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Abstract
Background: SARS coronavirus (SARS-CoV) was identified as the etiological agent of SARS, and
extensive investigations indicated that it originated from an animal source (probably bats) and was
recently introduced into the human population via wildlife animals from wet markets in southern
China. Previous studies revealed that the spike (S) protein of SARS had experienced adaptive
evolution, but whether other functional proteins of SARS have undergone adaptive evolution is not
known.

Results: We employed several methods to investigate selective pressure among different SARS-
CoV groups representing different epidemic periods and hosts. Our results suggest that most
functional proteins of SARS-CoV have experienced a stepwise adaptive evolutionary pathway.
Similar to previous studies, the spike protein underwent strong positive selection in the early and
middle phases, and became stabilized in the late phase. In addition, the replicase experienced
positive selection only in human patients, whereas assembly proteins experienced positive
selection mainly in the middle and late phases. No positive selection was found in any proteins of
bat SARS-like-CoV. Furthermore, specific amino acid sites that may be the targets of positive
selection in each group are identified.

Conclusion: This extensive evolutionary analysis revealed the stepwise evolution of different
functional proteins of SARS-CoVs at different epidemic stages and different hosts. These results
support the hypothesis that SARS-CoV originated from bats and that the spill over into civets and
humans were more recent events.

Background
Severe acute respiratory syndrome (SARS) emerged in
Guangdong province of China in November 2002 and
subsequently spread rapidly to 25 countries across five

continents within 3–4 months [1]. Soon after its first out-
break, the etiological agent of SARS was identified as a
novel coronavirus [2-4], and its complete genome
sequence was determined [3,5,6]. The identification of
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SARS-CoV in Himalayan palm civets and raccoon dogs in
live animal markets in Guangdong, China, provided the
first clue of an animal-to-human transmission [7,8]. Fur-
ther studies indicated that civets were unlikely to be the
natural reservoir [9]. Instead the detection of different
SARS-like-CoVs in horseshoe bats (Rhinolophus spp.)
seemed to suggest that bats might be the natural reservoir
of SARS-CoV and many other closely related coronavi-
ruses [10-13].

Like other coronaviruses, SARS-CoV is an enveloped, pos-
itive-stranded RNA virus with a genome of approximately
29,700 nucleotides. The genome contains at least 14 open
reading frames (ORFs) that encode 28 proteins in three
distinct classes: two large polyproteins P1a and P1ab that
are cleaved into 16 non-structural proteins (nsp1–nsp16)
during viral RNA synthesis; four structural proteins (S, E,
M and N) that are essential for viral entry and assembly;
and eight accessory proteins that are believed to be non-
essential for viral replication, but may facilitate viral
assembly and play a role in viral virulence and pathogen-
esis (Figure 1) [14-17].

Similar to all RNA viruses, SARS-CoV replication is associ-
ated with genomic and antigenic variation. The ω ratio
(dN/dS ratio of non-synonymous to synonymous substitu-
tions) can measure the selective pressure at protein level,
with ω = 1, < 1, > 1 indicating neutral selection, negative
selection and positive selection, respectively [18,19]. Pre-
vious studies have suggested that the S protein of SARS-
CoV experienced positive selection during SARS epidemic
[20-22]. However, these studies did not find or did not
analyze for positive selection among the replicase or

accessory proteins, which may be equally important for
SARS-CoV's adaptation to a new host. In order to system-
atically investigate the adaptive evolutionary process of
SARS-CoVs, we employed the branch-site model to ana-
lyze the selective pressures that may act upon some key
SARS-CoV functional proteins involved in virus entry, rep-
lication and assembly. Our results suggest that diversified
selective forces act upon different proteins and during dif-
ferent epidemic phases.

Methods
Sequence data
A total of 156 sequences of SARS-CoVs or bat SARS-like-
CoVs were retrieved from GenBank (129 complete
genomes and 27 partial genomes) (see additional file 1).
Based on these sequences, three datasets were constructed.
Dataset 1 contains all Spike genes. Dataset 2 is a merged
dataset that includes sequences of 4 main replicase
domains of SARS-CoV: papain-like protease (PLpro), 3C-
like protease (3CLpro), RNA dependent RNA polymerase
(RdRp) and Helicase (Hel). Dataset 3 is a merged dataset
that includes sequences of 7 ORFs: ORF3a, E, M, ORF6,
ORF7a, ORF7b and N genes.

These protein-coding sequences are aligned based on
translated protein sequences using Clustal W program
implemented in BioEdit [23,24]. Prior to analysis all
sequences that were identical to another within the data-
set were removed, since previous studies have shown to
have little effect on the detection of positive selection and
contribute little evolutionary information [25]. Align-
ment gaps were manually removed based on the reference
sequence of 31-HP03L_Tor2 (NC_004718).

Schematic diagram of the SARS-CoV genome organization and viral proteinsFigure 1
Schematic diagram of the SARS-CoV genome organization and viral proteins. The protein coding regions analyzed 
in this paper were shaded in grey.
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The final composition of each dataset is as follows: dataset
1 contains 3765 bp of 59 S gene sequences; dataset 2
includes 35 sequences of replicase domains, 6435 bp in
total (945 bp for PLpro, 918 bp for 3CLpro, 2769 bp for
RdRp, 1803 bp for Hel) [17,26-28]; and dataset 3 contains
56 combined sequences, 3666 bp in total (822 bp for
ORF3a, 228 bp for E, 663 bp for M, 189 bp for ORF6, 366
bp for ORF7a, 132 bp for ORF7b and 1266 bp for N).

