested in a second, biologically more relevant animal model before entering the 

clinical phases.  

NHPs are closely related to humans and can provide biological data that is highly 

relevant. The downside of this close relationship to humans is that the use of NHPs for 

biomedical research is controversial due to their high ethical burden. As a result, animal 

experiments in NHPs are heavily regulated, very expensive and the availability of NHPs is a 

pressing concern to biomedical research which represents a significant bottleneck for vaccine 

development. This reality has led to an increasing demand for an affordable, accessible, and 

biologically relevant animal models (Gerdts et al., 2015; Lankau et al., 2014; Meurens et al., 

2012). The pig combines the attributes required for such as model (Box 1) and is gaining 

more and more interest in biomedical research including vaccine development (Gerdts et al., 

2015; Meurens et al., 2012). 

Pigs were first introduced as a large animal model for biomedical research in the 

middle of the 20th century (Gutierrez et al., 2015). The interest in the swine model has since 

then grown due to the many similarities with humans regarding its anatomy, genetic, 

immunology, and physiology (Lossi et al., 2016; Meurens et al., 2012; Swindle et al., 2012). 

Pigs are also widely available, have a manageable size and a behavior that allows for both 

smooth handling and easy experimental interventions. In addition, pigs are accepted as 

experimental animals by the general public, which may not be the case for animals such as 

dogs and NHPs). The biomedical toolbox for pigs has heavily increased during the last decade 

leading to its strongly increased popularity as a model for biomedical research and especially 

for preclinical vaccine studies (Gerdts et al., 2015; Meurens et al., 2012). Over the past ten 

years, many excellent reviews have been published related to the potential and documented 

success of the pig as a biomedical model for conditions in humans (Fairbairn et al., 2011; 

Gerdts et al., 2015; Klymiuk et al., 2016; Meurens et al., 2012; Rogers, 2016; Rogers et al., 
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2008). Various studies that utilized the swine model for the study of human infectious 

diseases with significant contributions and potential new developments were reviewed by 

Meurens et al. (Meurens et al., 2012). One review addressed the use of the swine model in the 

study of the human chlamydiosis (Lorenzen et al., 2015b). With the current review, we 

present the main animal models to study human STIs and we focus on the interest and the 

potential of the swine model to understand and more efficiently reduce the impact of these 

devastating human infections. 

 

EXISTING ANIMAL MODELS FOR INFECTIOUS DISEASES 

The use of experimental animal models to study infectious diseases is necessary to 

improve our understanding of disease pathogenesis and to develop and test preventive and 

therapeutic approaches prior to their use in human clinical trials. A truly effective animal 

model reproduces as many aspects of the human disease under investigation as possible. Two 

main classification systems for animal models exist (Gerdts et al., 2015; Meurens et al., 

2012). The first classification system differentiates (i) spontaneous, (ii) experimentally-

induced or (iii) transgenic models. The second system distinguishes between (i) natural or (ii) 

surrogate models. Logically these two classification systems are not independent and 

spontaneous models are usually naturally occurring while surrogate models are 

experimentally induced or even transgenic in nature. In natural models, animal pathogens 

similar to or even identical (zoonotic pathogens) to the human pathogens are used. In this 

case, animal and human pathogens share a high degree of similarity in their antigenicity, 

genetics, host cell and receptor tropism, and pathogenesis. For surrogate models, the human 

pathogen is administered to a permissive animal. Ideally, the human pathogen should enter the 

animal host via a same route, must replicate at a sufficient level and should target the same 

tissues and organs. However surrogate models can be difficult to establish and usually the 
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disease developed in the model is milder than the disease naturally observed in the human 

host. When a model is selected, different parameters have to be considered to evaluate its 

effectiveness (Denayer et al., 2014; Lorenzen et al., 2015b) including face, predictive and 

target validities. Face validity assesses how well is the biology and symptoms of the disease 

mimicked by the selected model. Predictive validity assesses how well the effects of a 

treatment are mimicked by the chosen model. Target validity assesses how similar the role the 

target system plays in the selected model compared to what is described in humans. 

  

THE PIG AS A MODEL IN THE STUDY OF HUMAN SEXUALLY TRANSMITED 

INFECTIONS 

The porcine model has been used in the study of several human infectious diseases 

(Meurens et al., 2012) and has been subject of many reviews including those focused on using 

large animal models for vaccine development and testing (Gerdts et al., 2015). Very recently, 

the pig was used as surrogate model for emerging Zika virus which increases its potential for 

other diseases that affect the fetus (Darbellay et al., 2017). Pigs have also been used as a 

preclinical models to decipher complex human diseases, and to accelerate the development of 

safe and efficient therapies (Klymiuk et al., 2016; Schomberg et al., 2016). The recent 

development of gene editing tools further increases the potential of large animals, including 

pigs, to model human diseases as presented in some interesting reviews (Rogers, 2016; 

Whitelaw et al., 2016). 

 

THE FEMALE AND MALE PORCINE GENITAL TRACT  

The relevance of the pig as a model for human diseases is based on its similarities in 

regard to anatomy, physiology and immunology. In addition to these aspects, the genital 

microbiome and the influence of the hormonal cycle on the tissue and local immune system 
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increases the complexity of studying STIs in animal models. Lorenzen et al. (Lorenzen et al., 

2015b) provided a comprehensive review on the advantages and disadvantages of the porcine 

female genital tract for studying Chlamydia infections. The following section provides a short 

overview of the most relevant aspects of the porcine female and male genital systems for 

studying human STIs. 

The porcine female genital tract  

Anatomy: One major difference in the gross anatomy of the pig compared to the genital tract 

of women is the bicornual anatomy of the porcine uterus. In women, the genital tract consists 

of the vagina, a short cervix, and a uterus with a single compartment, the uterine body, from 

which the two Fallopian tubes arise. In pigs, the vagina is followed by a long cervix including 

prominent mucosal ridges (cervical pulvini), a common short body and two long horns from 

each of which a Fallopian tube origins (Nickel et al., 1979) (Fig. 1). This difference and 

others have importance in the use of the pig model to study ulcerative and non-ulcerative 

human pathogens targeting the genital tract at various locations such as vagina for 

Trichomonas vaginalis and external genitalia and lower genital tract for ulcerative pathogens 

like Haemophilus ducreyi, Treponema pallidum, Herpesviridae (Herpes simplex virus (HSV) 

types 1 and 2), and Papillomaviridae (Human papillomavirus, HPV). For instance, in the case 

of the infection caused by Chlamydia trachomatis and its ascension into the Fallopian tubes, 

the longer distance between vagina and Fallopian tubes in pigs than in humans may prevent 

the inoculated microorganism from entering the Fallopian tubes. At the microscopic level, the 

most important feature in relation to experimental infections is the location of columnar 

epithelial cells as they are the target cells of several STI pathogens. In women, especially in 

young women, columnar epithelial cells are located in the endocervix, but in pigs the cervical 

canal is covered predominantly by a stratified squamous epithelium in the gilt and sow and 

columnar epithelial cells are present within the uterus (Priedkalns and Leiser, 2006). Hence, 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

8 

 

to promote a successful infection of columnar epithelial cells, pigs should be administered the 

pathogen directly into the uterine lumen. Due to the presence of the cervical pulvini, 

intrauterine infection via transcervical inoculation should be performed during estrus when 

the cervical canal is permissive and allows catheterization. Synchronization of the porcine 

hormonal cycle via altrogenest (allyl trenbolone 20 mg oral for 18 consecutive days) allows 

for consistent intrauterine inoculations of pigs during estrus – when cervix is opened – and is 

a standard procedure for catheterization during artificial insemination in commercial pig 

production. 

Hormonal cycle: Hormones influence the presence and activity of several immune cell 

subsets and immune modulators. Therefore, it is crucial to understand the differences and 

similarities of the hormonal cycle between pigs and humans. A recent comparative review 

(Lorenzen et al., 2015b) (summarized in Table 1) showed closely related porcine and human 

hormonal cycles with small differences in the one week shorter duration of hormonal cycle in 

pigs and the luteinizing prostaglandin (PG) F2α hormone originating from the uterus in pigs 

and ovaries in women. The epithelium and functional layers of the endometrium show similar 

cyclic changes in women and pigs (Lorenzen et al., 2015b). Interestingly, regarding immune 

cell infiltration in the genital mucosa, there is an influx of neutrophils in the porcine 

endometrium during pro-oestrus and estrus (Hussein et al., 1983; Jiwakanon et al., 2005; 

Kaeoket et al., 2002). While the hormonal cycle is very similar, there is one major difference 

in their physiology. In contrast to women, pigs do not undergo endometrial sloughing 

(menses), which may change the course of infection compared to what occurs in women 

under naturally occurring infections.  

