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Abstract

Background: Phenotypes and diseases may be related to seemingly dissimilar phenotypes in other species by
means of the orthology of underlying genes. Such “orthologous phenotypes,” or “phenologs,” are examples of deep
homology, and may be used to predict additional candidate disease genes.

Results: In this work, we develop an unsupervised algorithm for ranking phenolog-based candidate disease genes
through the integration of predictions from the k nearest neighbor phenologs, comparing classifiers and weighting
functions by cross-validation. We also improve upon the original method by extending the theory to paralogous
phenotypes. Our algorithm makes use of additional phenotype data — from chicken, zebrafish, and E. coli, as well as
new datasets for C. elegans—establishing that several types of annotations may be treated as phenotypes. We
demonstrate the use of our algorithm to predict novel candidate genes for human atrial fibrillation (such as HRH2,
ATP4A, ATP4B, and HOPX) and epilepsy (e.g., PAX6 and NKX2-1). We suggest gene candidates for
pharmacologically-induced seizures in mouse, solely based on orthologous phenotypes from E. coli. We also explore
the prediction of plant gene–phenotype associations, as for the Arabidopsis response to vernalization phenotype.

Conclusions: We are able to rank gene predictions for a significant portion of the diseases in the Online Mendelian
Inheritance in Man database. Additionally, our method suggests candidate genes for mammalian seizures based only
on bacterial phenotypes and gene orthology. We demonstrate that phenotype information may come from diverse
sources, including drug sensitivities, gene ontology biological processes, and in situ hybridization annotations. Finally,
we offer testable candidates for a variety of human diseases, plant traits, and other classes of phenotypes across a
wide array of species.

Background
Computational prediction of complex phenotypes from
underlying genes has largely involved increasingly com-
plex in silico simulations of cells and cellular processes.
Last year, for example, Karr et al. published a whole-cell
computational model made up of twenty-eight submod-
els, each a simulation of a specific cellular process [1].
Most methods are variations on flux–balance analysis
for predicting metabolic phenotypes [2], in most cases
including transcriptional regulatory information [3-6],
and yield primarily quantitative data.
In contrast, a number of qualitative methods make use

of guilt-by-association in functional networks to predict
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gene–phenotype associations (reviewed in [7,8]). Like the
quantitative methods, these network-based techniques
are species-specific, though they may incorporate data
from additional species. While quantitative methods are
limited to unicellular organisms, or at least to unicel-
lular phenotypes of multi-cellular organisms, the quali-
tative methods can provide insight into whole-organism
traits.
In 2010, McGary et al. described a separate qual-

itative method which relies on orthology rather than
gene networks. Specifically, human traits, diseases, and
phenotypes may have orthologous properties in other
organisms, and such properties — typically phenotypes
— are identifiable based on orthology of the underly-
ing genes. Such orthologous phenotypes, or phenologs,
can be used to predict novel disease-causing genes as
in the manner summarized in Figure 1. For example,
McGary et al. identified SEC23IP as a neural crest effector,
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Figure 1 Prediction of disease–genes from orthologous phenotypes. (a) Two phenotypes are said to be orthologous (“phenologs”) if the sets
of underlying genes for those phenotypes have a statistically significant intersection, as determined using gene orthology. Statistical significance is
calculated as the probability of seeing an intersection of v or greater givenm genes with phenotype A and n with phenotype B, out of N total genes
with orthologs in both species. Genes associated with A but not B are said to be predicted to be involved with B, and vice-versa. McGary et al.
observed that approximately v/m of the predictions tended to be true positives for B, and v/n to be true positives for A. (b) illustrates a validated
example from McGary et al. predicting genes involved in a human neural crest defect, Waardenburg syndrome, using the Arabidopsis negative
gravitropism defect phenotype. In this example, the overlap between gene sets affiliated with Waardenburg and gravitropism is highly statistically
significant (p ≤ 10−6). In the right-hand circle and intersection, the human orthologs of the gravitropism genes are shown, for simplicity (VAM3
corresponding to STX7, STX12; SGR2 to DDHD2, SEC23IP; and GRV2 to DNAJC13). (c) In this paper, we extend the phenolog formalism to consider
additional gene–phenotype associations from multiple model organisms to develop a quantitative ranking scheme for phenolog-based
predictions. Those genes predicted by a single phenolog, as in (a), are weakly predicted for A; whereas those predicted by two phenologs are strongly
predicted for A. In general, the addition of a third phenolog contributing to a predicted association will cause that gene to be ranked higher than if
only two phenologs predict it. However, not all phenologs are equal; phenologs derived from less similar gene sets exert less influence over
predictions than phenotypes with highly overlapping sets of affiliated genes.

potentially involved in Waardenburg syndrome, based
on its association with negative gravitropism defects in
Arabidopsis [9].
Phenologs are a natural extension of the concept of deep

homology: as a bird’s wing and a human hand arose from a
common ancestor structure with a common complement
of genes and a similar developmental program [10], so
also might less obviously related phenotypes derive from
a common ancestor phenotype affiliated with an underly-
ing conserved gene module. To take the above example of
Waardenburg syndrome, certain mammalian neural crest
defects and plant gravitropism defects share and partly
arise from an ancient, highly conserved vesicle trafficking
system.
We set out to improve upon the original phenolog

algorithm, which relies on identifying pairs of matching
phenotypes across species, with a goal of ranking can-
didate genes relevant to specific traits and diseases by
way of an unsupervised search for similar phenotypes

