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Abstract

Background: Modern flamingos (Phoenicopteridae) occupy a highly specialized ecology unique among birds and
represent a potentially powerful model system for informing the mechanisms by which a lineage of birds adapts
and radiates. However, despite a rich fossil record and well-studied feeding morphology, molecular investigations of
the evolutionary progression among modern flamingos have been limited. Here, using three mitochondrial
(mtDNA) markers, we present the first DNA sequence-based study of population genetic variation in the widely
distributed Chilean Flamingo and, using two mtDNA and 10 nuclear (nDNA) markers, recover the species tree and
divergence time estimates for the six extant species of flamingos. Phylogenetic analyses include likelihood and
Bayesian frameworks and account for potential gene tree discordance. Analyses of divergence times are fossil
calibrated at the divergence of Mirandornithes (flamingos + grebes) and the divergence of crown grebes.

Results: mtDNA sequences confirmed the presence of a single metapopulation represented by two minimally
varying mtDNA barcodes in Chilean flamingos. Likelihood and Bayesian methods recovered identical phylogenies
with flamingos falling into shallow-keeled (comprising the Greater, American and Chilean Flamingos) and
deep-keeled (comprising the Lesser, Andean and James’s Flamingos) sub-clades. The initial divergence among
flamingos occurred at or shortly after the Mio-Pliocene boundary (6–3 Ma) followed by quick consecutive
divergences throughout the Plio-Pleistocene. There is significant incongruence between the ages recovered by the
mtDNA and nDNA datasets, likely due to mutational saturation occurring in the mtDNA loci.

Conclusion: The finding of a single metapopulation in the widespread Chilean Flamingo confirms similar findings
in other widespread flamingo species. The robust species phylogeny is congruent with previous classifications of
flamingos based on feeding morphology. Modern phoenicopterids likely originated in the New World with each
sub-clade dispersing across the Atlantic at least once. Our divergence time estimates place flamingos among the
youngest families of birds, counter to the classical notion of flamingos as among the oldest based on biogeography
and the fossil record. Finally, we designate ‘Phoeniconaias’ as a junior synonym of ‘Phoenicoparrus’ and redefine the
latter genus as containing all flamingos more closely related to Phoenicoparrus andinus than Phoenicopterus roseus.
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Background
Flamingos are a unique order (Phoenicopteriformes) of
birds with a highly specialized ecology but their evolution-
ary history remains poorly understood and until recently
has only been informed by the fossil record. Flamingos are
traditionally perceived as among the oldest lineages of liv-
ing birds with reports of flamingo-like birds appearing in
the fossil record as early as the late Cretaceous (e.g. [1]).
However, the earliest birds reliably placed as stem phoeni-
copteriforms (family Palaelodidae) first appear in the early
Oligocene of Europe [2] and the earliest members of the
crown family (Phoenicopteridae) appear during the Oligo-
Miocene of the Old World [3-5], suggesting an age for the
family on par with most other major familial divergences
within Aves [6]. Notably, Harrisonavis croizeti, an ap-
parently morphologically modern flamingo from the
Oligo-Miocene of France, suggests the modern flamingo
divergence occurred in the Old World as early as the
late Paleogene [3].
Recent fossil and molecular work have shed new insight

into phoenicopterid origins and cast doubt on the classical
notion of flamingos as a particularly ancient lineage among
the storks, herons and ibises (Ciconiiformes). Most not-
ably, molecular [7-11] and morphological [12,13] studies
have supported a sister relationship between flamingos
and grebes (Podicipediformes) as the clade Mirandornithes
[14]. However, despite these advances, the exact age and
phylogeny of modern flamingos remains to be robustly
tested and several questions about flamingo evolution are
in need of further investigation: (1) how do the six extant
species of flamingos relate to each other, (2) how long ago
did these divergences occur, and (3) where did crown
Phoenicopteridae originate?
Sibley and Ahlquist [15] represents the only genetic

study that addresses these questions. This study, based
on differences in hybridization strength between gen-
omic DNA of different species, documented a shallow
age among five species and (the formerly classified) two
subspecies (Phoenicopterus ruber ruber and P. ruber
roseus) that likely form a single genus comprising two
distinct sub-clades. This division is congruent with the
organization by Jenkin [16] of flamingos into two groups
reflecting mandibular morphology and feeding strategy:
the Lesser, Andean and James’s Flamingos (the so-called
deep-keeled group) have bulbous bills in cross-section
suited to filtration of smaller food items (e.g. blue-green
algae and diatoms); the remaining species (shallow-
keeled group) have more compact bills in cross-section
suited to filtration of larger food items (e.g. mollusks and
crustaceans). Further morphological variation within the
two sub-clades is not completely known [17].
Intraspecific genomic variation in each flamingo species