Microflora: Another important difference is the acidic vaginal pH and the flora, which is 

dominated by lactobacilli in women, compared to a neutral pH and a mixed non-lactobacillus 

flora in pigs (Bara et al., 1993; Farage et al., 2010; Mather et al., 1977; Zhou et al., 2004). 
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These differences in flora may not be of significance in experimental studies if inoculation is 

done directly into the uterine lumen.  

The porcine male genital system 

Most studies using pigs as a model of STIs in humans have focused on infections in 

females. However, due to the general similarities between humans and pigs (Lossi et al., 

2016; Swindle et al., 2012), boars can also be interesting as an animal model in the study of 

human STI various aspects (see Table 2). For males, there are species-specific differences that 

one must be aware of, such as differences in the environment, external morphology and 

anatomy of the porcine penis and prepuce. 

While the human penis is characterized as a soft tissue with considerable amounts of 

erectile tissue, the porcine penis is of the fibroelastic type consisting mainly of connective 

tissue with limited amount of erectile tissue. So even erected, the boar penis maintains its 

shape as a hard, thin, tapering ‘stick’. The anterior of the boar penis is twisted counter-

clockwise, while the posterior part is coiled as a sigmoid flexure. Straightening of the flexure 

is responsible for erection, while only a flat plexus of veins at the glans of the penis becomes 

distended (Eurell and Frappier, 2006; König and G, 2009; Lossi et al., 2016; Nickel et al., 

1979; Silverthorn, 2007). The prepuce is much longer than the penis and is covered by hairs at 

the tip. A diverticulum of considerable size is present in the dorsal wall of the prepuce, e.g. in 

an adult Landrace boar it may contain 135 mL of epithelial debris and urine and the opening 

may be passable for two fingers although often closed by mucosal folds (Fig. 2). The prepuce 

is covered by a stratified squamous epithelium (Nickel et al., 1979; Wrobel and Bergman, 

2006). Boars urinate inside the preputial cavity and the external genital tract is located on the 

ventral surface of the abdomen causing a risk for heavy exposure to environmental 

contamination. This may create an environment of the porcine prepuce that is probably very 
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different from the prepuce of men and may make boars unsuited as models of STIs located to 

these structures. 

In man, several sexually transmitted pathogens such as C. trachomatis, Neisseria 

gonorrhoeae, and Mycoplasma genitalium localize to the urethra, which in the membranous 

and penile parts is covered by a stratified or ciliated pseudostratified columnar epithelium 

(Krause, 2005). In the boar, these parts are covered by a transitional epithelium (Wrobel and 

Bergman, 2006). Also, the size of the accessory glands differs, especially because boars have 

extremely large bulbourethral glands (Fig. 2) (Krause, 2005; Nickel et al., 1979; Silverthorn, 

2007). 

 

CURRENT MODELS FOR STIs IN HUMANS AND CONTRIBUTIONS OF THE 

PORCINE MODEL 

The frequent STIs affecting human populations are caused by bacteria, parasites, and 

viruses (CDC 2017, https://www.cdc.gov/std/default.htm). The main bacterial families 

causing STIs are Chlamydiaceae, Mycoplasmataceae, Neisseriaceae, Pasteurellaceae, and 

Spirochaetaceae with C. trachomatis, M. genitalium, N. gonorrhoeae, and T. pallidum as 

their most important species in term of frequency. Their high prevalence coupled with 

increasing levels of antibiotic resistance, especially in case of N. gonorrhoeae and 

Mycoplasma genitalium, has made the quest for currently unavailable effective vaccines 

urgent (Unemo et al., 2017). The most important parasite is T. vaginalis and the major RNA 

and DNA viruses belong to the families Flaviviridae (Hepatitis C virus, HCV), 

Hepadnaviridae (Hepatitis B virus, HBV), Herpesviridae (HSV-1 and HSV-2), 

Papillomaviridae (HPV), and Retroviridae (Human immunodeficiency virus 1 and 2, HIV-1 

and -2).  
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Many animal models provide insights in the pathogenesis of human STIs to facilitate 

the development of vaccines and therapeutics. The following sections address available 

animal models for each of these pathogens including the most common rodent and primate 

models as well as alternative animal models. At the end of each section, we will address how 

swine can contribute as a large animal model for the study of the respective pathogens. 

 

Chlamydia trachomatis 

Chlamydia trachomatis is the most common sexually transmitted bacterium 

worldwide [World Health Organization, 2012, ISBN: 9789241503839]. Infection is often 

asymptomatic. Ascending infections into the Fallopian tubes of women may cause pelvic 

inflammatory disease, tubal infertility, and ectopic pregnancy (Unemo et al., 2017). The 

majority of animal studies have been carried out using mice, guinea pigs and NHPs (for a 

review see (Miyairi et al., 2010)) (Fig. 3). The natural mouse model has been developed with 

C. muridarum, the murine Chlamydia species. Vaginal C. muridarum infections are relatively 

robust and can ascend to the upper genital tract and cause Fallopian tube lesions with 

subsequent complications (de la Maza et al., 1994; Shah et al., 2005). However, there are 

significant differences between C. muridarum and C. trachomatis and these hamper drawing 

parallels with human C. trachomatis infections. Contrary to C. muridarum, which has only 

one serovar, C. trachomatis has 18 substantial allelic variations of the dominant surface 

protein major outer membrane protein (MOMP), while C. muridarum has a single allele 

(Rank and Whittum‐Hudson, 2010). However, the main disadvantage of the mouse model is 

its different sensitivity to IFN-γ. While C. trachomatis can avoid IFN-γ-induced tryptophan 

starvation by expressing a tryptophan synthase, C. muridarum is not able to produce this 

enzyme (Nelson et al., 2005), probably as a consequence of a different effect of IFN-γ on 

human and murine epithelial cells. Contrary to human epithelial cells, murine epithelial cells 
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do not express indoleamine 2,3-dioxygenase following IFN-γ exposure but instead have 

redundant mechanisms using nitric oxide synthase and others (Ramsey et al., 1998). Mice can 

be infected with C. muridarum as well as C. trachomatis, although infections with the later 

are usually mild and mice lacking functional T-cells are able to clear C. trachomatis 

infections (Tuffrey et al., 1982). Coers et al. generated Immunity Related GTPase (IRG) 

knockout mice in order to overcome this limitation. These knockout mice developed a 

transient high bacterial burden upon intrauterine inoculation with the C. trachomatis serovar 

L2. Clearance of this infection was at least partly driven by CD4+ T cells (Coers et al., 2011). 

Chlamydia trachomatis infections do not ascend to the Fallopian tubes in mice, a key 

aspect for studying chlamydial pathogenesis (Farris and Morrison, 2011). Therefore, sequelae 

of C. trachomatis infection are induced in mice by direct inoculation of the upper genital tract. 

This inoculation route has one disadvantage in modeling natural human infections: “During 

natural human infection, the time required for ascension of the bacterium to the Fallopian 

tubes may allow for homing of protective memory T-cells, leading to a decrease in the 

infectious inoculum and consequent damaging inflammation at this vulnerable tissue site” as 

stated by Darville and Hiltke (Darville and Hiltke, 2010). Furthermore, other differences 

could hamper the translation of findings from mice to humans, such as the hormonal treatment 

to enhance infection, different size of the hosts limiting the collect of samples, and the higher 

vaginal pH of 6.6 in mice compared with 3.5-5 in women.  

Guinea pigs are another natural model frequently used to study chlamydial infections, 

generally with C. caviae as the infective agent. Intravaginal C. caviae inoculation of guinea 

pigs leads to ascension through self-limiting infections which appear to resemble C. 

trachomatis infections in women (Rank et al., 1982). In a recent study, de Jonge et al. 

introduced an alternative guinea pig model using C. trachomatis, which also showed 

indications of ascending infections (de Jonge et al., 2011). However, guinea pig models have 
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drawbacks such as a smaller size than humans. Another issue is the limited molecular toolbox 

in guinea pigs which has likely contributed to the low number of studies on chlamydial genital 

tract infection, although studies on C. caviae genital infections of guinea pigs date back to 

1972 (Mount et al., 1972).  