(Figure 1). We reasoned that gene–phenotype associa-
tion predictions coming from multiple “nearby” (or high
similarity) phenologs, preferably across multiple species,
should provide more predictive power than those from
single phenologs. Our method ranks candidate genes
based on both the number and similarity of cognate phe-
notypes which involve those genes, which might be used
as a prioritization for wet lab experiments (Figure 1C).
Additionally, we expanded upon the original phenolog

study — which included gene–phenotype data from
human, mouse, worm (C. elegans), baker’s yeast, and
Arabidopsis thaliana — by adding data from chicken,
zebrafish, and even E. coli, as well as additional human
and worm datasets. We show that phenotype data may
come from a variety of sources, including GO biolog-
ical processes and gene tissue expression annotations,
and that the integration of signal from multiple phe-
nologs markedly improves the predictive power of the
method.
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A key advantage to a neighborhood-based approach for
predicting gene–phenotype associations is the ease with
which non-obvious — and thus interesting — biological
stories may be teased out. We demonstrate the process
with epilepsy, a human syndrome; mouse susceptibility to
pharmacologically-induced seizures, a related phenotype,
using only E. coli data; and atrial fibrillation, the leading
cause of arrhythmia in humans.
In addition to offering concrete predictions, we com-

pared two classifiers for integrating phenologs (additive
and naïve Bayes), across a variety of similarity or distance
functions, andwith different numbers of neighboring phe-
notypes (k). We also experimented with changing the
weighting function used to assign prediction scores, and
we tested two frameworks for translating gene–phenotype
associations between species, evaluating all of thesemeth-
ods within a consistent cross-validation scheme.

Results and discussion
Amatrix-based formalism for comparing gene–phenotype
associations between species
The phenolog approach, developed by McGary et al. in
[9], identifies pairs of homologous phenotypes in differ-
ent organisms by counting the overlap between the sets
of genes associated with them. McGary et al. hypothe-
size that pairs of phenotypes with a greater than expected
number of shared genes derive from a shared evolution-
ary past, and further hypothesize that genes associated
with one might therefore be good candidates for the other.
To extend this conceptual framework to make predic-
tions based onmultiple phenotypes frommultiple species,
we developed a matrix-based formalism for integrating
phenotypic information.
For a given species, the set of all gene–phenotype asso-

ciations can be thought of as a matrix where rows cor-
respond to genes and columns to phenotypes, and the
matrix has a 1 in position i, j if the i-th gene has been
observed to be associated with the j-th phenotype. This
formalism works well when all the genes and pheno-
types studied are from the same organism, but leads to
some complications when extended to pairs or groups of
species.
In particular, since generating these gene–phenotype

matrices involves translation via gene orthology, we inves-
tigated whether expansions and contractions of gene
families (e.g., in Arabidopsis, which frequently has large
paralogous gene expansions relative to other eukaryotes)
might produce enough noise to obscure signal from other
gene–phenotype associations of interest.
In order to address this question, we developed two

different frameworks within our matrix formalism for
translating gene–phenotype associations between species
(Figure 2). In the first, the “gene-based” approach, we
let the rows correspond to genes in the species that

we wish to make predictions for, and translated the
gene–phenotype interactions from a number of species
by orthology. This gave us a number of species-specific
gene–phenotype association matrices �S, for S ∈
{human, mouse, yeast, nematode, plant, zebrafish, fly,
chicken}, where each �S is defined by

(�S)ij =
⎧⎨
⎩
1 if any ortholog in S of gene i
is associated with phenotype j,

0 otherwise.

We used the INPARANOID algorithm [11] to deter-
mine which genes in different organisms are orthologs
of each other. The INPARANOID algorithm discov-
ers orthology relationships in the form of orthogroups
(Figure 2A).
For the method described above, we simply trans-

lated other species’ gene–phenotype associations into the
target (e.g., into human genes when predicting human
gene–disease associations) gene–phenotype matrix by
orthogroup, and compared the phenotype columns in
terms of human genes (as in Figure 2B–C).
This gene-based approach works very well for closely-

related species, where genes often have one-to-one equiv-
alents between species. However, when large orthogroups
are involved, the predictive performance of this approach
deteriorates.
To mitigate the decrease in performance caused by

paralogous gene expansions we devised an “orthogroup-
based” matrix framework, in which rows corresponded
to INPARANOID orthogroups (Figure 2A and D) rather
than actual genes (Figure 2B–C),

(�S)ij =
⎧⎨
⎩
1 if any gene in the orthogroup i
is associated with phenotype j,

0 otherwise.

Notably, the use of orthogroups can dramatically
simplify the relationships. Consider orthogroup OA
(Figure 2A): one gene from each species is involved
in the phenolog; whereas in Figure 2B, a matrix with
each row representing a human gene, a single mouse
gene–phenotype association translates into three human
gene associations because of the paralogous expansion
of this gene family in humans. Similarly, in Figure 2C,
in which each row is a mouse gene, a single human
gene–phenotype association translates into two mouse
gene associations, due to a mouse-specific paralogous
expansion. In contrast, the orthogroup-based matrix in
Figure 2D permits a symmetric comparison of the phe-
notypes, reducing paralogs in each species to a single
orthogroup. Furthermore, a hypergeometric CDF test
of the intersection between phenotypes φh and φm will
produce different values for the matrices described in
Figures 2B–C. The consequence of asymmetric distances
is that φh may have φm as its closest neighbor when the
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Figure 2 The matrix formalism for calculating phenolog overlaps is especially important when predicting between species where large
gene family expansions have occurred since species divergence, such as between Arabidopsis and humans. The example uses human and
mouse to illustrate the orthogroup-based matrix formalism. (a) Phenotype associations (colors) are plotted as graphs for genes from human (left
nodes, subscripted h) and mouse (right nodes, subscriptedm), showing genes’ orthology relationships (edges radiating from orthogroups —
middle nodes, labeled O). The orthologies (from INPARANOID), are used to “translate” phenotype associations between species (in the case of the
gene-based matrix framework in panels (b, c)) or into an intermediate collection of orthogroup–phenotype associations (for the orthogroup-based
matrix framework in (d)). Orthogroup vertices (e.g., OA) connect human and mouse orthologs (such as Ah , A′

h , and A′′
h , which are paralogs of one

another relative to the human–mouse divergence, with Am and A′
m . Red vertices within a species are genes associated with the phenotype of

interest (φh for human and φm for the mouse phenotype); orthogroup colors reflect the species data. These associations can alternately be captured
by representing the graphs as matrices (b–d), with bullets indicating an assocation between a given genetic element and a phenotype. Specifically,
(b) and (c) represent the gene-based formalism, and (d) illustrates the orthogroup-based formalism. Human and mouse phenotype columns are
indicated by φh and φm , respectively.