Phylogenetic analysis and reclassification of SARS-CoVs
For each dataset, a phylogenetic tree was built with MrBayes
3.1.2 (1,000,000 generations, sampled every 100 genera-
tions, burnin = 500, 4 chains) [29]. The tree topologies pre-
sented in figures 2, 3, 4 were used for different models. In
previous studies, SARS-CoV isolates have been divided into
five groups: 02–03 palm civets, 02–03 early, middle, late
human patients, and 03–04 civet and human [20,21]. In
the current study, we included an additional group contain-
ing the bat SARS-like-CoVs. Based on tree topologies and
epidemiological information, we reclassified each dataset,
such as to enable us to realistically investigate the adaptive
evolution of SARS-CoVs in different hosts and during dif-
ferent epidemic periods. As showed in figures 2, 3, 4, the
following groups were established: the BSL group, repre-
senting bat SARS-like-CoVs; the PC03 group, representing
isolates from palm civets in 2003; the HPEM group, repre-
senting human patient isolates during early and middle
epidemic phases in 2002–03; the HPL group, representing
human patient isolates during late epidemic phase in 2003;
the PCHP04 group, representing civet and human
sequences from the 2003–04 epidemic phase; the HP03
group, representing all isolates collected from human
patients during the epidemic period of 2002–03; and the
HPML group, representing human patient isolates collected
during the middle and late epidemic phases in 2003; and
finally, the SARS group, representing all isolates collected
from civets and human patients in 2002–04.

Detection of recombination and positive selection
Since recombination can influence the detection of posi-
tive selection, we first tested for recombination in our data
sets by using a genetic algorithm for recombination detec-
tion (GARD) [30]. Identified breakpoints by GARD were
then assessed for significance by using Kishino-Hasegawa
(KH) test in HYPHY package [31]. Since most sequences
in SARS group have high similarity and increasing the
number of sequences may dilute the signal, for each data-
set, we choose 10 sequences for GARD analysis (four from
BSL group: 124-Bat_SARS-273, 125-Bat_SARS-279, 126-
Bat_SARS-HKU3, 127-Bat_SARS-Rp3; six from SARS
group: 3-HP03E_GZ02, 15-HP03M_BJ02, 31-
HP03L_Tor2, 106-HP04_GZ0402, 110-PC04_PC4-136,
130-PC03_SZ13).

To test for diversifying selection and to infer codon sites
under positive selection, we mainly used CODEML pro-

gram in the PAML 4.1 software package, which is based on
the maximum likelihood algorithm of Yang and cowork-
ers [32]. Three kinds of models (branch-specific, site-spe-
cific and branch-site) were employed to detect selective
pressure among different branches and at different sites.
The likelihood ratio test (LRT) was used to investigate
whether the null hypothesis, where no positive selection
is allowed, can be rejected against the alternative hypoth-
esis, where positive selection is allowed [32]. The one
ratio model (M0) assumes the same ω ratio for all
branches and sites in the phylogeny. The free-ratio (FR)
model assumes an independent ω ratio for each branch in
the phylogeny. M0 and FR can be compared using LRT to
examine whether ω ratios are different among lineages.
The discrete model (M3) estimates ω for three classes of
codon. Comparing M0 and M3 can test the variability of
selective pressure among sites. When evidence for positive
selection (ω > 1) was detected, the naïve empirical Bayes
(NEB) method was used to calculate posterior probabili-
ties for site classes. A higher posterior probability suggests
strong support for a site to be under positive selection. In
brief, the branch-specific model assumes variation among
branches, but not among sites; the site-specific model
assumes variation of selective pressure among sites, but
not among branches. Both models are widely used to
investigate selective pressure. However, if adaptive evolu-
tion occurs at a few time points and affects a few amino
acids, these two models might lack power in detecting
positive selection. To overcome this limitation, we also
used branch-site model, which assumes that the ω ratio
varies both among sites and among lineages [33,34]. In
the branch-site model A (model A), the lineages of interest
are set to be foreground, and the other lineages to be back-
ground. Selective constrains are assumed to vary across
sites both along foreground and background, and a small
fraction of sites only vary along foreground lineages.
There are 3 ω ratios for foreground (0 < ω0 < 1, ω1 = 1, ω2
> 1) and 2 ω ratios for background (0 < ω0 < 1, ω1 = 1) in
branch-site model A. When evidence for positive selection
(ω > 1) was detected, both naïve empirical Bayes and
Bayes empirical Bayes (BEB) were used to calculate poste-
rior probabilities for site classes. Since NEB does not
account for sampling errors, we used the BEB outputs as
suggested by Yang [35]. The null model (model A') is
same as model A, but ω2 = 1 is fixed. Branch-site model
tends to be the most powerful of the three tests. In order
to investigate the variation of selective pressure in differ-
ent epidemic periods and hosts, we set each group of
SARS-CoVs as foreground in turn to implement branch-
site model. However, in such multiple tests, the probabil-
ity of false rejection of at least one null hypothesis can be
high. So we used Bonferroni correction to control the false
positive rate, as it has been shown to be powerful when
applied to the branch-site test [36]. As to dataset 1 and 3,
we applied branch-site model to 6 groups on the tree, and
for dataset 2, we applied branch-site model to 5 groups.
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Phylogenetic relationships of 59 S gene sequences of SARS-CoVs from human and animalsFigure 2
Phylogenetic relationships of 59 S gene sequences of SARS-CoVs from human and animals. The tree was gener-
ated with MrBayes 3.1.2 program. Posterior probabilities are shown on the nodes of the tree. Branch between BSL group and 
others was depicted with dotted line, because the branch was too long to be displayed at same scale. Bar, 0.001 nucleotide 
substitutions per site.
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So we used 0.0083 as the significance level for each
branch-site tests in dataset 1 and 3, used 0.01 as the signif-
icance level for dataset 2. As indicated previously by Yang
[33], these models sometimes fail to converge to maxi-
mum likelihood estimates. We thus performed each anal-
ysis at least twice using different starting values. Only
identical data produced from both runs were considered
reliable. All data are available upon request.