NHPs are close relatives to humans and have also been used as animal models for C. 

trachomatis infection. Intracervical inoculation with human C. trachomatis serovars can result 

in long-term (up to 15 weeks) infections in pig-tailed macaques (Macaca nemestrina) 

(Wolner-Hanssen et al., 1991) and repeated inoculations can result in the ascension of 

infection to the Fallopian tubes (Patton, 1985). However, NHP models suffer from the 

previously mentioned ethical problems and are expensive (Meurens et al., 2012). 

The pig is the natural host to C. suis, a very prevalent pathogen with a high similarity 

to C. trachomatis (Schautteet and Vanrompay, 2011). Genital C. suis infections can lead to 

similar pathological changes and disease outcomes as C. trachomatis infections and have been 

associated with reproductive disorders as reduced conception rates and inferior semen quality. 

Importantly, recent studies demonstrate a zoonotic potential for C. suis (Dean et al., 2013; De 

Puysseleyr et al., 2017). Due to the close relationship between C. trachomatis and C. suis and 

the similar disease outcomes in swine, researchers have started to use the pig as a large animal 

model to study C. trachomatis infections and for developing and testing C. trachomatis 

vaccines using either conventional pigs or minipigs (Bøje et al., 2016; Käser et al., 2017; 

Lorenzen et al., 2017; Schautteet et al., 2012, 2011a). 

The minipig model: Several studies using vaginal inoculation with the C. trachomatis 

SvD/UW-3/Cx strain (ATCC® VR-885™) in sexually mature female Göttingen minipigs 

during estrus were developed and characterized as a porcine model of genital chlamydiosis in 

women for use in vaccine studies (Bøje et al., 2016; Lorenzen et al., 2017).  

Chlamydia trachomatis infection via deep vaginal inoculation: 
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A self-limiting infection was induced following deep vaginal inoculation of 1.8 × 109 

inclusion forming units (IFUs). The minipigs were followed for up to seven days during 

which the infection declined with only a few samples being slightly positive by quantitative 

polymerase chain reaction (qPCR) for chlamydial 16S rRNA on day 7. C. trachomatis was 

found by qPCR in both the uterus and Fallopian tubes of individual minipigs, but the infection 

was associated with only a mild inflammatory response limited to the cervico-vaginal mucosa. 

As determined by immunohistochemistry (IHC), replication was limited and confined to the 

cervico-vaginal epithelium, where it was associated with cyclooxygenase-2 and interleukin-8 

expression (Erneholm et al., 2016). Similar rapid clearance was observed in non-vaccinated 

control minipigs inoculated with either 3.9 × 109 IFUs (Bøje et al., 2016) or 5 × 109 IFUs 

(Lorenzen et al., 2015a) as part of vaccination studies. Significant levels of infection were not 

found beyond 3 days after inoculation in neither of the studies and C. trachomatis was not 

found in the uterus and the Fallopian tubes at necropsy performed 15 days after challenge 

(Lorenzen et al., 2015a).  

Chlamydia trachomatis infection via intrauterine and transcervical inoculation: 

In an attempt to establish a longer lasting infection by inoculating the bacteria at a site where 

columnar epithelial cells were present, Lorenzen et al. (Lorenzen et al., 2017) performed 

intrauterine inoculation during laparotomy using a dose of either 1 x105 or 1 x 108 IFUs as 

well as a transcervical challenge using a dose of 1 x 109 IFUs. The rationale behind 

inoculation directly into the uterine lumen was the absence of columnar epithelial cells in the 

vagina and cervix of minipigs and the longer cervical canal with mucosal folds, which may 

have prevented sufficient numbers of bacteria to have reached the uterine mucosa in the 

previous studies (Bøje et al., 2016; Erneholm et al., 2016; Lorenzen et al., 2015a). The 

transcervical challenge during estrus induced an infection in all (8/8) inoculated animals up to 

seven days post inoculation. A dose of 1 x 105 IFUs using laparotomic intrauterine inoculation 
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proved insufficient to establish an infection, but the high doses established an infection with a 

higher bacterial load than following vaginal inoculation (≈ 2 log units) and an infection that 

lasted for up to seven days. Furthermore, the infection was associated with significant acute 

uterine suppurative inflammation and Chlamydia replication in columnar epithelial cells was 

shown by IHC in some minipigs. Intrauterine inoculation via laparotomy during estrus was 

short (up to 5 days) and self-curing but during diestrus this infection induced a long-term 

infection until the end of the study (10 days). This difference can be explained by the higher 

activity of the uterine mucosal innate immune system of pigs during estrus (Erneholm et al., 

2016; Lorenzen et al., 2015b).  

Conclusions: 

Based on these findings, it is recommended that minipigs should be inoculated either 

transcervically during estrus, when cervix is opened, with 1 x 109 IFUs or directly into the 

uterine lumen via laparotomy during diestrus with 1 x 108 IFUs to facilitate establishment of a 

longer lasting infection. However, laparotomy is complicated by the anatomy and constriction 

of the cervical canal during diestrus.  

The minipig model needs to be further developed, especially to mimic long-term 

infections and development of chronic lesions in the Fallopian tubes as seen in cases of 

chronic genital chlamydiosis in women. 

The conventional pig model: Conventional pigs have been used for studying C. trachomatis 

infections since 2005 (Schautteet et al., 2012, 2011a, 2011b; Vanrompay et al., 2005).  

Infection and basic immune response analysis upon C. trachomatis vaccination and challenge: 

Based on studies on pigs inoculated intravaginally with 108 IFUs C. trachomatis strain E Bour 

and 468 it was concluded that both strains ascended to the Fallopian tubes, induced pathology, 

and triggered a humoral immune response (Vanrompay et al., 2005). In 2011, two C. 

trachomatis trials in pigs were performed to test two recombinant protein vaccines and a 
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MOMP-based DNA vaccine. Upon intravaginal challenge with 108 IFUs C. trachomatis E 

Bour, Schautteet et al. (Schautteet et al., 2011a, 2011b) reported less severe macroscopic 

lesions and decreased C. trachomatis replication and vaginal excretion in the group 

vaccinated by the MOMP-based DNA vaccine. The recombinant protein vaccine using PmpG 

as antigen also induced partial protection to C. trachomatis infection based on scoring of 

lesions. Protection did not correlate with a humoral immune response and T-cell immune 

response was not investigated (Schautteet et al., 2011a, 2011b). In 2012, the same group 

performed another vaccination trial comparing mucosal vs. intradermal DNA immunization. 

In comparison to intradermal vaccination, the mucosal vaccination route induced globally a 

stronger immune response but still only a partial protection against C. trachomatis challenge. 

Higher serum IgA levels and T-cell priming correlated with protection, although the authors 

did not test for C. trachomatis-specific T-cells since in vitro restimulation was performed 

using Concanavalin A instead of chlamydial antigens (Schautteet et al., 2012).  

Deciphering the T-cell immune response to C. trachomatis and C. suis infection: 

The induction of Chlamydia-specific T-cells by C. suis and C. trachomatis was focus of a 

recent study by Käser et al. (Käser et al., 2017). In that study, conventional pigs were infected 

transcervically with 108 IFUs C. suis (strain S45) or C. trachomatis (strain E Bour). The 

authors followed the infection for 21 days and analyzed chlamydial titers in vaginal swabs 

and genital tissue at necropsy. The induction of the humoral immune response was analyzed 

by determining neutralizing antibody levels in blood, and the activation and cytokine 

production of different T-cell subsets in blood (time-course) and the draining lymph nodes (at 

necropsy) using polychromatic (multi-color) flow cytometry (pFCM). C. suis and C. 

trachomatis were detectable in vaginal swabs until 21 days and 7 days post infection, 

respectively. Analyzing chlamydial infection in the upper genital tract at necropsy (uterine 

horn flushes and tissue with gross lesions) showed that the infection was still ongoing in this 
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location in 3/5 (C. suis) and 4/5 (C. trachomatis) infected animals until 21 days post infection. 