search is performed in one direction, but φm may not have
φh as its closest neighbor in the reverse search.
The orthogroup-based matrix (Figure 2D) has the

advantage of producing consistent, symmetric similarity
scores regardless of the direction of prediction; further-
more, these scores are not inflated by the co-occurrence of
multiple phenotype observations in a single orthogroup.
Unless otherwise noted, we use this framework for the
analyses that follow.

Integrating information frommultiple phenologs
Given this basic formalism — a matrix of gene–disease
associations incorporating phenotypic data from multiple

species — we next evaluated methods for ranking genes
on the basis of their tendency to be involved in a pheno-
type of interest. In other words, we wanted to construct
a set of predictions X for gene–phenotype associations
such that Xij is higher for pairs where the gene i is actually
associated with the phenotype j.
One way to incorporate information frommultiple phe-

notypes is by measuring the similarity — in terms of
associated genes — between pairs of phenotypes, and
integrating the information from different phenotypes
in such a way such that more similar phenotypes get
more weight than less similar phenotypes. We tested
two different ways of integrating this information —
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one multiplicative naïve Bayes scheme, and one additive
method.
The naïve Bayes scheme we used was first described

in the original phenolog paper [9], and can be written as
follows:

Xij = P(gene i ∈ disease j|k phenologs) = 1 −
k∏

l=1

(
1 − fijlwjl

)

(1)

where

fijl = P(gene i ∈ disease j|phenotypes j and l are phenologs)
(2)

wjl = P(phenotypes j and l are phenologs) (3)

We tested a wide variety of measures for the weight-
ing function wjl that calculates a similarity or distance
between two sets. Pearson sample correlation is a particu-
larly popular option for expert recommendation systems,
such as those used in online retail for generating recom-
mendations from past purchase history. McGary et al.
used the hypergeometric CDF, which gives the probabil-
ity of seeing an intersection of size v or greater between
phenotypes containing m and n genetic elements, with N
total elements in the species pair (Figure 1A–B).
For fijl we used v/n, the fraction of the number of genes

common to both phenotypes j and l over the number of
genes known to be involved in phenotype j, which empiri-
cally appears to be a good approximation of the probability

that a candidate gene from a single phenolog will turn out
to be a true positive [9].
While the naïve Bayes method multiplies distances or

similarities as if they were probabilities, for the additive
method, Xij is calculated for each gene–phenotype pair
(i, j) by taking the sum over all nearest neighbor pheno-
types k, weighted by the similarity between phenotypes j
and k, so

Xij =
∑
k

wjk�ik = (�wT )ij, (4)

where � is a phenotype matrix and w is a weight matrix of
phenotype–phenotype similarity scores.
In addition to the hypergeometric CDF and Pearson

sample correlation, we tested Euclidean distance, taxicab
(Manhattan) distance, cosine distance and Tanimoto coef-
ficient as measures of phenotypic similarity, both for find-
ing the k nearest neighbors and as weighting functions.
We expected that orthologous phenotypes from closely
related species might show more similar gene sets than
those frommore distantly related species. In turn, various
distance functions might account for this bias to a greater
or lesser extent; we thus compared different distance func-
tions using cross-validation, as noted later. Euclidean and
Manhattan distance performed extremely poorly in the
gene framework, using five-fold cross-validation, so we
excluded them from analyses in the orthogroup frame-
work. Overall, the Pearson coefficient and hypergeomet-
ric test appear to have the most power for identifying
nearby predictive phenologs (Figure 3A).
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Figure 3 Effect of distance measure choice for ordering and weighting phenotypes. Here we plot for how many diseases the median rank of
the gene withheld during leave-one-out cross-validation stays at a certain level, using all available species, and integrating the results using the
naïve Bayes scheme. In (a), we vary the distance and weighting function (using the same measure for both). In (b), we show the effect of varying the
distance function independently from the weighting function. Here the first function in the legend is the distance function used for computing the
k nearest neighbors, and the second is the weighting function wij from Equations 1 and 4. As can be seen from the figure, a good distance function
has more effect on performance than a good weighting function, but that the results can be improved slightly by using a combination:
hypergeometric for distance, and Pearson for integration.



Woods et al. BMC Bioinformatics 2013, 14:203 Page 6 of 17
http://www.biomedcentral.com/1471-2105/14/203