In order to examine the robustness of those positive selec-
tions identified by PAML, we also analyzed our datasets

using HYPHY package accessed through the Datamonkey
facility http://www.datamonkey.org[37]. Datamonkey
includes three methods for detecting sites under selection:
single likelihood ancestor counting (SLAC), fixed effects
likelihood (FEL) and random effects likelihood (REL).
REL method is often the only method that can infer selec-
tion from small (5–15 sequences) or low divergence
alignments and tends to be the most powerful of the three
tests. So this method was run using the GTR substitution
model on a neighbor-joining phylogenetic tree by the
Datamonkey web server. In order to investigate selective

Phylogenetic relationships of 35 replicase domains of SARS-CoVs from human and animalsFigure 3
Phylogenetic relationships of 35 replicase domains of SARS-CoVs from human and animals. The tree was gener-
ated with MrBayes 3.1.2 program. Posterior probabilities are shown on the nodes of the tree. Bar, 0.001 nucleotide substitu-
tions per site.
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Phylogenetic relationships of 56 3'-end ORF sequences of SARS-CoVs from human and animalsFigure 4
Phylogenetic relationships of 56 3'-end ORF sequences of SARS-CoVs from human and animals. The tree was 
generated with MrBayes 3.1.2 program. Posterior probabilities are shown on the nodes of the tree. Bar, 0.001 nucleotide sub-
stitutions per site.
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pressure among different hosts and epidemic phases, we
split each dataset (S protein, replicase domains, 3'-end
ORFs) into appropriate groups for analysis.

Results
Phylogenetic analysis
For all genes analyzed, represented by S, replicase and 3'-
end ORFs gene trees, at least four groups are apparent: BSL,
PC03, HP03, PCHP04. As to the HP03 group, it can be sub-
grouped into HPEM and HPL in S gene tree, and HPEM and
HPML in 3'-end ORF tree. It should be noted that the pos-
terior probabilities for several nodes are low and there are
some polytomies. These uncertainties could be due to some
sequences in SARS group have high amino acid similarity,
especially for replicase and 3'-end ORFs which are more
conservative. However, previous studies suggested that the
LRTs and qualitative results of ML parameter estimation
were rather insensitive to tree topology [35,38-42]. For
branch-site model, Bayesian site identification might be
affected by tree topology [40]. Remarkably, one isolate (38-
HP03L_GD01), which was isolated in the later epidemic
phase in 2003, always clustered with the early phase iso-
lates. A possible explanation could be that this patient was
infected in the early epidemic phase, which is supported by
sequence analysis; this isolate has 29 extra nucleotides
between ORF8a and ORF8b, a feature shared among iso-
lates from civets and early phase patients. Another isolate
(5-HP03E_HGZ8L1-B), which was isolated in the early epi-
demic phase, tends to cluster with the middle phase isolates
(Fig 2 and 4). This virus may be a transitional virus because
it does not have the extra 29 nucleotides like the middle
phase isolates.

Detection of recombination
As showed in table 1 and additional file 2, GARD detected
9 breakpoints in dataset 1, and KH test indicated that 1
breakpoint (2301) was significant at p-value < 0.01 level.
For dataset 2 and 3, GARD detected 2 and 5 breakpoints
respectively, but none of them was significant after KH
test.

Positive selection on the S protein of SARS-CoV
We analyzed the entire S gene of 156 isolates. Because sev-
eral isolates were identical at the amino acid sequence
level, we eliminated them from the dataset since previous
analyses indicated that contribute limited evolutionary
information [19,25]. Therefore, 59 sequences were com-
piled into dataset 1. Table 2 presents the analysis results of
dataset 1. The analyses of branch-specific model (FR)
indicate that selective pressure varied along branches.
Many branches in the HPEM and PCHP04 groups clearly
have higher ω ratios. The LRT statistic for comparing M0
and FR is significant, which confirm the heterogeneous
selective pressure along branches. According to the site-
specific model (M3), 1.3% sites among S protein are
under positive selection with ω = 3.214. Furthermore, this
model identifies 9 sites under positive selection at poste-
rior probability p > 90% level (Table 2). All these sites are
distributed within the S1 domain.

The results of branch-site model revealed that no evidence
of positive selection was found in the BSL, PC03 and HPL
groups. For the HPEM group, the results indicated that
3.2% sites of S gene are subjected to strong positive selec-
tion with ω = 28.756. At p > 90% level, 14 specific sites

Table 1: KH tests verify the significance of breakpoints estimated by GARD analysis

p-value

Dataset Number of breakpoints AICc improvement Breakpoint location LHS RHS

Spike 9 588.485 776 1.000 0.220
933 0.059 0.427
1257 1.000 0.464
1485 1.000 1.000
2067 1.000 0.670
2301 0.002 0.002
2592 0.893 0.061
2916 0.085 0.988
3501 1.000 0.659

Replicase 2 30.414 1230 1.000 0.507
4398 1.000 0.040

3'-end ORFs 5 254.203 454 0.363 0.306
729 0.210 0.001
1091 0.010 0.078
1927 0.254 0.005
3321 1.000 0.353

KH test was used in both directions to compare phylogenies constructed from the alignment segment to the left hand side (LHS) and right hand 
side (RHS) of each estimated breakpoint. All p-values have been adjusted by Bonferroni correction.
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were identified as potentially under positive selection
(Table 2). For the PCHP04 group, 2.7% codon sites of the
S gene are driven by strong positive selection with ω =
57.205. Twenty two positively selected sites were identi-
fied in this group (p > 90%). Fourteen of them are in S1
and eight in S2 domain. For the selection of entire SARS-
CoVs from the two epidemics, the branch-site model A
analyses indicated that 17.4% sites are under positive
selection with ω = 1.989. A total of 74 sites were identified

as potentially under positive selection along these line-
ages at 90% cutoff. In order to intuitively represent the
distribution of these positively selected sites, we con-
structed the additional file 3, from which we can find that
most of these sites distribute in S1 domain.