While only infection with C. suis induced neutralizing antibodies, both Chlamydia species 

induced a CD4+ T-cell immune response in most animals with IFN-ɣ single-, and IFN-γ/TNF-

α double-producing CD4+ T-cells as main responders (Käser et al., 2017). The detected IFN-γ 

single-, and IFN-γ/TNF-α double-producing CD4+ T-cells have been reported previously to be 

the best correlates of protection against C. muridarum infection (Yu et al., 2011). 

Conclusions: 

The conventional pig model requires further establishment to provide a more 

consistent and resilient infection with C. trachomatis to induce a stronger immune response. 

Nevertheless, the performed studies demonstrate the potential of the pig to study C. 

trachomatis infections inclusive of vaccination studies. The current improvements in the 

porcine immunological toolbox provide a sensitive pathogen detection system combined with 

an in-depth analysis of the induced immune response including neutralizing antibody levels 

and multifunctional T-cells. 

 

Haemophilus ducreyi 

Haemophilus ducreyi is the etiologic agent of chancroid, a sexually human transmitted 

disease characterized by painful sores on the genitalia consecutive to the development of 

ulcerating cutaneous lesions. The disease is a lot less frequent today than it was before and far 

less prevalent than other diseases presented in this review (González-Beiras et al., 2016). 

However, because the pig model has been considerably used to study H. ducreyi (Afonina et 

al., 2006; Fulcher et al., 2006; Hobbs et al., 1995), it has been chosen to present it here too. 

Indeed, studies have shown evidences that the histopathology of the lesions in the ear skin pig 

model closely resembles that of human chancroid (Hobbs et al., 1995) and that the swine 

immunology and skin structure closely resemble their human counterparts (Summerfield et 
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al., 2015b). The temperature-dependent rabbit model has also been used to obtain data on 

associated virulence factors and immuno-pathogenesis of chancroid H. ducreyi infections 

(Desjardins et al., 1996, 1995). Studies using this model demonstrated that infected whole-

cells, crude outer membrane protein mixtures or purified vaccine proteins could induce an 

immune protection against H. ducreyi infections. However, the antibodies produced did not 

show bactericidal or opsonophagocytic capacities (Desjardins et al., 1996, 1995). Finally, 

some studies were also performed using NHPs (i.e., Macaca mulatta) (Sturm, 1997; Totten et 

al., 1994). These NHPs had the advantage of allowing the assessment of some strains which 

were not virulent in the rabbit model even if pathogenic for humans (Sturm, 1997).  

Most porcine data in the study of H. ducreyi pathogenesis were generated using the 

surrogate ear skin swine model developed in crossbred (Yorkshire, Landrace, Hampshire, and 

Duroc Cross) or purebred (Landrace) conventionally reared swine (Hobbs et al., 1995). This 

swine model established which immune cell types were involved in H. ducreyi infection 

(Hobbs et al., 1995). Analysis by Western blots of H. ducreyi proteins presented in swine 

serum after 2 weeks of inoculation demonstrated a response characterized by increased 

concentrations of IgG antibodies targeting H. ducreyi antigens (Hobbs et al., 1995). Other 

studies tried to identify the mechanism of entry, colonization steps and pathogenesis, and to 

define factors present into immune serum that conferred protection against H. ducreyi. These 

studies demonstrated that H. ducreyi infection requires two TonB-dependent receptors - the 

hemoglobin receptor (HgbA) and a receptor for free heme (TdhA) - and that the NcaA outer 

membrane protein is required for collagen binding (Afonina et al., 2006; Fulcher et al., 2006). 

Anti-HgbA IgG was able to block hemoglobin binding to the HgbA receptor showing the 

importance of HgbA in the development of vaccine candidates against chancroid (Afonina et 

al., 2006; Fulcher et al., 2006). Based on these studies, the swine model appears interesting to 
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answer questions related to H. ducreyi pathogenesis, to perform therapeutic trials, and to 

develop vaccine candidates. 

 

Mycoplasma genitalium 

Mycoplasma genitalium is a common STI agent causing urethritis in both men and 

women, and cervicitis and pelvic inflammation in women. This emerging bacterium was first 

described in the 1980s in men with non-gonococcal and non-chlamydial urethritis (Tully et 

al., 1981). Since then, others studies have confirmed the involvement of M. genitalium in 10-

35% of human reproductive tract non-gonococcal and non-chlamydial inflammatory diseases 

including urethritis in men, and cervicitis, pelvic inflammatory disease, and infertility in 

women (Jensen et al., 2016). Its prevalence is increasing and rivaling that of C. trachomatis. 

Furthermore, it is resistant to antibiotics and treatment options are becoming more limited 

(Manhart, 2017). Animal studies are needed to comprehensively study the pathogenesis of M. 

genitalium, particularly its contribution to ascending genital tract infections of women 

(Wiesenfeld and Manhart, 2017). To date, few studies have been conducted to establish an 

animal model to obtain better knowledge of the M. genitalium pathogenesis. The literature 

includes mainly studies using several NHP infection surrogate models including chimpanzees 

(Pan troglodytes – not allowed anymore) and pig-tailed macaques to investigate pathogenesis 

and host responses (Taylor-Robinson et al., 1987; Wood et al., 2017). 

NHP studies: M. genitalium infection established classically by the urogenital route 

induces clinical manifestations in pig-tailed macaques similar to the ones observed in humans 

with a large number of polymorphonuclear leukocytes infiltrating the genital tract (Wood et 

al., 2017). In addition a specific serum antibody response could be demonstrated further 

proving host susceptibility (Wood et al., 2017). However, not all NHPs are susceptible to M. 

genitalium infection, including rhesus monkeys (Macaca mulatta) whose vaginal mucosa 
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does not allow bacterium colonization, thereby preventing ascending infection (Taylor-

Robinson et al., 1987).  

Rodent studies: Mice and hamsters are also naturally resistant to infection. A group of 

researchers has developed a female mouse model in which mice are treated with estradiol or 

progesterone at 7 days and at 1 day prior to M. genitalium type G37 or M2300 strain 

inoculations (McGowin et al., 2010). This model has been able to demonstrate a causal 

association of M. genitalium with reproductive disease by upper genital tract infection 

following vaginal exposure (McGowin et al., 2010). 

Swine model: No swine model has been described for the study of M. genitalium and 

since this bacterium is very restricted to a small number of primates, the opportunity to 

develop a new model in the pig seem limited and would need further assessment. 

 

Neisseria gonorrhoeae 

Neisseria gonorrhoeae is the second most prevalent bacterial STI globally causing the 

disease gonorrhea (Unemo et al., 2017). It is an exclusively human pathogen which causes 

considerable morbidity and occasional mortality through untreated ectopic pregnancy 

worldwide. Up to 50% of cases may be asymptomatic and females are disproportionately 

affected because of the consequences of untreated or undetected disease (Hill et al., 2016) 

including pelvic pain caused by ascending genital tract infections, pelvic inflammatory 

disease, occlusion of the Fallopian tubes due to inflammation and ectopic pregnancy. There is 

no vaccine for gonorrhea but the need has become urgent as antibiotic resistance has become 

widespread and threatening the ability to cure the infection. The organism has been studied in 

various animal models including NHPs, rabbits, guinea pigs, mice, and chicken embryos 

(Arko, 1989). Historically, the main issue with these models was the presence of several host 

restrictions. In mice, the use of estradiol reduced this limitation by an unknown mechanism 
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which has led to their use as a surrogate host for N. gonorrhoeae (Jerse et al., 2011). 

Estradiol-treated mice are now the most common animal model used for studying gonococcal 

infections. Nevertheless, important differences exist between the genital tract of women and 

female mice thereby limiting the use of the mouse as an N. gonorrhoeae animal model. The 

vaginal pH in female mice is higher than the human vaginal pH, mostly due to differences in 

resident microbial populations and mice do not experience menstrual bleeding, which would 

bring hemoglobin, proteases, and various serum factors into the lumen of the reproductive 

tract (Jerse et al., 2011) (see Table 1).  