We also repeated the analysis while varying the distance
function (used for searching) and holding the recommen-
dation function (w) the same, and vice-versa (Figure 3B).
Pearson sample correlation showed the best performance
among the distance functions; however, we found that the
hypergeometric CDF was the best weighting function for
assigning prediction scores to genes.
We compared the naïve Bayes and additive classifiers,

with the results shown in Figure 4. The performance in
cross-validation is quite similar between the two classi-
fiers, with the best version of the naïve Bayes classifier
(using Pearson sample correlation for distance and hyper-
geometric CDF for weighting) performing slightly better
than the best additive one (using Pearson sample corre-
lation and hypergeometric CDF). However, the additive
classifier allows us to visualize and deconstruct the pre-
dictions into component phenotypes. We therefore chose
to use the additive classifier for most predictions.
Varying the maximum number of neighbors (k) tends

to affect lower-ordered predictions (e.g., the thousandth
gene predicted for a disease) to a larger extent than top
predictions. Figure 5 shows that even including the k = 5
nearest neighbors improves the results modestly— raising
the number of diseases for which the withheld genes can
be predicted at a top-100 median rank from around 50 to
80. Searching for the k = 40 nearest neighbors seems to
offer no meaningful improvement over k = 10 at relevant
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Figure 4 Predictive performance of the orthogroup-based
matrix approach. Here we show a comparison of naïve Bayes and
additive classifier predictions, which seem to have similar
performance, using leave-one-out cross-validation. As in Figure 3B,
the first function in the legend is the distance function used for
computing the k nearest neighbors, and the second is the weighting
function wij from Equations 1 and 4.
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Figure 5 Effect of k on predictiveness. Using the same
cross-validation setup as in Figure 4, we compare different k-values in
the neighborhood search for phenologs. Any k greater than 1 gives a
great improvement in the high-precision regime. However, as k
increases further, the improvements in the recovery affect successively
less important ranks, with diminishing returns as k approaches 30.

ranks. Thus, while a higher value of k may not always pro-
vide the best predictor, it is more likely, on average, to be
useful than only considering the single closest phenotype.
Some phenotypes were intrinsically unpredictable;

notably, several of these were revealed to be combinations
of unrelated diseases that were overcollapsed into the
same entity in the initial version of our OMIM database
(two such examples were achromatopsia with achon-
droplasia, and the combination of all blood type genes),
thus serving inadvertantly as negative controls.
The best similarity functions produced highly correlated

predictions. Further, the best predictions of the worst clas-
sifiers were highly correlated with the best predictions of
the top-performing classifiers.We thus concluded that the
potential benefits of a fusion or blending classifier, amodel
that draws the best characteristics from simple classifiers
via optimization, would be modest at best. At worst, any
improvement would be difficult to measure; optimization
of such a blendingmodel would require an additional layer
of cross-validation, and many phenotypes would need to
be dropped due to relatively small associated gene sets.
While similarity functions produced remarkably sim-

ilar results, predictions coming from different species
were much less strongly correlated (Figure 6), suggest-
ing that weighting phenotypes by species in some manner
may offer additional improvement. While each species
provides uncorrelated prediction information, the human
disease predictions are dominated by mouse whenever
that species is included — likely because of the highly
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Figure 6 Contributions by individual species to the prioritization of candidate genes. (a) Each phenotype offers some sort of information for
prediction of human disease genes. Mouse data seem to offer the most information about human diseases, as one would expect from the quality of
the data and the proximity of the species in the phylogenetic tree. Arabidopsis, which is the furthest species from human in our database,
unexpectedly provides as much information as mouse on top predictions, and is second at higher ranks. (b) This scatter plot demonstrates that the
information offered by each species (in this case mouse and Arabidopsis) is highly independent, and suggests that integrating data from multiple
species may be useful.

correlated nature of the exploration of gene–phenotype
associations in mouse and human.
Finally, we measured the extent to which our predictive

performance was improved compared to random trials.
To measure this enrichment, we generated a series of ran-
dom gene-based matrices. For each phenotype-column
of cardinality p, we marked p randomly-drawn genes
as observed. We attempted to predict phenotypes-of-
interest from these randomizedmatrices using our regular

classifiers (Figure 7). (Note that we did not repeat the ran-
domized matrix control for the orthogroup-based matri-
ces, primarily because randomization of gene–phenotype
associations eliminates the type of structure which made
orthogroup-based matrices necessary.)
Importantly, we see a strong improvement in predic-

tive performance on actual gene–phenotype associations
as compared to randomized data. The method is able
to recover all known genes for several real diseases —
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Figure 7 Phenologs predict candidate genes substantially better than random. Shown are (a) ROC and (b) precision–recall plots for k = 100
naïve Bayes using the hypergeometric weighting function, predicting human (OMIM) gene–disease associations from human, mouse, worm, fruit
fly, yeast, and plant gene–phenotype association data. We restrict the evaluation to only those phenotypes with four or more known genes. The
solid line shows the actual data, and the dashed line shows the result on similarly sized random gene sets. Thus, integrating phenologs across
multiple species successfully prioritizes candidate genes to an extent far greater than random chance.
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but is unable to recover withheld genes for any of the
randomized diseases.

Epilepsy
In addition to evaluating our method’s overall perfor-
mance, we wished to take a closer look at its prediction
of individual diseases in our database. We chose epilepsy
because, despite offering ostensibly correct predictions,
it actually scores somewhat poorly in cross-validation.
In our initial three-fold leave-one-out test, only one of
the three separately withheld genes was recovered at a
reasonably testable rank (twelve, in this case).
Our method successfully identifies GABBR1, GABBR2

[12], and KCNA1 [13], which were absent from our
database but known to be associated with the disorder.
These were predicted primarily due to mouse phenotypes

that resemble epilepsy (clonic seizures and abnormal brain
wave pattern; Figures 8 and 9).
Top epilepsy predictions include PAX6, PRRX1, and