HYPHY package analysis accessed through Datamonkey
facility also detected positive selection in HPEM and
PCHP04 groups (with dN-dS = 0.061 and 0.938 respec-

Table 2: Maximum likelihood (ML) estimates for 59 S genes of SARS-CoV

Models d.f. Parameters 
under
null 
model

Parameters 
under
alternative 
model

lnL0
(lnL1)

2Δl P-value Positively 
selected 
sites*

Branch Model
M0 vs. FR

114 M0 (one ratio)
ω = 0.081

Free Ratio
ω = 0~∞

-12834.110
(-12656.604)

355.006 < 0.001 Not allowed

Site Model
M0 vs. M3

4 M0 (one ratio)
ω = 0.081

M3 (discrete, K = 3)
p0 = 0.732, ω0 = 0.015
p1 = 0.255, ω1 = 0.285
p2 = 0.013, ω 2= 3.214

-12834.110
(-12616.008)

436.204 < 0.001 142,311, 430,
462, 479, 540
609, 626, 665

Branch-site model A
BSL group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.912, ω0 = 0.047
p1 = 0.088
(p2a+p2b = 0)

MA
p0 = 0.912, ω0 = 0.047
p1 = 0.088, ω2 = 1.000
(p2a+p2b = 0)

-12661.687
(-12661.687)

0 1.000 None

PC03 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.707, ω0 = 0.046
p1 = 0.069
(p2a+p2b = 0.224)

MA
p0 = 0.782, ω0 = 0.046
p1 = 0.076, ω 2= 1.592
(p2a+p2b = 0.142)

-12658.258
(-12658.246)

0.024 0.877 None

HPEM group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.587, ω0 = 0.044
p1 = 0.055
(p2a+p2b = 0.358)

MA
p0 = 0.885, ω0 = 0.045
p1 = 0.083, ω 2= 28.756
(p2a+p2b = 0.032)

-12646.115
(-12638.329)

15.572 < 0.001 49, 75, 344,
360, 501, 778
794, 860, 861
1001, 1148, 1163
1179, 124

HPL group
as foreground
MA' vs. MA

1 MA' (fix ω2 = 1)
p0= 0.400, ω0 = 0.045
p1= 0.038
(p2a+p2b = 0.562)

MA
p0 = 0.400, ω0 = 0.045
p1= 0.038, ω2 = 1.000
(p2a+p2b = 0.562)

-12650.732
(-12650.732)

0 1.000

PCHP04 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.718, ω0 = 0.045
p1= 0.057
(p2a+p2b = 0.225)

MA
p0= 0.901, ω0= 0.045
p1= 0.072, ω 2= 57.205
(p2a+p2b = 0.027)

-12626,601
(-12569.700)

113.802 < 0.001 78, 91, 108,
113, 147, 227,
243, 425, 440,
462, 479, 609,
613, 632, 743,
765, 839, 844,
856, 900, 1052
1080

SARS group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.753, ω0 = 0.024
p1= 0.035
(p2a+p2b = 0.212)

MA
p0= 0.792, ω0= 0.027
p1= 0.034, ω 2= 1.989
(p2a+p2b = 0.174)

-12498.107
(-12488.470)

19.274 < 0.001 2, 7, 9, 12, 14, 20,
27, 33, 37, 43, 58, 68,
70, 75, 84, 107, 108,
131, 134, 137, 139
147, 151, 154, 163, 165,
167, 169, 174, 199, 201,
214, 227, 230, 237, 239
242, 243, 244, 248, 249,
294, 333, 336, 344, 353,
391, 392, 426, 431,
440, 442, 457, 459, 462,
479, 480, 487, 488, 494, 607, 
613, 644, 729, 732, 743,
754, 758, 765, 778,
1052, 1080, 1148, 1163

* Positively selected sites are identified with posterior probability p > 90%. In boldface, p > 95%.
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tively), but not in BSL, PC03 and HPL groups. As indi-
cated in table 3, we also identified some positively
selected sites, most of which are identical to those identi-
fied by the branch-site model A.

Positive selection on replicase domains of SARS-CoV
PLpro, 3CLpro, RdRp and Hel are the major domains for coro-
navirus replication [43,44]. We merged these four domains
into one supergene for analysis because: 1) Yang et al. reported
that gene concatenating analysis produced same outcomes as
those obtained from analysis of separate genes [42]; 2) sepa-
rate analysis results in mechanical repeats; 3) concatenating
analysis can provide additional information because of addi-
tional number of sequences for the merged dataset, compared
to separate dataset. Therefore, dataset 2 consists of 35 concate-
nated sequences from 129 complete genomes.

As presented in table 4, the results of branch model analysis
reveal that the ω ratio varies from 0 to infinite along differ-
ent branches. This implies that selective pressures among
these domains vary in different hosts and at different epi-
demic phases, though these domains are the most con-
served regions in CoV. Analysis using the discrete model
(M3) detected no sign of positive selection in the dataset 2,
although it suggests that the ω ratios vary significantly
among different amino acid sites as indicated by LRT.

Utilizing the branch-site model A analysis indicated that
there is no positive selection in the BSL, PC03 and
PCHP04 groups. However, the model A analysis revealed
that among HP03 group about 8.1% codon sites of these
4 domains are potentially under strong positive selection
with ω = 11.093 and 28 sites were identified (7 in PLpro,
5 in 3CLpro, 7 in RdRp, 9 in HEL). Weak positive selection
(dN-dS = 0.001) was also detected from HP03 group by
using HYPHY package but not other groups (Table 3).