is also incompletely known but is an important consider-
ation when investigating morphological and geographic
origins of species with wide ranges. Recent population
genetics studies have identified a lack of genetic structure
within the Greater [18]; Remi Wattier, pers. comm. and
Lesser [19] Flamingos, both species with extensive ranges
in the Old World. It is unlikely that the restricted breeding
distribution [20,21] on the Andean altiplano promotes
genetic structure in the Andean and James’s Flamingos.
Except for captive populations [22,23], the population gen-
etics of the American and Chilean Flamingos remains
uninvestigated.
The present study has three aims: 1) to assess intra-

specific mitochondrial variation within the widespread
New World Chilean Flamingo through the use of three
mtDNA markers and museum skins collected through-
out the range; 2) to test the phylogenetic relationships
among modern flamingos through the use of a multi-
locus (10 nDNA and two mtDNA markers) and varied
analytical (Bayesian, maximum likelihood framework)
approach; and 3) to estimate the divergence times of liv-
ing flamingo species from the resulting species tree cali-
brated with two fossil constraints. How these results
inform the taxonomic organization and biogeography of
flamingos is discussed.

Results
Population genetics of the Chilean Flamingo
Sequence data for 3 mtDNA loci were obtained and ana-
lyzed from 17–26 Chilean Flamingos representing the
entire breeding range of the species except Ecuador
(Additional file 1). Only two out of 18 individuals
showed variation in the COI gene (one out of 142 bp, or
0.7%), exposing the same substitution recovered previ-
ously by a DNA barcoding study of neotropical birds
[24]. That study indicates the presence of only one sub-
stitution (0.15%) in the entire barcode portion of the
COI. From the current study, the common haplotype
was distributed throughout the range, while the minor
variant was found in an individual from Peru (this study)
and in three individuals from the Argentinean Andes
(this study and [24]). Both haplotypes coexist in these lo-
calities. Two additional markers that are known to be
variable in related species (NADH 2, n = 17; control re-
gion, n = 20) failed to reveal the existence of additional
mitochondrial variation.

Phylogenetics
Analysis of single loci generally failed to result in complete
phylogenetic resolution, instead supporting one or few of
the key nodes in the final species tree (Figure 1). None of
the single locus-based gene trees (except cyt b) indicate
significant conflict, rather lack of resolution, with the final
multi locus-based species tree. Thus, the joint analyses of
loci that vary in mutation rate contributed to enhanced
overall resolution The species topology is congruent with
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Figure 1 Relationships and ages of the flamingos. Cladogram showing the relationships of the living flamingos. The flamingos fall out in two
sub-clades with high support, congruent with the topology recovered by Sibley and Ahlquist [15]. Genus Phoenicoparrus has been expanded to
include all members of the deep-keeled clade (see Discussion). Posterior probabilities (Bayesian inference) and bootstrap support values
(maximum likelihood) are shown above each node. Numbers and letters to the right of each node indicate individual genes and data subsets
which recover that monophyletic clade. Key: 1, RHEB1; 2, TIMM17A; 3, TCF3; 4, RPS24; 5, SLC29A4; 6, NFKBIZ; 7, G3PDH; 8, myoglobin; 9, ZENK; 10,
ZENK 3’UTR; 11, COI; 12, cyt b; n, nDNA subset; mt, mtDNA subset. RHEB1 failed to recover sister status between the American and Greater
Flamingos in a maximum likelihood framework with high support, denoted by ‘1*’ .
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previous non-DNA sequence based studies [15] with fla-
mingos breaking into two distinct clades: a shallow-keeled
clade comprising (Chilean + (American +Greater)) and a
deep-keeled clade comprising (Lesser + (Andean + James’s)).
Additional analysis indicates that the species topology is