RAX2 (of which PAX6 has been associated with seizures);
and PAX3, PAX7, HESX1, and NKX2-1, NKX2-4, NKX2-
6, and NKX2-8 (Figure 9). Notably, NKX2-1 is involved in
mouse epilepsy [14], and PAX3 appears in a region linked
to the human version of the disease [15]); neither of these
genes were in our database.
Interestingly, these predictions come from the Ara-

bidopsis phenotypes regulation of gene expression by
genetic imprinting, cotyledon development, epidermal cell
differentiation, and gene silencing by RNA, as well as the
yeast phenotype annotation for sensitivity to trichlorme-
thine (nitrogen mustard, or tris(2-chloroethyl)amine).
To learn more about the general predictability of the

epilepsy phenotype, we ran an expanded cross-validation,

Figure 8 A Venn diagram showing predictions for epilepsy based on the 40 most genetically similar phenotypes. The analysis is primarily
derived from Arabidopsis, yeast, worm, and mouse, based on the Pearson sample correlation, and using cosine similarity as the weighting function.
The twenty closest phenotypes are each displayed separately, and the remaining twenty are aggregated into the category “below top-20
phenotypes.” Paralogs are grouped together when they coincide at a prediction score. Genes in bold represent the orthogroups used in the search
— that is, those groups of orthologous genes where one or more paralog was already associated with epilepsy in our database. Colors correspond
to those in Figure 9.
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Figure 9 Top candidate genes predicted for epilepsy. Each row of this chart represents a set of genes predicted with the same score. If a gene
symbol is printed in bold, it or a member of its orthogroup is already known to be involved. Rows with plain-text labels are novel predictions. The
depicted search makes predictions based on the k = 40 nearest neighbor phenotypes (from human, mouse, chicken, zebrafish, worm, yeast, and
plant), and color codes the twenty nearest neighbor phenotypes’ contributions to each prediction (the remaining twenty-one are grouped in blue,
as “below top-20 phenotypes”). The top scoring gene, ARX, is predicted primarily by Proud syndrome, hydranencephaly, and Partington’s syndrome,
all of which are human diseases characterized partially by seizures; but information is also drawn from a variety of plant phenotypes. These
predictions were generated using an additive classifier for ease of visualization. The distance function is Pearson sample correlation, using cosine
similarity as the weighting function w.

withholding each of the full set of 51 epilepsy genes in our
database, and found that six genes could be predicted back
— all within the top 120 ranks. We note that even when
a phenotype performs poorly in cross-validation, it seems
that our method still provides useful predictions.
We wanted to know the extent to which predictions

could be attributed to paralogy (shared orthogroup mem-
bership) with genes already associated in our database
with epilepsy. GABBR1 and GABBR2 are each single-
ton orthogroup members, and are thus independently
predicted. KCNA1 and KCNA2 emerged as paralogs fol-
lowing the human–worm divergence, but are predicted
from non-worm phenotypes — and are therefore also
independent predictions.
PAX6’s plant–human paralogs make up the top three

rank bins in Figure 9. We suggest that even non-
independent predictions are of use, provided they are
accompanied by independent predictions — since, as
mentioned, PAX3, NKX2-1, and PAX6 are all associated
to some degree with seizures and/or epilepsy. Indeed,
the inclusion of species in which these genes are not
paralogs offers additional resolution on predictions and
demonstrates the utility of our method.

Predicting from E. coli—Pharmacologically-induced
seizures
We then turned to a similar mouse phenotype, phar-
macologically-induced seizures, to determine whether
E. coli gene–phenotype associations could be used to
make predictions about mammalian associations without

additional information.We found that mouse genes linked
to pharmacologically-induced seizures could be predicted
extraordinarily well from E. coli alone in cross-validated
tests: eight of the 48 genes associated with this mouse
phenotype could be predicted back when withheld. These
results are particularly impressive because they repre-
sent all six of the mouse–E. coli orthogroups associated
with this seizure phenotype. Two of the orthogroups
(Grik2/Grik5 and Slc1a2/Slc1a3) are in the top predic-
tion ranking bin; additionally, Faim2 is in the top hundred
ranks (Figure 10).
Next, we examined the predictions for promising new

candidate genes. One of the most intriguing candidates
was α-adducin, which is known to be reduced in the
brains of rats experiencing kainate-induced seizures [16].
Another interesting prediction is Sv2a (synaptic vesicle

glycoprotein). It was recently reported that a mutation in
chicken SV2A leads to photosensitive reflex epilepsy [17].
Mouse Sv2a is a known binding site for levetiracetam,
an antiepileptic drug [18], and Sv2a−/− mice experience
seizures and die within three weeks of birth [19,20].
We also examined the compounds associated with the

source E. coli phenotypes to see if these were associated
with seizures. The compounds included ethanol — alco-
hol poisoning and alcohol withdrawal symptoms include
seizures — as well as paraquat, which causes seizures
and brain damage in rats [21]; and aztreonam, which is
a convulsant [22]. While many compounds might cause
seizures if given in sufficient amounts, a control PubMed
search for ten randomly chosen compounds associated
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Figure 10 Predicting mouse seizure genes from E. coli phenotypes. These mouse phenotype predictions are constructed from the k = 10
nearest neighbor E. coli phenotypes, using no other species. Predicting eukaryotic phenotype-linked genes from a prokaryote is necessarily coarse-
grained, due firstly to evolutionary expansions of ancestral orthologs into larger orthogroups, and secondly to the tendency for some orthologs to
vanish from certain species or become unrecognizable. Nevertheless, the probability of seeing an intersection of six or more orthogroups by chance,
such as that between sensitivity to tobramycin at 0.05μg/ml and the seizure phenotype, is 1.7 × 10−4 (without correction for multiple testing).

with E. coli phenotypes in our database failed to turn up
such clear associations.
Thus, both at the level of predicting candidate genes

and affiliated compounds, the E. coli phenotypes appear
to be relevant. Both of the genes discussed above may
indeed represent reasonable new candidates for affecting
pharmacologically-induced seizures and might warrant
follow-up experiments. Finally, it is particularly striking
that mammalian seizures — which are distinctly neuro-
logical phenomena — could be derived from processes so
fundamental as to exist even in bacteria.