Positive selection on 3'-end ORFs of SARS-CoV
The 3'-end of SARS-CoV genome encodes 11 ORFs:
ORF3a, ORF3b, ORF4 (E), ORF5 (M), ORF6, ORF7a,
ORF7b, ORF8a, ORF8b, ORF9a (N), and ORF9b. The E,
M, N proteins are structural proteins of SARS-CoV and the
other proteins are accessory proteins. Because the coding
regions of ORF3b and ORF9b overlap partially or com-
pletely with those of ORF3a and N, we excluded the
ORF3b and the ORF9b from this analysis. The ORF8a and
ORF8b are present as two separate ORFs in most human
isolates but as a single ORF (ORF8ab) in isolates from ani-
mals and early phase human due to the presence of extra
29 nt in this region, thus resulting in the fusion of ORF8a
and ORF8b. Because of the difficulty in obtaining a relia-
ble alignment in this region, ORF8 (a, b or ab) was
excluded from our analysis as well. For similar reasons as

Table 3: REL analysis results for three datasets

Groupsa No. of sequencesd Mean dN-dS
e Positively selected site(s)

Spike
BAT 4 -0.957
PC03 3 -0.904
HPEM 14 0.061 49, 75, 77, 144, 239, 244, 311, 344, 778, 860, 861, 1001, 1148, 1163, 1179, 1247

HPL 11 -0.138
PCHP04 27 0.938
SARSb 40 0.361 75, 147, 227, 239, 243, 244, 311, 462, 479, 609, 613, 743, 765, 778, 1080, 1163

Replicase
BAT 4 -0.985
HP03 21 0.008 654
PCHP04 8 -0.774
SARS 31 -0.561

3'-end ORFs
BAT 4 -0.91
HPEM 5 -0.42
HPML 33 0.152
PCHP04 12 -0.571
SARSc 40 -0.301

a. At least 3 sequences are needed for REL analysis, so PC03 groups of dataset 2 and 3 were not analyzed.
b. The upper limit in number of sequences for REL test is 40, so 15 sequences were removed from original SARS group (removed sequences' 
number: 33, 40, 43, 50, 86, 108, 110, 111, 123, 135, 139, 144, 147, 152, 156)
c. 12 sequences were removed from original SARS group (removed sequences' number: 5, 19, 50, 56, 57, 81, 82, 88, 91, 103, 107, 111)
d. As a rule of thumb, at least 10 sequences are needed to detect selection at a signal site with reliability. So some of the results may be not reliable 
because of not enough sequences are available for some groups.
e. Because dS could be 0 for some sites, Datamonkey reports dN-dS in place of dN/dS
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mentioned above, we merged the 7 remaining ORFs into
a supergene for analysis.

As presented in table 5, the results of FR model analysis
revealed that selective pressures vary among lineages. The
results of M3 model also implied variation in selective
pressure among different amino acid sites. However, the
M3 model did not detect any sign of positive selection.
The results of branch-site model A revealed that, except for
the BSL, PC03 and HPEM groups, the other groups dis-
played positive selection signatures (Table 5). For the
HPML group, about 12.2% sites of these ORFs were
shown to be under positive selection with ω = 9.863.
Twenty five specific sites were identified: 6 in ORF3a (11,
29, 85 129, 136, 222); 4 in E (279, 280, 304, 319); 9 in M
(377, 388, 418, 423, 436, 449, 463, 469, 504); 1 in ORF6
(584); 1 in ORF7a (696); and 4 in N (850, 932, 954, 993).
When the PCHP04 group was defined as foreground, the
branch-site model A analysis estimated that 1.9% sites
were under positive selection with ω = 22.447 and four
sites were identified to be under positive selection (2 in
ORF3a, 1 in ORF6, 1 in N). For the whole SARS-CoV col-
lection, the branch-site model A analysis revealed 12.2%

sites of these ORFs to be under positive selection with ω =
3.138. A total of 17 sites were identified at p > 90% level.
Among them, 9 are located in ORF3a, 3 in M, 2 in ORF6
and 3 in N. In addition, a large number of sites were iden-
tified to be potentially under positive selection at p > 70%
level (see additional file 3B).

Discussion
Natural selection generally leads to a reduction in delete-
rious mutations while promoting advantageous muta-
tions. If a gene is highly divergent, there are two main
explanations: first, it may be due to high mutation rate or
relaxed selective constraint, in which case the gene may be
free to mutate mainly because it has no fitness or function;
or second, due to positive selection which is promoted by
natural selection and the gene usually has highly impor-
tant functions [45]. Virus entry, replication, assembly and
release are the main steps of viral life cycle. Proteins
involved in each of these steps may undergo adaptive evo-
lution after a virus invades a new host.

Recombination and mutation are two important evolu-
tionary mechanisms driving gene diversity and adapta-

Table 4: Maximum likelihood (ML) estimates for 35 merged replicase genes of SARS-CoV

Models d.f. Parameters under
null 
model

Parameters 
under 
alternative 
model

lnL0
(lnL1)

2Δl P-value Positively 
selected
sites*

Branch Model
M0 vs. FR

66 M0 (one ratio)
ω = 0.024

Free Ratio
ω = 0~∞

-14460.634
(-14354.549)

212.17 < 0.001 Not allowed

Site Model
M0 vs. M3

4 M0 (one ratio)
ω = 0.024

M3 (discrete, K = 3)
p0= 0, ω0= 0
p1= 0.972, ω1= 0.016
(p2= 0.028), ω2 = 0.360

-14460.634
(-14447.201)

26.866 < 0.001 None

Branch-site model A
BSL group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.993, ω0 = 0.020
p1 = 0.007
(p2a+p2b = 0)