particularly robust. The Bayes factor analysis supported
partitioning of the total dataset by locus (Bayes factor =
231), though both partitioned and non-partitioned BI ana-
lyses recovered the same topology with complete support
(posterior probability = 1.0); the ML analysis had >85%
bootstrap support for all nodes. A *BEASTanalysis includ-
ing multiple individuals for each flamingo species again
recovered the same topology with complete support (pos-
terior probability = 1.0). All jackknife analyses excluding a
single locus at a time from the total (nDNA+mtDNA)
dataset recovered the complete topology with high (>0.9)
posterior probability, suggesting that no single locus was
driving the results. The nDNA dataset recovered the same
topology, while the mtDNA dataset differed only by recov-
ering a (Andean + (Lesser + James’s)) clade, albeit without
significant support.
Even though intra-specific variation was discovered

in a set of five nDNA loci including two to three indi-
viduals per flamingo species, this variation was found to
be minimal (<0.5% in each case, Additional file 2), an
inference confirmed by independent cross-checking
between the two genetics labs which revealed a match
for all 6 flamingos. Furthermore, five of the 12 loci
showed interspecific variation between the American
and Greater Flamingos (0.1-1.8%; Additional file 3),
with the barcode locus (COI) K2P distance indicating
1% variation.

Divergence time estimation
The dates recovered by the mtDNA dataset are consist-
ently ≥2 times the ages recovered by the nDNA dataset,
while those recovered by the total dataset fall in between
(Table 1). Crown-clade Phoenicopteridae likely arose at
or shortly after the Mio-Pliocene boundary (3.0-6.5
mya). The deep- and shallow-keeled clades diverged in
either the Pliocene or earliest Pleistocene (1.7-3.9 mya)
followed by the American-Greater split (0.9-1.5 mya)
and the Andean-James’s split (0.5-2.5 mya). Age ranges
represent the total (upper bound) and the nDNA only
(lower bound) datasets. See Table 1 for divergence dating
results of the all datasets (ages in bold, 95% confidence
intervals in parentheses).

Discussion
Population genetics of the Chilean Flamingo
A single metapopulation was identified across the range of
the Chilean Flamingo, harboring minimal genetic vari-
ation. This finding parallels similar recent findings in other
widespread flamingo species [18,19] and is consistent with
the appearance of opportunistic breeding [25] and a no-
madic lifestyle [26] in all flamingos. Given these results,



Table 1 Ages for divergences within Phoenicopteridae based on 12 loci with 2 fossil calibrations

Age (95% C.I.) Ma

Divergence Total Nuclear Mitochondrial Nuclear + COI Nuclear + cyt b

Crown 4.37 (2.38-7.16) 3 (1.45-5.5) 6.5 (3.65-10.15) 4.02 (2.24-6.73) 5.59 (3.08-9.66)

Phoenicopterus 2.29 (1.07-4.06) 1.67 (0.69-3.21) 2.42 (1.12-4.22) 2.12 (0.99-3.67) 2.42 (1.08-4.51)

Ruber-roseus 1.01 (0.34-1.98) 0.88 (0.25-1.87) 1.18 (0.45-2.2) 0.95 (0.34-1.83) 1.45 (0.51-2.93)

Phoenicoparrus 2.56 (1.26-4.37) 1.83 (0.77-3.5) 4.3 (2.15-6.9) 2.08 (1.06-3.64) 3.82 (1.96-6.69)

Andinus-jamesi 1.34 (0.54-2.47) 0.5 (0.12-1.14) Not recovered 0.81 (0.33-1.56) 2.32 (1.07-4.23)

Ages of divergences within flamingos are in bold followed by the 95% confidence intervals in parentheses. Extant flamingos likely originated at or shortly after
the Miocene-Pliocene boundary, making them one of the youngest lineages among living birds. The ages recovered by the nuclear data are consistently much
younger than the ages recovered by the mitochondrial data, likely the result of mutational saturation in the mitochondrial sequences.
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minimal genetic structure is expected for the phylo-
geographically unstudied Andean, James’s and American
Flamingos. Thus, it is unlikely that unaccounted-for popu-
lation structure impacted the results of our phylogenetic
and divergence dating analyses.