Atrial fibrillation
We looked next at the human heart phenotype atri-
al fibrillation (AF), expecting to find that AF, like
pharmacologically-induced seizures, was rooted in
highly-conserved signaling defects. Instead, we found
that the most predictive phenotypes were from mouse
and chicken — quite unlike epilepsy, for which plants,
worms, and yeast offered a great deal more information
than mouse or chicken.
The AF phenotype performed well cross-validation in

the gene-based configuration method. However, in the
orthogroup-based cross-validation, only three of the eight
genes associated could be predicted after being withheld.
The removed genes were predicted at ranks 3–4, 15–16,
and 81–94. Nonetheless, the novel predictions for this
phenotype are worth noting.
The top-ranked new prediction for atrial fibrilla-

tion (AF) is the histamine receptor H2 (HRH2), largely

contributed by gastrointestinal phenologs in mouse
(Figure 11). Histamine has been known to act on heart
cadence for over a hundred years [23]. However, an
empirical link between heart and gastrointestinal function
was established by the recent observation that histamine
increases the heart rate in pythons during digestion [24]—
regulation which both occurs via the H2 receptor [25-27]
and is apparently ubiquitous in vertebrates.
Similarly predicted are ATP4A and, further down the

list, ATP4B, which are the α and β subunits of the H+/K+
ATPase. This proton pump is responsible for gastric acid
secretion during digestion.
A somewhat speculative connection is offered by recent

work, which showed cigarette smoke extracts cause an
increase in the amount of H+/K+ ATPase in the stomach
[28]. It is unclear — and worth testing — whether ATP4A
and ATP4B are expressed in the heart. These genes could
offer an additional route by which smoking contributes to
heart problems.
FollowingHRH2 and ATP4A isHOPX, or homeodomain

only protein x, which is down-regulated during heart fail-
ure in humans [29]. It is not clear that HOPX is involved
in AF per se, but again worth exploring in future exper-
iments, as is the gene ranked next, KCNE1, based on
orthologous phenotype prolonged QT interval — and
seemingly also a factor in rare cases of atrial fibrillation
[30-32].
GJA1 (gap junction protein, α1, also known as con-

nexin 43 or Cx43) is one of the two most abundantly
expressed connexins in the heart [33-35]. The other is
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Figure 11 The top candidate genes predicted for atrial fibrillation. These predictions are constructed in the same manner as those in Figure 9.
Limiting the search to k = 40 neighbors in this case means that all predictive phenotypes come from mouse and chicken, though other species
were included in the analysis. Interestingly, few of the informative mouse and chicken phenotypes are related to the heart in any obvious manner.

GJA5 (connexin 40), already associated in our database
with AF. Cx40 and Cx43 seem to form heteromeric chan-
nels with different properties from homomeric channels
[36]. Cx43, unlike Cx40, is essential for heart development
and cardiac impulse conductance in mice [37]. Tuomi et
al. observed that a dominant negative Cx43mutant causes
severe AF [38]. Finally, atrial fibrillation was observed in
a somatic mutation in human GJA1 [39]. Notably, another
channel similarly implicated was SCN5A (human car-
diac sodium channel, voltage-gated, type V, α subunit).
This sodium channel component has been associated
with atrial fibrillation [40-42] but was missing from our
database.
In terms of the predictor phenotypes themselves, the

top AF phenologs can be grouped into three basic cate-
gories: cardiac, gastric, and auditory. We have explored
the first two categories, but have not considered genes
from the third. We note that while Jervell and Lange-
Nielsen syndrome (i.e., long QT syndrome) has been
associated with deafness for half a century [43-46] via
alleles of KCNQ1 [47] and KCNE1 [48], other genes may
yet be involved [49]. Further, Belmont et al. write of
“a growing appreciation for conditions that affect hearing
and which are accompanied by significant cardiovascular
disorders” [50].
Given the success with which our method was able to

predict AF genes — and with which it was able to identify
potentially related disorders — exploration of additional

candidates (e.g., ATP4A/B, POU4F3, and S1PR2) from
Figure 11 may be warranted.

Plant phenotypes— response to vernalization
Finally, having focused primarily on predicting mam-
malian phenotype- and disease-genes, we asked whether
plant gene–phenotype associations could be predicted
from the other species in our database.
Plants represented a particular challenge, since a num-

ber of factors reduce the specificity of predictions for
plant phenotypes. Firstly, while human phenotypes are
predicted at least in part from other mammals and even
other vertebrates — which are phylogenetically similar —
there are no close neighbor species to Arabidopsis in our
database.
Secondly, while 19,439 of the 28,002 human genes in

our database have orthologs in other species, the ratio
is less promising for A. thaliana phenolog predictions:
12,668 of 27,325 have orthologs. The cause is likely again
the lack of other plants in our database, compared to the
several vertebrates from which to draw information for
H. sapiens.
Third and finally, the Arabidopsis genome contains a

great deal of redundancy, as observed in [51]: 37.4% of
proteins belong to families of more than five members,
compared to 12.1% in fruit fly and 24.0% in worm. In pre-
dictions that rely on gene orthology, as with phenologs,
there is often no way to distinguish which of the plant
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paralogs is most relevant — except perhaps by relying on
paralogous phenotypes.
Our orthogroup-based matrix formalism (Figure 2D)

was thus critical for addressing the extensive divergence
of gene families between distant species. In particular
and as previously described, when attempting to predict
Arabidopsis phenotypes, we noticed that the gene-based
formalism resulted in asymmetric scores and unwar-
ranted improvements in rank of certain predictions, par-
ticularly those where large orthogroups were involved
(Figure 2A–C). The genes-as-rows configuration also
inflated performance, as measured by ROC plots, during
cross-validation — primarily due to the high frequency
with which plant gene expansions co-participate in a bio-
logical process.
Given this formalism, we then determined phenotypes

which may be predictable by cross-validating predic-
tions produced from all non-plant species in the database
(Figure 12), and found a large number (greater than 50)
of the plant phenotypes to be reasonably well-predicted
based on non-plant phenotypes. We describe final pre-
dictions for the response to vernalization phenotype
(Figure 13).
We selected this phenotype because it scores better

than most other plant phenotypes in cross-validation;
seven of the fifteen genes in this plant phenotype can be
predicted back at low rank when withheld, representing
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Figure 12 Predicting performance of phenologs for plant
phenotypes. This figure mirrors Figure 6A, but demonstrates the
prediction of Arabidopsis phenotypes from individual species (rather
than human diseases from individual species). The red solid line
shows the combined performance of predictions using all species
except Arabidopsis. Yeast appears to be the most useful individual
species for predicting plant phenotypes.