Several host restrictions have been described for N. gonorrheae and complicate the 

establishment of animal models (Jerse et al., 2011; Ngampasutadol et al., 2008). These host 

restrictions include, for instance, lack of human CD46 counterpart in some species, which can 

serve as a N. gonorrhoeae pilus receptor (Jerse et al., 2011; Kallstrom et al., 1997; Källström 

et al., 2001), human CR3 integrin counterpart (Edwards et al., 2002), and human 

carcinoembryonic antigen cellular adherence molecules (CEACAMs) 1, 5, and 6 counterparts 

to which the phase variable opacity (Opa) proteins bind and CEACAM3, through which Opa-

mediated uptake by neutrophils occurs without opsonization (Jerse et al., 2011; Sadarangani 

et al., 2011). A better understanding of host restrictions through the use of the transgenic mice 

such as CEACAM1 transgenic mice (Gu et al., 2010) and the identification of the mechanism 

behind the estradiol treatment making female susceptible to the infection are needed. 

Although N. gonorrhoeae is an obligate human pathogen, there are species of the 

Neisseriaceae that are able to infect pigs. A pig-specific strain was recognized when five 

strains of an unusual Gram-negative, coccobacillus-shaped bacterium were isolated from the 

lung and heart of pigs with pneumonia and pericarditis and subjected to comparative 16S 

rRNA gene sequencing (Vela et al., 2005). Results showed that the strains were 

phylogenetically highly related to each other and were related to the family Neisseriaceae 
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(Vela et al., 2005). On the basis of both phenotypic and phylogenetic evidence, the isolates 

from pigs were classified as a novel genus and species within the family Neisseriaceae, 

named Uruburuella suis. Despite being identified in 2005, no studies have been published 

indicating how widespread U. suis is in the pig population around the world, how it is 

transmitted, whether it causes infection and whether it acts as an STI in pigs or other species. 

Such studies might assist in understanding N. gonorrhoeae transmission and infection 

dynamics in humans. 

Limited research has been performed to establish that porcine cells can be infected 

with N. gonorrhoeae. Using ex vivo porcine vaginal mucosa (PVM) as a tissue model 

Breshears et al. (Breshears et al., 2015) determined that human clinical isolates of N. 

gonorrhoeae could colonize these cells and form biofilms. The PVM mucosal explants were 

inoculated with ~104 CFUs/explant of N. gonorrhoeae which then grew to ~ 1.1 x 

107 CFUs/explant (~4.2 x 107 CFUs/mL) with peak growth at 24 – 48 h. N. gonorrhoeae grew 

well under aerobic conditions but they grew poorly under anaerobic conditions and growth 

was optimal on the PVM when the underlying media was at pH 5.5 – 6.5. PVM colonized 

with N. gonorrhoeae exhibited robust biofilm development within 24 h and showed a thick 

biofilm covering the majority of the explant after 48 h. Epithelial cells visible between 

patches of N. gonorrhoeae biofilm were alive (Breshears et al., 2015) which indicates that at 

least ex vivo, N. gonorrhoeae could colonize, grow and form biofilms on pig vaginal mucosa. 

Researchers from the Wilson and Dillon laboratories have isolated primary porcine genital 

tract epithelial cells to establish whether they can be infected by N. gonorrhoeae (Wilson and 

Dillon, unpublished data). N. gonorrhoeas FA1090 adhered to primary pig genital tract 

epithelial cells after 2 h (Wilson and Dillon, unpublished data) and further research is being 

performed to establish invasion and growth of the bacteria. Preliminary data also showed that 

the porcine cervical and uterine mucosa have abundant expression of the CR3 (CD11b/CD18) 
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gene but that the primary genital tract epithelial cells have negligible expression for this 

receptor (Edwards et al., 2001). We are currently investigating whether culturing the primary 

cells with estrogen impacts CR3 expression.  

 

Treponema pallidum 

Syphilis, a bacterial STI caused by T. pallidum subspecies pallidum, results in the 

establishment of a persistent and recurrent infection and is implicated in substantial morbidity 

and mortality (Hook, 2017). The infection occurs globally in human populations and accounts 

for more than 5 million new cases every year (Hook, 2017). The natural course of untreated 

syphilis progresses through successive stages including primary, secondary, latent, and 

tertiary manifestations. The primary manifestations are characterized by an ulcerative lesion 

at the port of entry. In men, a painless ulceration (chancre) is most often seen on the distal 

penis whereas in women, lesions in the vagina, cervix, rectum, perirectally, or in the mouth 

are most prevalent (Hook, 2017). Humans are the only natural host for T. pallidum subspecies 

pallidum, which restricts the use of animal models. Furthermore, it is slowly growing 

bacterium that cannot be cultured. An in vitro model with the invasion of tissues by 

pathogenic T. pallidum has been developed but is not used anymore (Riviere et al., 1989). To 

date, rabbits are the only mammal to develop naturally-occurring syphilis caused by T. 

paraluis-cuniculi, a bacterium closely related to T. pallidum subspecies pallidum with 

genomic sequence similarity near 99%, antigenic cross reactivity and similar symptoms (Peng 

et al., 2015; Strouhal et al., 2007). Consequently, the natural rabbit model has been used to 

investigate pathogenesis and immunity of human syphilis or to develop therapeutic 

approaches (Morgan et al., 2002; Peng et al., 2015; Tantalo et al., 2005). The guinea pig 

model has also been used to study the pathogenesis and the development of the adaptive 

immune response to T. pallidum (Wicher et al., 1999). Other animal models such as guinea 
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baboons (Papio papio) have also been reported to be sensitive to T. pallidum subspecies 

pertenue with clinical manifestations ranging from being asymptomatic to severe skin and 

mucous membranes ulcerations (Harper and Knauf, 2013). This subspecies is known to cause 

yaws in humans. The infection has a chronic course and is transmitted by direct contact but 

yaws can be considered as a STI. Yaws is the most frequent of the tropical endemic 

treponematoses. Infection by T. pallidum subspecies pertenue causes a skin infection, which 

can then spread and produce lesions in the deeper structures, in particular bone, by contiguity. 

Yaws is not a deadly disease, but it is painful, disfiguring, and those who suffer from it are 

socially stigmatized. Today, there is no absolute animal model to directly study the 

pathogenesis and the immune response to human syphilis or to test therapeutic approaches or 

vaccine candidates against this bacterium. 

For this bacterium, the swine model has a poor potential so far. Treponema spp. are 

very adapted to their specific host and, in the pig, Treponema pedis are not associated with 

genital lesions but rather ear necrosis and shoulder ulcers (Svartström et al., 2013). 

 

Trichomonas vaginalis 

 Also known as urogenital trichomoniasis, the anaerobic, flagellated protozoan parasite 

Trichomonas vaginalis causes non ulcerative vaginitis in women and urethritis in men 

(Kissinger, 2015). T. vaginalis infection is the most prevalent non-viral STI in the world and 

there are more cases of T. vaginalis infections than C. trachomatis, N. gonorrhoeae, and T. 

pallidum infections combined (Gottlieb and Johnston, 2016; Kissinger, 2015; Newman et al., 

2015; Satterwhite et al., 2013). Most studies about trichomoniasis animal models have been 

carried out using pig-tailed macaques and mice (Abraham et al., 1996; Corbeil, 1995; 

Meysick and Garber, 1992; Nogal-Ruiz et al., 2005, 2003; Nogal Ruiz et al., 1997; Smith and 

Garber, 2015). In the last years murine models were mainly used to improve our knowledge 
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of host-parasite relationships, mechanisms of pathogenesis, parasite virulence factors, and 

parasite-induced immune response. More recently the natural bovine animal model –based on 

T. foetus, a trichomonas species very similar to T. vaginalis naturally infecting bovine– has 

been reviewed showing some interest in the study of parasite-induced immune response 

(Chapwanya et al., 2016). Even more recently, several teams have used non-human primate 

models (pig-tailed macaques) to assess new preventive treatments against T. vaginalis 

infection and to gain insights in the understanding of HIV and C. trachomatis co-infections 

(Henning et al., 2014; Makarova et al., 2017; Radzio et al., 2016). Interestingly, reports 

demonstrated that a single T. vaginalis inoculation could result in persistent infection in the 

pig-tailed macaque. In 2015, for the first time, experiments were carried out using PVM 

(surrogate model) to evaluate non-conventional treatments against T. vaginalis infection 

demonstrating an interest for the pig model in the study of this important STI (Pradines et al., 

2015). 