Phylogenetics
Our study provides the first sequence-based molecular
support for the relationships among flamingos suggested
previously [15,16]. By contrasting the lack of full reso-
lution for any of the individual loci with the complete
resolution found for the nDNA and total datasets, the
need for multiple independent loci to resolve temporally
young divergences is underscored. Conflicting phylogen-
etic signal exists between the mtDNA loci as COI was
the only single locus to fully resolve the flamingo rela-
tionships while cyt b recovered the Andean Flamingo at
the base of the deep-keeled clade with high support. The
relationships recovered by the total dataset agreed with
those recovered by COI, as well as by the nDNA dataset
and those recovered previously [15], indicating that the
nDNA data sufficiently overpowered the conflicting cyt
b signal.
The two sub-clades recovered in our analysis are con-

gruent with the patterns detected by Jenkin [16] in man-
dibular morphology. The shallow-keeled clade comprises
those species with bills suited to capture larger prey
items and includes the Greater (Phoenicopterus roseus),
American (P. ruber) and Chilean (P. chilensis) Flamingos.
Within this clade, the American and Greater Flamingos
are often considered sub-species (e.g. [15]). The 1% diver-
gence inferred from the DNA barcode locus falls in the
range of expected nearest neighbor distances among sister
species, such as seen commonly in waterfowl [27]. Al-
though more sampling is needed to confirm species status,
our finding of fixed mutational differences in several nu-
clear loci and a 1% divergence in mtDNA is consistent
with treating the American and Greater Flamingos as sep-
arate species.
The deep-keeled clade comprises those species with bills

suited to capturing smaller prey items and includes the
Lesser (minor), Andean (andinus) and James’s (jamesi)
Flamingos. These species have often been set apart from
the classical genus Phoenicopterus with the Lesser placed
within Phoeniconaias based on unique characteristics of
the bill [28] and the Andean and James’s placed together
in Phoenicoparrus based on the shared absence of the hal-
lux (hind toe) [29]. However, the morphological definition
of Phoeniconaias does not seem to exclude andinus and
jamesi, and the hallux of minor is reduced [16], approxi-
mating the morphological definition of Phoenicoparrus.
Thus, we suggest that the division of the deep-keeled clade
into two genera is arbitrary and uninformative. Instead, we
suggest the placement of minor within Phoenicoparrus
along with andinus and jamesi based on shared mandibu-
lar morphology, ecology and phylogenetic relatedness. We
suggest the designation of Phoeniconaias as a junior syno-
nym of Phoenicoparrus based on priority and the redefin-
ition of Phoenicoparrus as all species more closely related
to Phoenicoparrus andinus than to Phoenicopterus roseus.

Divergence time estimation
Even though the various subsets of data recovered in-
congruent divergence times (Table 1), all agreed on a re-
cent divergence for crown Phoenicopteridae, indicating
that living flamingos are among the youngest lineages
within Neoaves. This young age is counter to the general
perception of the Phoenicopteridae as among the oldest
lineages of living birds based on fossil data (e.g. [1]) but
is congruent with the DNA-DNA hybridization data of
Sibley and Ahlquist [15], which identified the close gen-
etic relatedness of the flamingos and predicted an age of
5–6 Ma for the basal divergence among the extant spe-
cies. The nDNA dataset recovered ages significantly
(≥2×) younger than those of the mtDNA dataset. This
pattern is likely due in part to artificial signal caused by
saturation of the more quickly mutating mtDNA genes
[30]. Though saturation is unlikely to be an issue with
divergences as shallow as those of crown Phoenicopteri-
dae, the use of temporally more distant calibrations ex-
ternal to the clade of interest (e.g. within grebes) may
have introduced saturation artifact. It is likely that
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homoplasy within the relatively longer and more quickly-
evolving mtDNA sequences, with more mutational sites,
conflicted with the signal of the shorter and more slowly
evolving nDNA sequences, resulting in artificially old age
estimates. Thus, the true ages of the component flamingo
divergences are probably somewhere between those pre-
dicted by the total dataset and by the nDNA dataset alone.

Biogeography
The two Old World species (Greater and Lesser) are
each recovered in clades with otherwise exclusively
New World distributions. The recovery of the Greater
Flamingo as derived within Phoenicopterus suggests a
New World origin for the shallow-keeled flamingos. The
origin of Phoenicoparrus is not so straightforward, as the
basal divergence within the clade spans the Atlantic.
Plio-Pleistocene fossil flamingos are known only from
the New World [31-37] and Australia [4,38] and the
phylogenetic affinities of these species are uncertain. No
flamingos occupy Australia today and it is unknown if
the Plio-Pleistocene fossils represent an extension of the
current distribution or if they are descendants of the
species which occupied Australia in the Oligo-Miocene
[4]. The New World fossil record, however, is congruent
with the modern flamingo distribution and likely sug-
gests an origin for Phoenicoparrus, and crown Phoeni-
copteridae, in the Western Hemisphere, followed by
trans-Atlantic dispersal. Better phylogenetic resolution
for the Australian forms will further inform phoenicop-
terid origins.