two or three orthogroups (about half of the total num-
ber of orthogroups) depending upon the source species
considered.
Although we cannot easily cross-validate predictions

from paralogous phenotypes, since they are not suffi-
ciently independent, we speculate that the inclusion of
paralogous phenotype datamay help to improve the speci-
ficity of the predictions at no perceivable cost.
Among the new candidate genes implicated, two are

particularly notable. One of these, EMF2—which appears
to be associated with vernalization-mediated flowering
by its interaction with CLF [52] — is predicted based
on seemingly unrelated orthologous mouse and human
phenotypes (abnormal chorion morphology and endome-
trial cancer, respectively). EMF2 is paralogous with known
vernalization gene VRN2; however, it is ranked ahead
of VRN2 by its association with the related plant phe-
notype negative regulation of flower development. That
EMF2 was boosted by a potential paralogous phenotype
supports the hypothesis that paralogous phenotypes are
similarly useful to orthologous phenotypes in predicting
gene function.
The second interesting prediction is FWA and its sev-

eral paralogs (HDG1–4,HDG7–12, PDF2, ANL2, ATML1,
AT5G07260, and HB-7). Certain FWAmutants produce a
vernalization-insensitivity phenotype [53,54]. Candidates
ANL2 and PDF2 both have late flowering phenotypes
[55,56] markedly similar to that of FWA [57]. That discov-
ery lends additional support for paralogous phenotypes,
as neither FWA nor PDF2 were associated in our database
with regulation of flower development — but our method
successfully identified negative regulation of flower devel-
opment as a potential phenolog.
Empirically, we believe that the strength of our pre-

dictions for plant phenotypes are limited primarily by
the quantity of gene–phenotype information available for
plants. Notably, the addition of associations from other
plant species would prove exceptionally useful for pre-
dicting not only Arabidopsis phenotypes, but crop species
as well, and — as demonstrated earlier — even animal
phenotypes.

Datasets
We sought to determine whether the improvement in
our method over the original Phenologs method could be
attributed in part to the additional species information or
arose exclusively from incorporating phenotypes beyond
the nearest neighbor (as demonstrated in Figure 5).
We began by plotting the performance of those pre-

dictions drawn from the species used by McGary et al.
(mouse, nematode, yeast, and plant, short-hand mcgary+
green, notably including the additional phenotypes from
Green et al.). As expected, we found that increasing k from
0 to 40 markedly improved the results (Figure 14).
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Figure 13 The top candidate genes predicted for Arabidopsis response to vernalization. Here, we demonstrate predictions for a plant
phenotype, response to vernalization, while also demonstrating how including paralogous phenotypes may slightly enhance resolution. These
predictions are drawn from phenotype data from each species in the database, with a neighborhood cutoff of k = 40. Due to the large gene
expansions in plants, as well as the relatively large distance of Arabidopsis from other species in our database, paralogs are often ranked together. In
the first two bins, a large gene expansion is split into separate ranks by information from an Arabidopsis phenotype (which is paralogous rather than
orthologous). Those ranks labeled with green text include at least one previously known vernalization response gene (that is, a gene that was
already linked with vernalization response in our database).
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Figure 14Measuring the effect of additional datasets on predictive performance. Here, we used our best classifier (naïve Bayes with Pearson
sample correlation for a distance function, weighted by hypergeometric CDF), and subtract out datasets in order to determine their relative
contributions. Unless otherwise indicated, classifiers were run with k = 40. (a) demonstrates that for the original species used by McGary et al. (also
including the new phenotypes from Green et al.), the k nearest neighbors method performs substantially better from the original Phenologs
method (approximated by k = 1). The datasets are labeledmcgary (mouse, worm, nematode, yeast, and plant), green (nematode), Dr for zebrafish,
Ec for E. coli, and Gg for chicken. The best-performing analysis was repeated (labeled “(1)” and “(2)”, with different random test genes withheld) to
demonstrate that performance is robust under cross-validation. (b) presents a test of whether specific phenotypes are more useful than broad
phenotypes, by breaking down the green dataset into its components, green–specific and green–broad. We found that including both green datasets
yielded the best results at relevant ranks, but that they both hurt results at less relevant ranks (beyond 45). Also shown is a comparison between the
original datasets (mcgary alone) and the best-performing collection from (a), with all datasets except chicken (represented by the solid cyan line).
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Next, we tried adding the new species (chicken, E. coli,
and zebrafish) individually, and found improvements at
relevant ranks for E. coli and D. rerio. Surprisingly, inclu-
sion of chicken data hurt the predictive performance. We
also tried adding E. coli and D. rerio at the same time, and
saw an additional increase in performance.
Given the decrease in performance resulting from the

inclusion of chicken phenotypes, we sought to deter-
mine whether the additional C. elegans datasets were
negatively affecting performance. In Figure 14B, we tried
leaving out the broad and specific components of the
green dataset. We found that either component alone
performed worse than the combination. We also tried
leaving out the green datasets altogether, and found that
their inclusion moderately improved performance at rel-
evant ranks, but decreased performance beyond around
rank 45.
These mixed results with the datasets are somewhat

surprising. We expected that the in situ hybridization
expression annotations from GEISHA would be useful
for human predictions not only because gene expression
stage and location should correlate highly with pheno-
type, but also because chicken — like mouse — is more
closely related to human compared to other species in our
database.
The distributions of genes per phenotype for human,

mouse, Arabidopsis, and chicken were similar (not pic-
tured). Only E. coli differed substantially, with most phe-
notypes involving between 800 and 1,000 genes. However,
in general, the counts of E. coli–human orthologs involved
in bacterial phenotypes are much smaller due to the rela-
tively small fraction of genes with orthologs between the
two species.