 

Hepatitis C virus 

For a long time, research on human HCV has been hampered by the lack of an 

appropriate animal model. Most research has been carried out in the chimpanzee (Pan 

troglodytes) model, with important limitations in terms of ethics, small sample sizes, high 

costs, and genetic heterogeneity (Mesalam et al., 2016), and in the horse model with similar 

limitations too (Ramsay et al., 2015). Recent models involving chimeric mice with humanized 

livers and rodent species such as the deer mouse (Peromyscus maniculatus) have improved 

the situation (Mesalam et al., 2016; Vandegrift et al., 2017). The deer mouse natural model is 

particularly attractive with the recent discovery of a HCV homolog in this species (Kapoor et 

al., 2013). These mice are available commercially, develop a spontaneous disease very similar 

to HCV hepatitis and can serve as natural model to inform about various aspects of this 
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human disease (Vandegrift et al., 2017). There is no pig model to study human HCV 

infection. 

 

Hepatitis B virus 

Developing animal models for the study of viral hepatitis has always been challenging. 

Besides humans only chimpanzees have so far been shown to be natural hosts of HBV 

(Protzer, 2017). Other mammals such as small shrew mice (Soricidae sp.) are also permissive 

to the virus but at a very low level, which restricts their use as experimental models (Allweiss 

and Dandri, 2016). Surrogate models have also been developed in Pekin ducks and 

woodchucks (groundhog [Marmota monax]). Unfortunately, the disease pathogenesis in these 

species is drastically different limiting their use (Allweiss and Dandri, 2016). However, in 

vitro models are improving and very recently macaque and pig hepatocytes susceptible to 

HBV were reported, opening the door to the development of new animal models (Lempp et 

al., 2017). Lempp et al. (Lempp et al., 2017) showed that in macaque and pig hepatocytes, the 

sodium taurocholate cotransporting polypetide (NTCP) is the key host factor limiting HBV 

infection. Complementation of dog, mouse and rat hepatocytes with human NTCP made them 

susceptible to hepatitis D virus (HDV), but not to HBV, demonstrating the requirement of 

supplementary HBV-specific factors while macaque and pig hepatocytes became fully 

susceptible to HBV with the same modification (Protzer, 2017). This observation in macaque 

and pig paves the way to the development of new immunocompetent infection models 

supporting the full HBV life cycle (Protzer, 2017). 

The recent finding that porcine hepatocytes expressing NTCP became susceptible to 

HBV replication has opened the door to the development of a surrogate porcine model to 

study this important human pathogen (Lempp et al., 2017). So far, obtained in vitro results are 
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promising and further research is required to fully appreciate the potential of the pig as a 

relevant surrogate model in the study of HBV pathogenesis and host/pathogen interactions. 

 

Herpesviruses 1 and 2 

Nine herpesviruses are described in humans (Pellett and Roizman, 2013) with the best 

known of these double-stranded DNA viruses being HSV-1 and its “cousin” the HSV-2 

(Roizman et al., 2013). HSV-1 is mainly transmitted by oral contact to cause disease in or 

around the mouth while HSV-2 is almost exclusively sexually transmitted, inducing ulcerative 

lesions in the lower genital tract and sometimes cervix (Roizman et al., 2013). It is estimated 

that 417 million people aged 14–49 were infected worldwide in 2012 (Looker et al., 2015c). 

However, HSV-1 can also be transmitted to the genital tract through oro-genital contacts and 

accounts for half of new cases in developed countries (Aravantinou et al., 2017). Guinea pig 

and mouse surrogate models have been used both for HSV-1 and HSV-2 mucosal infections 

(Kollias et al., 2015; Parr and Parr, 2003). In guinea pigs, continual recurrences of the lesions 

were observed but the isolation of HSV from the lesions was sometimes challenging (Kollias 

et al., 2015). A cotton rat (Sigmodon hispidus) model has also been shown to develop 

recurrent lesions (Yim et al., 2005). However, this model is still less characterized than the 

guinea pig model. More recently, an experimental surrogate model has also been developed in 

rhesus macaques (Macaca mulatta) for the study of genital HSV-1 infection (Aravantinou et 

al., 2017). 

The main herpesvirus infecting pigs is Suid herpesvirus 1 (SuHV-1), an infection 

causing Aujeszky’s disease (Pellett and Roizman, 2013). This virus is a member of the genus 

Varicellovirus in the Herpesviridae family as HSV-1 and HSV-2. In piglets, Aujeszky’s 

disease starts as an acute inflammation of the upper respiratory tract and then progresses to 

fatal encephalomyelitis (Wittmann and Rziha, 1989). Some pigs can also develop vesicular 
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lesions around the mouth, nose, and conjunctiva very similar to symptoms observed with 

HSV-1 infection in humans. Growers/finishers and adult pigs may only experience respiratory 

disease as natural transmission of the virus occurs through the oronasal route (Wittmann and 

Rziha, 1989). Moreover, the virus is also transmitted by mating and embryo-transfer and can 

impact reproduction (Wittmann and Rziha, 1989). However, genital lesions are usually not 

described and further research would be required to fully appreciate the potential of SuHV-1 

as a model to study the pathogenesis of genital HSV infection and the host immune response 

it can induce. 

 

Human papillomavirus 

Human papillomaviruses, potentially causing genital warts and even -if not treated- 

cervical cancer, have been intensively studied and currently more than 120 different HPV 

types have been reported (Bernard et al., 2010; Howley et al., 2013). The species-specific 

nature of papillomaviruses has prevented adaptation of authentic HPV infections to 

experimental animal models. However, significant discoveries in the understanding of 

papillomaviruses pathogenesis have been carried out using cattle, dog, NHP, and rabbit 

(Sylvilagus floridanus and Oryctolagus cuniculus) natural models (Christensen et al., 2017). 

More recently new models have been developed in mice and multi-mammate rats 

(Christensen et al., 2017). Anogenital lesions including neoplasia are described in humans and 

are associated predominantly to HPV-16 and HPV-18 (Howley et al., 2013). Amongst animal 

papillomaviruses, Rhesus papillomavirus (RhPV) and potentially baboon (Papio hamadryas 

anubis) papillomaviruses can be sexually transmitted between monkeys and can be associated 

to the development of cervical neoplasia (Bergin et al., 2013; Wood et al., 2007). HPV-16 

and RhPV are very similar and macaque can make a good natural model for the study of HPV 

pathogenesis and for the development of preventive and therapeutic approaches. 
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Only one report has been published regarding porcine papillomaviruses (Stevens et al., 

2008). These porcine viruses are not fully characterized yet and their potential pathogenicity 

needs to be determined. Thus, it is too early to appreciate the potential interest of the swine 

model for human papillomaviruses. 

 

Human immunodeficiency virus 1 and 2 

Infections with HIV-1 and -2 cause the Acquired Immune Deficiency Syndrome 

(AIDS). This disease continues to be a major public health issue despite continuous progress 

in its management (Goff, 2013; Kuritzkes and Koup, 2013). The infection is characterized by 

a slow and progressive destruction of CD4+ T-cells leading finally to fatal 

immunosuppression. Even if the last years have seen great progress in the understanding of 

HIV infection and AIDS, there are still challenges, particularly the development of vaccines, 

new therapeutic approaches and resolution of HIV-induced inflammation. A limitation in HIV 

research is the lack of a totally suitable animal model. Natural models such as the rhesus 

macaques being infected by the Simian immunodeficiency virus (SIV) and humanized mice 

develop a disease that is similar to AIDS in humans (Evans and Silvestri, 2013; Garcia-Tellez 

et al., 2016; Victor Garcia, 2016). So far rhesus macaques/SIV model is the best model as it 

meets the conditions required to constitute a reliable animal model for a human infectious 

disease (Garcia-Tellez et al., 2016): (i) The pathogen causing a disease in the model should 

cause a disease similar to the disease caused by the human pathogen in humans; (ii) The 

course of the disease in the animals should resemble that in humans; (iii) Cells, tissues, and 

organs involved in the pathogenesis should be similar in the model and humans; (iv) Immune 

response to infection in the model should be similar to its counterpart in humans. All these 

conditions are not fulfilled in other animal models, i.e. Feline immunodeficiency virus in the 

cat and HIV in humanized mice (Garcia-Tellez et al., 2016). Thus, currently, non-human 
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primates and humanized mice are the only animals able to model correctly the pathogenesis of 

HIV (Garcia-Tellez et al., 2016; Victor Garcia, 2016). 