Implications for the fossil record
The phoenicopteriform fossil record is rich but poorly
understood and revision will greatly advise divergence
time estimation and paleo-biogeographical reconstruc-
tion for crown flamingos. The stem phoenicopteriform
record is characterized by fragmentary material with
only tentative assignment to the flamingos. While the
earliest palaelodids (early Oligocene) are the earliest to
be reliably placed in Phoenicopteriformes, Juncitarsus
[39,40] (but also see [41]), Elornis and Agnopterus [42]
from the middle to late Eocene of North America and
Europe may be earlier members and perhaps more ap-
propriate fossil calibrations for Mirandornithes. Better
understanding of the Plio-Pleistocene record may also
provide internal calibrations for crown flamingos.
Finally, while we present the first information on the

timing of diversification and specialization within crown
flamingos, better understanding of interspecific variation
(particularly with respect to the filter feeding mandibular
morphology) is necessary to interpret the ecological sig-
nificance of these results. Likewise, revision of the stem
phoenicopteriform fossil record is necessary to place
these ages in a more meaningful context. Most notably,
the primitive flamingo Harrisonavis croizeti from the
Oligo-Miocene of Europe displayed a mandibular morph-
ology approximating that of modern flamingos [3,43].
Reassessment of this material, and new descriptions of
contemporaneous taxa, will inform the state of flamingo
specialization at this point and better constrain the rate of
specialization within the Phoenicopteridae.
Conclusions
Chilean Flamingos show no evidence of population struc-
ture across their entire range, a condition similar to other
widely-distributed flamingo species. The six living species
of flamingos fall into two clades reflecting differences in
bill morphology and feeding ecology. We propose slight
reorganization of flamingo taxonomy to indicate these dif-
ferences: the Greater, American and Chilean Flamingos
comprise genus Phoenicopterus while the Lesser is moved
to genus Phoenicoparrus (= ‘Phoeniconaias’) along with the
James’s and Andean Flamingos. The living species diverged
from each other ~4.37 million years ago, followed by
Phoenicoparrus (~2.56 mya) and Phoenicopterus (~2.29
mya).
Methods and materials
Population genetics methods
Field sampling of all flamingo populations remains
impractical for logistic reasons, including geographic
inaccessibility and conservation protection. Sampling
from captive birds alone is not guaranteed to capture
species-wide variation due to a persistent lack of infor-
mation regarding the geographic origins of the ances-
tors of captive populations. To assess phylogeographic
structure, we thus set out to sample museum specimens
of Chilean Flamingos with known locality. Available
DNA barcodes from Chilean Flamingos suggest the
presence of at least two haplotypes in Argentina [19]
but no data is available from other portions of their
range. Thus, we examined portions of three mitochon-
drial genes through amplification from historic toe pads
from Chilean Flamingos (n = 27) with known localities
(see Additional file 1 for specimen information). The
samples used spanned nearly the entire range known of
Chilean Flamingos (excluding Ecuador) and were ob-
tained through several museum loans. The three loci
were chosen based on known intraspecific variation in
flamingos (COI in Chilean and Greater Flamingos;
NADH 2 in Lesser Flamingos) or known high rates of
mutation (control region). Primers were manually gener-
ated using sequences available in GenBank (Additional
file 4). In order to prevent contamination, ancient DNA
procedures for extraction and amplification were followed
[44] (see Additional file 5 for methods).
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Taxonomic sampling (phylogenetics)
Tissue samples were obtained for each flamingo species
(Additional files 6, 7). Podilymbus podiceps and Aechmo-
phorus clarkii were included to represent the basal split
within grebes [45]. The sister taxon to (flamingos + grebes)
remains controversial but the tropicbirds (Phaethontidae)
are consistently found as close relatives (eg. [7,9,10]) and
were used as an outgroup. Penguins (Sphenisciformes) and
tubenoses (Procellariiformes) were included as representa-
tives of the waterbird clade (eg. [9-11]). Sample collection
was reviewed and approved by the Centre de Recherche
sur la Biologie des Populations d’Oiseaux (CRBPO, Musée
National d’Histoire 126 Naturelle, France) under the per-
sonal permit (number 405) of Alan Johnson and Arnaud
Béchet and by USDA permit (number 102976) of MVT.