MA
p0 = 0.993, ω0 = 0.020
p1 = 0.007, ω2 = 1.000
(p2a+p2b = 0)

-14449.205
(-14449. 205)

0 1.000 None

PC03 group
as foreground
MA' vs. MA

1 MA' (fix ω2 = 1)
p0 = 0.993, ω0 = 0.020
p1 = 0.007
(p2a+p2b = 0)

MA
p0 = 0.993, ω0 = 0.020
p1 = 0.007, ω2 = 1.000
(p2a+p2b = 0)

-14449. 205
(-14449. 205)

0 1.000 None

HP03 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.322, ω0 = 0.015
p1 = 0.002
(p2a+p2b = 0.676)

MA
p0= 0.913, ω0= 0.015
p1= 0.006, ω 2= 11.093
(p2a+p2b = 0.081)

-14389.596
(-14386.122)

6.948 0.008 23, 123, 222, 236, 237, 250, 
266, 375, 377, 409, 504, 563, 
646, 654, 884, 1234, 1259, 1482,
1491, 1786, 1866, 1869, 1878, 
1963, 1995, 2010, 2032, 2034

PCHP04 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.761, ω0= 0.018
p1= 0.006
(p2a+p2b = 0.234)

MA
p0= 0.760, ω0= 0.018
p1= 0.006, ω2 = 1.000
(p2a+p2b = 0.234)

-14435.921
(-14435.921)

0 1.000 None

SARS group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0 = 0.850, ω0 = 0.012
p1 = 0.005
(p2a+p2b = 0.145)

MA
p0 = 0.857, ω0 = 0.012
p1 = 0.005, ω2= 1.061
(p2a+p2b = 0.138)

-14405.997
(-14405.994)

0.006 0.938

* Positively selected sites are identified with posterior probability p > 90%. In boldface, p > 95%.
Page 10 of 15
(page number not for citation purposes)



BMC Evolutionary Biology 2009, 9:52 http://www.biomedcentral.com/1471-2148/9/52
tion. Since recombination can affect the detection of
positive selection, we first tested for recombination in our
datasets [46]. GARD detected no evidence of recombina-
tion within the replicase and 3'-end ORFs, while one puta-
tive breakpoint in spike protein was detected. Whether
there is any recombination among SARS-CoV is still
debatable [13,22,47-49]. Previous studies suggested puta-
tive recombination only when analysis of SARS-CoV
sequences were put together with other coronaviruses [47-
49]; however, when analyses were focused solely on SARS-
CoV sequences, recombination could not be detected
[13,22]. We also tested recombination in SARS group
alone for each dataset. No evidence of recombination was
detected by GARD. These results might imply that there
could be some ancient recombination events occurred
between bat SARS-like-CoV and the ancestor of SARS-
CoV, which drove the bat SARS-like-CoV adaption to civet
and human. Nevertheless, previous studies had revealed
that detection of positive selection by LRT method was
robust to low levels of recombination (with fewer than

three recombination events), and identification of sites
under positive selection by the empirical Bayes method
appeared to be less affected than the LRT by recombina-
tion [46]. Overall, the issue of recombination among RNA
viruses is highly controversial because the putative recom-
bination events described were detected only by utilizing
computationally-demanding phylogenetic analyses (split
decomposition and/or maximum likelihood methods).
Therefore, caution should be used when inferring conclu-
sions about putative recombination events that are based
only on such analyses. Because viable clonal recombinant
viruses have been rarely observed in nature, for natural
recombination leading to the transmission of a recom-
binant strain to be conclusively confirmed, the following
prerequisites should be met: (i) the recombinant crosso-
ver should be demonstrated in a single PCR amplicon fol-
lowing cloning to ensure it occurs in a single DNA
molecule; (ii) the recombination should be demonstrated
repeatedly in clonal populations of viable virus (e.g. a
plaque harvest or limited endpoint dilution; and (iii) the

Table 5: Maximum likelihood (ML) estimates for 56 merged 3'-end ORFs of SARS-CoV

Models d.f. Parameters 
under
null 
model

Parameters 
under 
alternative 
model

lnL0
(lnL1)

2Δl P-value Positively 
selected 
sites*

Branch Model
M0 vs. FR

108 M0 (one ratio)
ω = 0.170

Free Ratio
ω = 0~∞

-9142.692
(-9055.881)

173.623 < 0.001 Not allowed

Site Model
M0 vs. M3

4 M0 (one ratio)
ω = 0.170

M3 (discrete, K = 3)
p0= 0, ω0= 0
p1= 0.866, ω1= 0.058
(p2= 0.134),ω2= 0.986

-9142.692
(-9093.135)

99.114 < 0.001 None

Branch-site model A
BSL group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.868, ω0= 0.059
p1= 0.132
(p2a+p2b = 0)

MA
p0= 0.868, ω0= 0.059
p1= 0.132, ω2= 1.000
(p2a+p2b = 0)

-9093.137
(-9093.137)

0 1.000 None

PC03 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.868, ω0= 0.059
p1= 0.132
(p2a+p2b = 0)

MA
p0= 0.868, ω0= 0.059
p1= 0.132, ω2 = 1.000
(p2a+p2b = 0)

-9093.137
(-9093.137)

0 1.000 None

HPEM group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.855, ω0= 0.059
p1= 0.130
(p2a+p2b = 0.015)

MA
p0= 0.861, ω0= 0.059
p1= 0.131, ω 2= 4.300
(p2a+p2b = 0.008)

-9093.127
(-9093.088)

0.078 0.780

HPML group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.125, ω0= 0.047
p1= 0.017
(p2a+p2b = 0.858)

MA
p0= 0.772, ω0= 0.046
p1= 0.106, ω 2= 9.863
(p2a+p2b = 0.122)

-9069.427
(-9065.120)