Conclusions
In summary, we set out to improve upon the results of the
original phenolog project by unifying information from
a “neighborhood” of phenotypes surrounding the pheno-
type or disease of interest. Our method produces ranked
predictions for a large percentage of human diseases
in OMIM, as well as for plant biological process-based
phenotypes.
Notably, we were able to demonstrate the correct pre-

diction of at least one gene associated with the mouse
phenotype pharmacologically-induced seizures using only
phenologs from E. coli. While McGary et al. demon-
strated the existence of deep homology between mice
and single-celled eukaryotes, our work suggests that
examples of deep homology exist — and may even
offer useful predictions — between prokaryotes and
eukaryotes.
We also demonstrate that the term “phenotype” may be

interpreted broadly when incorporating gene-association
data for phenolog-based predictions. Gene Ontology

biological processes are one potential source. Another
potential source is annotations for in situ hybridization
experiments, such as GEISHA, but it may be necessary to
refine such a phenotype database by hand.
Finally, we give a number of concrete gene predictions

for the human diseases atrial fibrillation and epilepsy, and
show how phenologs may be used to generate hypotheses
and a biological context that correctly connect categories
of diseases, such as disorders of the heart, stomach, and
sensorineural system.

Methods
Cross-validation
For the gene-based matrix, we compared classifiers and
metrics using n-fold cross-validation, and calculated
receiver operating characteristic (ROC) and precision–
recall curves for each disease or phenotype to be pre-
dicted. Classifiers could be represented by arrays of area-
under-the-curve measurements.
With the orthogroup-based matrix we chose a simpler

and faster “leave-one-out” cross-validation scheme, where
one observed gene association was hidden for each dis-
ease. Noting that some orthogroups have multiple genes
associated with the same phenotype, we also hid any
orthogroups associated with hidden genes. Since a gene
may be part of one orthogroup for each species included
in the search, we measured the rank of predicted genes
rather than predicted orthogroups. When multiple genes
were predicted with the same score, the mean rank was
used.
The leave-one-out procedure was repeated three times

for each phenotype, taking the median hidden gene
rank to be representative of the classifier–phenotype
performance.

Additional phenotype data
In addition to those databases described in [9], we incor-
porated orthology and gene–phenotype data from a vari-
ety of additional species. We excluded any phenotypes
with fewer than three associated genes.
Our choice of species was driven primarily by avail-

ability of data in a useful format, namely that phenotype
annotations could be expressed qualitatively, and that we
we could link those annotations to a protein sequence; for
example, we wished to incorporate phenotype data from
the agricultural plant database Gramene, but most or all
phenotype-associated genes lacked sequences.
Human diseases came from OMIM as for [9], but

updated on August 17, 2011. Additional C. elegans pheno-
types came from Green et al. [58] and were broken down
into two datasets, green–broad and green–specific, accord-
ing to the classifications given by the authors in the second
supplemental table, “Broad Phenotypic Category” and the
more specific subcategories into which they were divided.
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We chose to maintain the dual categorization primarily
because a number of the more specific phenotypic classes
were monogenic, and hence would have been ignored
altogether in our analysis.
E. coli phenotypes were taken onMay 20, 2011, from the

file ‘coli_FinalData2.txt’ [59]. Each gene’s phenomic pro-
file was sorted by score, assigning both the top and bottom
forty conditions to the gene. Thus, each condition was
considered to be a phenotype, and the genes associated
with that phenotype were those genes whose growth was
most affected — either positively or negatively — in the
corresponding condition.
We considered fruit fly phenotypes from FlyBase [60].

Unfortunately, FlyBase’s dataset — while extensive —
makes use of a controlled vocabulary optimized for man-
ual searching rather than high-throughput analysis. The
only way to connect a phenotypic class annotation to an
anatomical location or developmental stage is by allele
and literature reference — if these are given at all. We
attempted to match anatomical annotations for mutant
phenotypes to annotations from the phenotypic class
ontology, joining on allele and publication. While it was
possible to predict some human diseases based on fruit fly
phenotypes from FlyBase, the results were noisy and diffi-
cult to interpret, and we ultimately chose to exclude fruit
fly results.
Zebrafish phenotypes consisted of gene ontology (GO)

biological processes from ZFIN [61], keeping only those
annotations with evidence types of IMP, IDA, IPI, IGI,
TAS, NAS, IC, and IEP — the same procedure used for
Arabidopsis phenotypes, obtained from TAIR [62]. These
evidence types were selected so as to avoid the inclusion
of annotations that originated directly from knowledge of
other model organisms.
For chicken (Gallus gallus) phenotypes, we utilized

in situ hybridization annotations from GEISHA [63],
kindly provided in XML format on June 24, 2011. If there
were more than fifty genes associated with a specific
location and more than three at a specific state at that
location, a new phenotype was created (“anatomical loca-
tion at stage x”); and regardless, each location became an
independent phenotype. We defined phenotypes as gene–
expression associations in specific anatomical locations.
For those locations with more than fifty genes annotated,
we created additional phenotypes for each stage with
greater than three associated genes.
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