Genomic sampling
Genomic DNA was extracted from tissue samples using
the DNeasy Tissue Kit (Qiagen) and was amplified for 10
nuclear and two mitochondrial loci from one individual
per species, which comprised the primary dataset (Table 2).
Two additional nuclear loci were also amplified to test in-
traspecific variation among flamingos only. See Additional
file 4 for primer sequences. The nuclear loci consisted pri-
marily of intronic regions with primers designed using an
exon-primed intron spanning approach and sequences
from the chicken and zebra finch genome (following [46]).
Polymerase chain-reaction (PCR) amplifications were car-
ried out in 50 μl reactions comprising: 31 μl dH2O, 5 μl
Table 2 Genetic loci used in the phylogenetic and divergence

Locus Basepair length Genomic locatio

RHEB1 642 Nuclear

TIMM17A 516 Nuclear

TCF3 601 Nuclear

RPS24 407 Nuclear

SLC29A4 524 Nuclear

NFKBIZ 506 Nuclear

G3PDH 432 Nuclear

myoglobin 677 Nuclear

ZENK 653 Nuclear

ZENK 3’UTR 287 Nuclear

COI 699 Mitochondrial

cyt b 1026 Mitochondrial

ADAMTS10 510 Nuclear

HMGB2 575 Nuclear

Only the two mtDNA loci were treated as coding; the mtDNA were further partition
for each locus were estimated using MEGA 5.2 and the best available model was us
1.8.0 for the divergence time estimation analyses. ADAMTS10 and HMGB2 were onl
Abbreviations: RHEB1, Rheb isoform 1, intron 3; TIMM17A, mitochondrial import inn
3, intron 12; RPS24, ribosomal protein S24, intron 5; SLC29A4, solute carrier family 2
enhancer in B-cells inhibitor, zeta, intron 6; G3PDH, glyceraldehyde-3-phosphate de
zinc finger protein, exon 2; ZENK 3’UTR, zinc finger protein, 3’ untranslated region;
metallopeptidase with thrombospondin, type 1 motif, intron 5; HMGB2, high mobili
10× detergent- and Mg+-free reaction buffer, 5 μl MgCl2
(25 mM), 1 μl dNTP (10 mM each), 2.6 μl each primer,
0.2 μl Hot MultiTaq (US DNA) polymerase (5 u/μl) and
2.5 μl DNA template (20 mM). Thermocycling comprised
an initial denaturation at 95°C for 5 min followed by
35–40 cycles of annealing at 95°C for 30 sec, extension at
50°C for 30 sec and denaturation at 95°C for 40 sec,
followed by a final annealing/extension at 72°C for
5 min. Excess dNTPs and primers were removed from PCR
product by addition of 1.45 μl Exonuclease 1 (Fermentas;
5 u/μl), 2.85 μl FastAP (Thermo Scientific) shrimp alkaline
phosphatase (1 u/μl) and 2.85 μl dH20 and held at 37°C for
30 min and then 80°C for 15 min. Product was sequenced
offsite at MacroGen USA (Maryland).
Sequence data for one to two additional flamingo indi-

viduals per species for five loci (Additional file 8) were col-
lected in the Dijon, France lab. For these samples, genomic
DNA was extracted from blood samples for the Greater,
American and Chilean Flamingos and feather samples for
the remaining three species using a standard phenol-
chloroform method. PCR amplifications and product
clean-up followed the same protocols as the Wilmington,
US lab. Product was sequenced offsite at MacroGen Korea
(Seoul).

Sequence treatment and phylogenetic analysis
Sequences were aligned within Sequencher 4.8 and align-
ments were confirmed within MEGA 5.2 [47] using
ClustalW with default settings. Pairwise genetic distances
time estimation analyses