8.614 0.003 11, 29, 85, 129, 136, 
222, 279, 280, 304, 319,
377, 388, 418, 423, 436,
449, 463, 469, 504, 584,
696, 850, 932, 954, 993

PCHP04 group
as foreground
MA' vs. MA

1 MA' (fix ω2= 1)
p0= 0.690, ω0= 0.055
p1= 0.097
(p2a+p2b = 0.213)

MA
p0= 0.862, ω0 = 0.057
p1= 0.119, ω 2= 22.447
(p2a+p2b = 0.019)

-9087.427
(-9076.176)

22.502 < 0.001 25, 259, 609, 1184

SARS group
as foreground
MA' vs. MA

1 MA' (fix ω2 = 1)
p0 = 0.664, ω0= 0.033
p1= 0.066
(p2a+p2b = 0.270)

MA
p0= 0.804, ω0= 0.037
p1= 0.074, ω 2= 3.138
(p2a+p2b = 0.122)

-9058.932
(-9051.231)

15.402 < 0.001 11, 15, 81,117, 120, 121, 
171, 193, 259, 355, 361, 560,
 609, 628, 830, 850, 1184

* Positively selected sites were identified with posterior probability p > 90%. In boldface, p > 95%.
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recombinant should maintain adequate sequence conser-
vation during post-recombination evolution [50].

The S protein is a structural protein of coronavirus. It has
a crucial role in the binding of virus to host receptor and
subsequent fusion between the viral and host mem-
branes, both processes being important for virus entry
into host cell. In the case of several mammalian and avian
coronaviruses, the S protein is cleaved into S1 and S2. The
former contains receptor attachment sites and the later is
involved in the fusion of CoV onto host cell. The S1 sub-
unit, which usually has high divergence, contains a recep-
tor binding domain (RBD); the S2 subunit, which is
comparatively more conserved, contains two heptad
repeat (HR) domains [51]. Several studies revealed that
the S gene of SARS experienced noticeable positive selec-
tion during the SARS epidemics, especially in the early
and middle phases [20-22]. However, our analyses indi-
cated that the S protein of SARS-CoV underwent a step-
wise adaptive process subsequent to its spillover into the
civet and human populations. In the BSL group, our anal-
yses suggest that the bat SARS-like-CoVs experienced puri-
fying selection, indicating that the S gene is relatively
stable in bats. In palm civet, SARS-CoV experienced strong
positive selection as indicated by the results of PCHP04
group. The failure to identify significant positive selection
in PC03 group was most likely due to the limited number
of sequences available for analyses (only four sequences
for PC03 group and two of them have identical S gene
sequences). During the early and middle phases of the
2002–2003 SARS epidemic in human population, a small
fraction of sites among the S protein were under strong
positive selection. In contrast, isolates from the late phase
showed no sign of positive selection, implying the S pro-
tein became stable again after two stages of adaptive evo-
lution. Our analysis using the HYPHY package accessed
through Datamonkey facility also revealed similar evolu-
tionary patterns for the S protein (Table 3). Taken
together, these results support the hypothesis that SARS-
CoVs originated in bats, that the spill over into civets and
humans were recent events and that the two SARS epi-
demics that took place one year apart, were results of inde-
pendent animal-to-human transmissions [7,20]. The
major sequence difference of the S genes between bat
SARS-like-CoVs and civet/human SARS-CoVs suggests
that there may be other more closely related SARS-CoVs in
bats or there may be other unknown intermediate animal
host(s) in the transmission of the virus(es) from bats to
civets [49].

Among the SARS-CoVs from human and palm civets,
numerous sites are identified to be potentially under pos-
itive selection (Table 2 and see additional file 3A). Those
sites inferred from different SARS epidemic phases reflect
the adaptation process of SARS-CoVs. Those sites identi-
fied from the PCHP04 group may be important for SARS-

CoV adaptation to palm civets. Those sites identified from
the HPEM group may be important for SARS-CoV adapta-
tion to human. Most of these sites, especially from the
entire SARS group, are located in the S1 domain that con-
tains the receptor binding domain. Zhang et al. [22] pre-
viously identified 12 positively selected sites in the SARS-
CoV group, all of which were confirmed in our current
study. The greater number of sites identified in our study
is likely due to the fact that the branch-site model is more
powerful than the site-specific model. Some of these sites
have been confirmed by experimental data to be crucial
for the adaption of SARS-CoVs to human. For example, it
has been found that adaptation of S protein to human
angiotensin converting enzyme 2 (ACE2) is facilitated by
alteration of residue 479 to asparagine and of 487 to thre-
onine [52,53]. Also, using site-directed mutagenesis, Zhu
and Chakraborti identified that residues 344, 392, 426,
431, 479, 480, 487, 488 and 494 are important for the
binding of RBD with ACE2 and SARS-CoV antibody
[54,55]. In RBD, there are eight newly identified sites
(333, 336, 353, 391, 440, 442, 457, 459, and 462) which
have not been proved to be critical for RBD and ACE2
interaction. Furthermore, there are ~60 sites to be under
positive selection beside RBD. Although evaluation of
every observed site under positive selection by reverse
genetics would not be realistic or feasible, generation and
evaluation of mutant viruses based on sites located within
or adjacent to functional domains could provide clues for
the genetic aetiology of SARS adaptation to new hosts and
emergence.