There is no naturally occurring Retroviridae similar to HIV in the pig preventing the 

development of experimental model in this species to study HIV. The only virus with some 

similarities in terms of pathogenicity to HIV in the pig would be the Porcine reproductive and 

respiratory syndrome virus (PRRSV), a member of the Arteriviridae family (Lunney et al., 

2016). However, there are many differences between the two viruses limiting the interest of 

PRRSV as a natural model to study HIV. 

 

DEVELOPMENTS IN THE PORCINE TOOLBOX – STANDARDS AND NEW 

POSSIBILITIES 

 

The usefulness of an animal model for biomedical research depends highly on the 

availability of the appropriate tools to analyze the host-pathogen interactions. Due to the 

smaller market for biomedical research in pigs, it is understandable that the porcine toolbox is 

still not comparable to mice. Nevertheless, there were major developments in the porcine 

biomedical toolbox during the past ten years leading to major improvements in analyzing the 

host-pathogen interactions in pigs and the use of the pig as an animal model for studying 

human diseases including STIs. The following section provides an overview on the current 

standards and new developments for the porcine toolbox and their implications for studying 

human STIs. 

 

The porcine genome 

The Swine Genome Sequencing Consortium initiated the sequencing of the porcine 

genome in 2003 (Schook et al., 2005). Nearly a decade later, the reference genome sequence 
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of pigs was published in Nature (Groenen et al., 2012). In the meanwhile, the genome 

sequences of several pig breeds are available inclusive the Göttingen minipig (Groenen, 

2016). Annotations of the porcine genome are steadily growing and with the establishment of 

the “DGIL Porcine Translational Research Database” this year, swine researchers have a 

powerful, searchable database at hand (Dawson et al., 2017). It consists of currently >13,000 

gene entries with 9,165 full-length RNA transcripts and 8,099 full-length protein sequences, 

corresponding to 41.7% and 42.6% of estimated genome coverage, respectively. In addition to 

the gene sequence and homology to humans, the database provides information on available 

primer and probe sequences, antibodies and other data on analyzing the gene of interest. 

Thereby, this database facilitates basic and translational research on every level. 

 

Genome editing in vitro and in vivo 

Since the first description of the function of Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR) a decade ago (Barrangou et al., 2007), this bacterial “adaptive 

immune system” against bacteriophages came a long way and revolutionized bacterial and 

eukaryotic genome editing (Barrangou and Horvath, 2017). In 2012, the CRISPR/Cas9 

system was used the first time to edit the human genome (Cong et al., 2013; Mali et al., 

2013). Only one year later, Tan et al. used CRISPR/Cas9 to manipulate the genome of 

livestock inclusive pigs (Tan et al., 2013). In 2015, the CRISPRdirect software allowed the 

simple design of guide RNAs, which directs the CRISPR/Cas9 system to the target gene 

(Naito et al., 2015). The database of the software includes porcine gene sequences facilitating 

the use of CRISPR/Cas9 in pigs. Thereby, CRISPR/Cas makes genome editing widely 

available for the porcine research community. Currently, this technology is used for molecular 

biology analyses in vitro, e.g. to study the role of apoptosis-inducing molecule p53 in an 

infection with the Porcine circovirus type 2 (Xu et al., 2016). In vivo, the CRISPR/Cas9 was 
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used to generate CD163 knockout pigs (Burkard et al., 2017). Since CD163 is the receptor for 

PRRSV, these pigs were resistant to PRRSV, the economically most important infectious 

disease for pig production worldwide (Burkard et al., 2017). In addition, ambitious 

researchers use the CRISPR/Cas9 system to generate immune deficient pigs (Sper and 

Piedrahita, manuscript in preparation). Final goal of this project is to populate these pigs with 

human immune cells to generate humanized pigs for biomedical research 

(https://projectreporter.nih.gov/project_info_description.cfm?aid=9384776&icde=35976755). 

Thereby, the CRISPR/Cas9 system could even improve the biological relevance for studying 

human diseases inclusive STIs and holds extensive potential for the future of the porcine 

model. 

 

Characterization of the porcine immune response 

An important goal of biomedical research is to provide a comprehensive 

understanding of the immune response to infection. Therefore, the better the immunological 

toolbox to study infection and immunity in an animal model is, the more relevant is the 

model. The technology to detect pathogen-specific antibodies in enzyme-linked 

immunosorbent assay (ELISA) and neutralizing antibodies by various methods have been 

available in swine for decades and are still valuable and up-to-date tools to study the porcine 

humoral immune response (Bøje et al., 2016; Käser et al., 2017). Studying the cellular 

immune response on the other hand was rather limited for a long time in swine but the last 

decade brought some major developments. With the increased annotation coverage of the 

porcine genome, more immune targets became available for qPCR mRNA expression analysis 

(Dawson et al., 2017). The development of multiplex qPCR further optimized the system by 

facilitating high-throughput qPCR analysis, especially for limited sample volumes 

(Duvigneau et al., 2005). In addition, multiplexed cytokine and chemokine protein analysis 
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was established (Bjerre et al., 2009) and became commercially available from several 

providers, further improving the former standard cytokine and chemokine ELISAs. 

While these developments certainly improved the porcine toolbox, the main 

development was the establishment of pFCM for swine. At the beginning of the millennium, 

due to a lack of fluorochrome-conjugated antibodies detecting porcine antigens, FCM analysis 

required an indirect staining strategy limiting porcine FCM to mainly three colors (Saalmüller 

et al., 2002). Due to the increased popularity of the porcine model over the past years, the 

industry started to offer fluorochrome-antibody conjugation kits and fluorochrome-labeled 

antibodies for pigs. This development enabled the use of pFCM for pigs and facilitated a 

much more in-depth analysis of the cellular immune response. To date, pFCM has provided a 

better and more detailed understanding of the phenotype, maturation and differentiation of 

porcine innate immune cells, B cells, NK cells and T-cells (Braun et al., 2017; Summerfield et 

al., 2015a; Talker et al., 2013). In addition, pFCM improved the functional analysis of these 

cells by combining phenotypic analyses with the production of important cytokines as 

interleukin (IL-) 2, IL-4, IL-17, IFN-γ, and TNF-α (Käser et al., 2017; Talker et al., 2016). 

This improvement has major benefits for the study of infectious diseases as STIs if combined 

with a system to detect pathogen-specific immune cells. The recent developments in next-

generation MHC(SLA)-typing (Sørensen et al., 2017), neural network-based prediction of 

SLA-binding peptides (Nielsen and Andreatta, 2016; Welner et al., 2017) and recombinant 

expression of SLA class I molecules for peptide-specific staining of reactive CD8+ T-cells 

using tetramers, allow for detailed studies of cell-mediated immune responses against 

pathogens in pig models (Baratelli et al., 2017). Besides tetramer staining, pathogen-specific 

immune cells can be detected by pFCM upon in vitro restimulation of immune cells with 

pathogen antigens like peptides, proteins, whole-cell lysates, or by co-culturing of immune 

cells with infected host cells like epithelial cells. Thereby, we can determine which immune 
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cell subset is involved in an immune response against a pathogen, analyze how much and 

which immune modulators these cells produce, and into which subset of memory immune 

cells they develop. This combined analysis allows the detection of multifunctional T-cells 

(Tmulti) (Käser et al., 2017; Talker et al., 2016), and central and effector memory cells (TCM 

and TEM) (Talker et al., 2013). Tmulti-cells combine the simultaneous strong production of 

multiple cytokines with a long lifespan. They can frequent lymph nodes as well as the 

periphery, thereby integrating characteristics of TCM and TEM, respectively (Seder et al., 

2008). Due to their versatile effector function and migration potential, and their long lifespan, 

the induction of Tmulti-cells is the goal of many vaccines, and porcine pFCM enables their 

detection in pigs. 

These developments provide access to gene and protein sequence information, state-

of-the-art immunological tools for genome modification, and a comprehensive 

characterization of the immune response and the induction of immunological memory upon 

infection and vaccination in pigs. In combination with the high biological relevance, these 

developments make the pig a very valuable large animal model for studying human STIs as 

well as for other infections. 