n Phylo. sub. model Diverg. sub. model

T92 + G TN93 + I

K2P HKY

T92 HKY

HKY HKY

TN93 + I TN93 + I

K2P HKY

HKY HKY

K2P HKY

TN93 TN93

T92 HKY

HKY + G HKY + G

HKY + G HKY + G

K2 –

T92 + I –

ed by codon in the divergence time estimation analyses. Substitution models
ed in MEGA 5.2 and MrBayes 3.2.1 for the phylogenetic analyses and in BEAST
y used in phylogenetic analysis testing flamingo intraspecific variation.
er membrane translocase subunit Tim17A, intron 3; TCF3, Transcription factor
9, member 4, intron 8; NFKBIZ, Nuclear Factor of light polypeptide gene
hydrogenase gene, intron 11; myoglobin gene, exon 2, 3 and intron 2; ZENK,
COI, cytochrome oxidase subunit I; cyt b, cytochrome b; ADAMTS10, ADAM
ty protein group, box 2, intron 1. Drawings by M. McCracken.
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were calculated in MEGA 5.2 using the default Maximum
Composite Likelihood substitution model except for COI,
which was calculated using Kimura 2-Parameter. Max-
imum likelihood phylogenetic analyses were carried out
within MEGA 5.2 and the loci were concatenated. Unless
the dataset comprised only coding genes (ZENK, COI and
cyt b), each dataset was treated as noncoding; optimal sub-
stitution models were found within the hierarchical BI and
ML framework in MEGA 5.2 (Table 2) and the analysis
used a nearest-neighbor-interchange heuristic search.
Bootstrap support was estimated from 500 replicates using
the same settings. Primary phylogenetic analyses using
Bayesian inference were carried out in MrBayes 3.2.1 [48].
Datasets were fully partitioned based on the optimal sub-
stitution models estimated within MEGA 5.2. Each search
comprised two concurrent runs of four chains each for
10,000,000 generations sampled every 1,000 generations
with the first 1,000,000 generations discarded as burn-in.
The results of each analysis were tested for convergence of
phylogenetic signal in Tracer 1.5 [49], where estimated
sample size (ESS) values >200 were treated as reliable
signal.
The primary analysis employed all 10 nDNA and two

mtDNA loci for one individual per species. All second-
ary analyses employed the same parameters as the
primary analysis except where noted. To test for the
presence of intraspecific variation, a series of single-
locus analyses were carried out using two to three se-
quences per flamingo species for five loci (Additional
file 2). To recover individual gene trees, each locus was
analyzed independently. To test the relative weight of
each locus to the combined dataset, a series of analyses
were run excluding a single gene at a time. To test for
conflicting signal between the nDNA and mtDNA data-
sets, each was analyzed independently. To test for the
effects of over-partitioning of the Bayesian inference
analysis, a Bayesian analysis was carried out treating the
total dataset as non-partitioned (as in the ML analysis).
A Bayes factor analysis was carried out in Tracer 1.5 to
compare the strength in phylogenetic signal of the fully
partitioned and non-partitioned BI treatments.
*BEAST 1.8.0 [50] was used to test for discordance be-

tween individual gene trees and the species tree. The data-
set was fully phased by individual and gene. Loci were
allowed unlinked substitution models, clock models and
partition trees. The optimal available substitution model
was used (Table 2) and the 3 coding loci were partitioned
by codon position. Each locus was allowed a lognormal re-
laxed clock with uncorrelated rates. Mean clock rate priors
(ucld.mean) were allowed uninformative uniform distri-
butions (Initial value = 0.05; Upper = 1.0E100; Lower =
0.001). A Yule speciation process was assumed. No fossil
node calibrations were used. The results were tested for
convergence of phylogenetic signal in Tracer 1.5.
Divergence timing analysis and fossil calibrations
Divergence time estimation analyses were carried out
using BEAST 1.8.0 [51]. Loci were allowed unlinked sub-
stitution models (Table 2) and the 3 coding loci were
partitioned by codon position. A lognormal relaxed
clock with uncorrelated rates was assumed and a Yule
speciation process was employed. The clock mean (ucld.
mean) was allowed an uninformative uniform prior dis-
tribution (Initial value = 0.05; Upper = 1.0E100; Lower =
0.001). Taxa were divided into sets representing grebes
and Mirandornithes; monophyly of these sets was not
enforced. Two nodes were fossil calibrated following the
guidelines suggested by Parham et al. [52]. The diver-
gence of extant grebes was calibrated at 8.7 mya based
on Thiornis sociata, a grebe from the late Miocene of
Spain [53,54]. The divergence of flamingos and grebes
was calibrated at 32.6 mya based on Adelalopus hoogbut-
seliensis, a stem phoenicopteriform from the earliest
Oligocene of Belgium [2]. Calibrations were allowed log-
normal distributions with offset = calibration age and
standard deviation = 1.0. See Table 1 for the data in-
cluded in each divergence analysis. All analyses were run
twice for 100 million generations sampled every 1000
with burn-in of 1 million. Convergence of phylogenetic
signal was tested for in Tracer 1.5.
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