The first two thirds of coronavirus genome encode two
large polyproteins: P1a and P1ab, which are cleaved by
virus-encoded proteinases (PLpro and 3CLpro) into 16
non-structure proteins (nsp1–nsp16) playing important
role during coronavirus replication. Because the P1ab is
too big (~21 kb), we analyzed four most important
domains related to viral replication: PLpro, 3CLpro, RdRp
and Hel, which correspond to nsp3, nsp5, nsp12 and
nsp13, respectively [17,43,44]. Our results revealed that,
unlike the adaptive evolutionary pattern of S protein,
these replicase domains did not experience positive selec-
tion in bat and palm civet, but underwent strong positive
selection in human patient. Moreover the evidence of pos-
itive selection is stronger in the later phases than that
observed in the early and middle phases (data no shown).
Furthermore, our analysis using HYPHY package observed
very weak positive selection in the HP03 group but not
among the other groups (Table 3). These results to some
extent differ from the observations derived from several
previous studies. Using pairwise analysis of the dN/dS,
Song et al. found that the average ω ratio of S protein for
the early phase was larger than that for the middle phase,
which in turn was larger than the ratio for the late phase.
A similar pattern was found in ORF1a and ORF3a but not
in ORF1b and nsp3, which were suggested under purify-
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ing selection during the whole course of the epidemic.
They identified over 200 single-nucleotide variations
(SNVs) and inferred the importance of some SNVs on
SARS-CoV adaptive evolution [21]. Zhang et al. also inves-
tigated the adaptive evolution of the S protein employing
the site specific model, but they did not observe any pos-
itive selection in RdRp, Hel or nsp3 [21,22]. The best
explanation for this apparent discrepancy is that the meth-
ods used in their studies were more conservative than the
branch-site model used in our study, and hence were not
able to detect positively selected changes among the
highly conserved genes. Alternatively, it may be due to the
use of concatenating analysis in our study, which can pro-
vide additional information due to the compiling of more
dissimilar sequences for datasets. For the replicase genes
of bat and civet isolates, there was no sign of positive
selection. This is probably due to the following reasons: 1)
the civet isolates were collected within a very short time
period and thus there was not enough time for adaptive
evolution; 2) civet cells are very suitable for SARS-CoV
replication which may imply that the civet is a perfect
intermediate host for SARS-CoV; and 3) the bat isolates
might have completely adapted to their hosts and hence
were under no further selective pressure for evolution.

As to the 3'-end ORFs, the most diversifying selection hap-
pened in the middle and late phases of the SARS epidemic
in 2003–2004. No positive selection was found in the
BSL, PC03 and HPEM groups. When the isolates from two
epidemics of 2003 and 2004 were investigated together,
12.2% sites in these 7 ORFs were shown to be under pos-
itive selection (Table 5). In addition to a few sites identi-
fied at p > 90% level, many sites are inferred to be under
positive selection at 70–80% posterior probability (see
additional file 3B). Most of these sites are located in
ORF3a, E, M and ORF6, implying these four genes may
play a more important role for SARS-CoV adaptation in a
new host. Our results based on the REL method showed
weak positive selection in HPML group, but not in other
groups (Table 3). The failure to identify specific sites
under positive selection could be due to weak and thus
undetected positive selection. These results suggested that
the 3'end-ORFs underwent positive selection after SARS-
CoV spilled out into civet and human populations, and
adaptive evolution mainly happened in the middle and
later phases in 2003. Song et al. previously suggested that
the 3a protein evolved adaptively as S protein [21]. By
estimating mutation rates, Zhao et al. suggested that the
non-synonymous substitution rates were comparatively
high in E, M and N [56]. ORF3a encodes a protein of 274
amino acids. A recent study indicated that the 3a protein
forms a potassium sensitive channel that may promote
virus release and may be important for modulating
expression of S on the cell surface [16,57]. 3a protein also
interacts with the structural proteins S, E, M [57,58].

Therefore, amino acid changes in 3a protein might be nec-
essary to maintain the interaction between 3a and other
proteins. E and M protein play a pivotal role in viral mor-
phogenesis, assembly and budding. Co-expression of E
and M was shown to produce virus-like particles, roughly
the same size and shape as virions [59]. N protein is
important for viral packaging which is the first step in the
assembly of infectious SARS viruses [60]. Thus the amino
acid changes in these three structural proteins may be crit-
ical for virus assembly in the new host. SARS-CoV ORF 6
protein can enhance the virulence of attenuated murine
coronavirus (MHV) [61], as well as stimulate cellular
DNA synthesis [62]. A recent study showed that ORF 6
protein inhibited both interferon synthesis and signaling
[63]. These findings suggested that ORF 6 may have a role
in enhancing virus replication or assembly. ORF 7a pro-
tein inhibits cellular protein synthesis and blocks cell
cycle progression at G0/G1 phase, suggesting that 7a may
play important roles in the life cycle of SARS-CoV and the
pathogenesis induced by SARS-CoV [64,65]. The function
of other accessory proteins remains to be determined.
Overall, these findings suggest that the 3'-end ORFs play
important roles for SARS-CoV replication, assembly and
release. Collectively, amino acid changes in these proteins
could play a role in modulating the host switch of SARS-
CoV.

Conclusion
We systematically analyzed the individual SARS-CoV pro-
teins important for virus entry, replication and assembly.
The results suggested that SARS-CoVs experienced a step-
wise adaptation to humans. In palm civets and humans
during the early and middle epidemic phases, virus entry-
mediating protein S experienced strong positive selection.
In contrast, the replicase proteins experienced positive
selection only in human patients but not in palm civets,
implying that the palm civet is a suitable intermediate
host for SARS-CoV replication. The proteins involved in
virus assembly and release mainly underwent positive
selection during the middle and later epidemic phases.
These results highlight the spectacular dynamics of SARS-
CoV evolution in a narrow time window, period of epi-
demic, support the zoonotic origin of SARS and suggest
that some amino acid sites may be critical for viral adap-
tation in different hosts. Collectively, these results suggest
that the development of SARS-CoV reverse genetics system
will facilitate further molecular and/or epidemiological
investigations to elucidate role of adaptive virus evolution
in future emergence events.
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