 

CONCLUSIONS 

So far the swine model has been successful in the study of several human STIs. 

However, as presented in this review there is potential to further develop it. New technologies 

such as CRISPR/Cas9, offering convenient, fast, and reliable methods to refine animal 

models, and pFCM enabling a comprehensive analysis of the host immune response to 

infection, will most probably boost the swine model in the next decades. 
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Box 1: Advantages of pigs for STI vaccine development: 

- Availability: Important species for meat production ensures easy access to animals. Blood 

and various tissues as lymph nodes and genital tracts are byproducts and provide unlimited 

access to primary cells for in vitro analyses of infection and immunity.  

- Susceptibility to pathogens: Pigs and humans share the susceptibility to several sexually 

transmitted infection (STI) pathogens including viruses as the hepatitis E virus and bacteria as 

Chlamydia sp. (Meurens et al., 2012; Lorenzen et al., 2015b). 

- Affordable costs: Costs for a standard 3-week in vivo vaccine trial are with ~20,000 USD very 

affordable compared to non-human primates, which can be ten times more expensive. 

- Physiology: Pigs have a very similar physiology to humans including size, skin and mucosa, 

facilitating for example the determination of the optimal vaccine dosage and route of delivery 

including new methods of vaccine delivery as skin needle patches and mucosal vaccines 

(Gerdts et al., 2015; Meurens et al., 2012). 

- Reproductive cycle: Pigs and humans have similar reproductive cycles even if pig cycle has a 

shorter duration (21 days vs. 28 days). This similarity is of high importance for testing vaccine 

candidates against STIs since hormones influence host susceptibility for a pathogen and the 

immune response in the genital tract (Lorenzen et al., 2015b). 

- Immune system: The immune system of pigs is very similar to the human immune system 

facilitating the translation of results obtained on the immune response induced by a vaccine 

to humans (Meurens et al., 2012). 

- Immunological toolbox: In order to correctly evaluate safety, efficacy and to find immune 

correlates of protection it is essential to be able to detect i) pathogen burden, ii) pathological 

changes and iii) the induced immune response with a focus on immunological memory. 

Protocols for detection of pathogens in pig samples are readily available using quantitative 

PCR (qPCR). Pathological changes in pigs can be determined either by expert evaluation of 

whole organs or by histology/immunohistochemistry. While the tools for analyzing the 

porcine immune response are not as sophisticated as for mice, there have been many 

improvements during the last years. Readily available analyses of the porcine immune 

response include the antigen-specific humoral immune response via detection of 

immunoglobulin (Ig) subclasses via ELISA and neutralizing antibodies analysis (e.g. via flow 

cytometry). A detailed analysis of the cellular immune response can be performed via qPCR as 

well as multi-color flow cytometry and includes important memory T-cell subsets as 

multifunctional T-cells (T ), central memory T-cells (TCM) and effector memory T-cells (TEM) for 

an optimal analysis of the induction of immunological memory (Käser et al., 2017; Talker et 

al., 2016). 
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Table 1: Anatomical, physiological and immunological comparison of human and porcine female 

reproductive system 

 Human Pig Refs 
-Bicornual uterus No Yes (König and G, 2009) 

-Length of the uterus (cm) 7 37 (minipig) (Konar, 2014) 

-Cervical columnar epithelial cells Yes Almost absent (Eurell and Frappier, 2006; Krause, 2005) 

-Length of reproductive cycle 28 days 19-21 days (Eurell and Frappier, 2006; Senger, 2005; 
Silverthorn, 2007) 

-Endometrial sloughing (menses) Yes No (Bode et al., 2010; Senger, 2005; Swindle et al., 
2012) 

-Follicular phase hormones LH, FSH, Estrogen LH, FSH, Estrogen (Lorenzen et al., 2015b; Senger, 2005; Silverthorn, 
2007) 

-Luteal phase hormone Progesterone Progesterone (Lorenzen et al., 2015b; Senger, 2005; Silverthorn, 
2007) 

-Inducer of luteolysis Ovarian PGF2α Uterine PGF2α (“Corpus Luteum,” 2015) 

-pH in vagina 3.5-5 (acidic) ~7 (neutral) (Lorenzen et al., 2015b; Mather et al., 1977; 
Quayle, 2002) 

-High Lactobacillus % in vaginal 
flora 

Yes No (Bara et al., 1993; Farage et al., 2010; Lorenzen et 
al., 2015b)  

    

-Dominant genital Ig isotype IgG>IgA2>IgA1 IgG>IgA (no subtypes) (Butler and Brown, 1994; Cerutti, 2008; Mestecky 
et al., 2010; Snoeck et al., 2006) 

-Decreasing Ig levels around 
ovulation 

Yes Yes (Hussein et al., 1983; Kutteh et al., 1996) 

-Genital mucosal lymphoid 
aggregates 

Yes Yes (Russell and Mestecky, 2002; “The porcine cervix,” 
2015) 

-Influx of neutrophils in the 
endometrium 

With progesterone in 
luteal phase 

With estrogen in 
follicular phase 

(Booker et al., 1994; Hussein et al., 1983; 
Jiwakanon et al., 2005; Kaeoket et al., 2002) 

LH: Luteinizing hormone; FSH: Follicle stimulating hormone; PGF: Prostaglandin 

 

Table 2: Anatomical comparison of human and porcine male reproductive system 

 Human Pig Refs 

-Preputial diverticulum No Yes (Eurell and Frappier, 2006; König and G, 
2009; Krause, 2005; Lossi et al., 2016; 
Silverthorn, 2007; Swindle et al., 2012; 
Wrobel and Bergman, 2006) 

-Sigmoid flexure No Yes 

-Penis/prepuce epithelium Squamous Squamous  
-Significant erectile tissue Yes No  
-Urethral epithelium Pseudostratified columnar Transitional  
-Ampulla of ductus deferens Present Absent  

 

Figure legends 

Figure 1: Gross anatomy of the porcine female genital tract  

The long vagina (V) is followed by the cervix (C), the length of which is indicated by a bar. 

The urinary bladder (U) is closely associated with the vagina. The cervix, the uterine corpus 

(UC) and segments of the uterine horns (UH) have been opened exposing an edematous 

mucosa (M). Notice the short uterine body that continues into two long uterine horns. The 

coiled Fallopian tubes (FT) can be seen extending from the tip of the uterine horns towards 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

53 

 

the ovaries and the ovarian bursa (B). The ovaries have been sectioned revealing multiple 

corpora lutea, which are easily assessed in the left ovary (LO). Bar = 5 cm. Ten-month-old 

Göttingen minipig. 

 

Figure 2: Gross anatomy of the porcine male genital tract 

The preputial skin (PS) has been sectioned exposing the left preputial diverticle (PD) and the 

preputial mucosa (PR) that envelopes the free part of the penis (PE). Urine is oozing from the 

opened preputial diverticle (asterix). The length and location of the sigmoid flexure (SF) of 

the penis is indicated by a bar. The penis continues caudally into the bulb of the penis (BP) 

and is no longer visible as it continues under the accessory genital glands. In the male pig, 

these glands are dominated by the large bilateral, almost symmetrical bulbourethral glands (B) 

and the vesicular gland (V). The prostate gland (P) is relatively small and only a portion can 

be seen between the lobes of the vesicular gland. The vesicular gland is closely associated to 

the urinary bladder (U). The spermatic cord has been opened exposing the ductus deferens 

(DD). The vaginal tunice of the right testis (RT) has been opened exposing the surface of the 

testis, the head (HE) and tail (TE) of the epididymis, while the tunice of the left testis (LT) is 

intact. Bar = 5 cm. Nine-month-old Göttingen minipig. 

 

Figure 3: Chlamydia trachomatis - animal models, pros and cons 

Chlamydia: C.; Lower Genital Tract: LGT; Major Outer Membrane Protein: MOMP; 

Interferon gamma: IFN-γ; Sexually Transmitted Infection: STI 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Highlights 

-Pigs are being used as preclinical animal models for various human infections. 

-The pig can be used for the study of male and female human sexually transmitted infections. 

-They make surrogate or natural animal models to decipher Chlamydia trachomatis pathogenesis 

-Human medical research needs alternative animal models that are more predictive. 

-New technologies such as CRISPR-Cas9 open the doors to new exciting developments of the model. 
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