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Abstract 

Background:  Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through 
the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, 
such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate seg-
ment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called 
Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in 
regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other 
panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated 
Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly 
compact and miniaturized tardigrade body plan.

Results:  We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzot-
tius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs 
in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, 
Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. 
However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt 
ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily minia-
turized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns 
of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through seg-
mentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 
paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region 
between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and 
development of legs in H. exemplaris, rather than in broadly overlapping patterns.

Conclusions:  Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most compo-
nents of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, 
and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specify-
ing posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct 
expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial inter-
actions among Wnt genes are less important during tardigrade development compared to many other animals. Based 
on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may 
be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomi-
cal simplification in this lineage.
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Background
Wnt genes are a group of paralogous ligand-coding genes 
that play instrumental roles in regulating animal devel-
opment through both canonical and non-canonical Wnt 
signaling pathways [1–6]. One important role of Wnt 
genes is regulating the development of primary body axes 
[7–14]. In Bilateria, the anteroposterior (AP) body axis 
is the primary body axis. In many bilaterians, polarized 
expression of Wnt genes establishes the AP axis by pro-
moting posterior identity and suppressing anterior iden-
tity [9, 15–19]. After establishing the AP axis in many 
bilaterians, canonical Wnt (cWnt) signaling then regu-
lates posterior growth [20–29]. Establishing the AP axis 
and regulating posterior growth are most likely ancestral 
functions of Wnt genes in Bilateria [9, 20]. Therefore, 
Wnt genes may have played a key role in the origin of the 
AP axis of bilaterians [30].

Wnt genes also regulate development of body plan 
characteristics at more narrow taxonomic scales within 
Bilateria. For example, studies of the Wnt1 ortholog wing-
less (wg) have played a key part in deciphering the devel-
opment of the segmented body plans of the hyperdiverse 
Arthropoda. In Drosophila melanogaster, wg partici-
pates in the segment polarity network with engrailed (en) 
hedgehog (hh), and other genes [31–34]. This network is 
required for segment formation and intrasegmental pat-
terning in arthropods. Later, wg initiates growth of the 
proximodistal (PD) axis in legs and other appendage 
types and then specifies ventral fate in these append-
ages [35–42]. These functions of wg are highly conserved 
across Arthropoda, although wg most likely does not 
function as a segment polarity gene in spiders [35, 43–
58]. In arthropods, other Wnt genes are expressed in pat-
terns that resemble wg expression, indicating that several 
Wnt genes may be acting redundantly or combinatorially 
to regulate development in this lineage [3, 58–63]. Wnt 
genes have also been studied in two species of Onych-
ophora [28, 64–66], the likely sister group of Arthropoda 
[67–69]. The segment polarity network is most likely 
conserved in onychophorans, in which it may regulate 
intrasegmental patterning, but is unlikely to play a role in 
segment formation [64–66, 70]. Additionally, Wnt genes 
appear to play roles in the segmentation process and dur-
ing appendage development in onychophorans that are 
not characteristic of arthropods [28].

Several lines of evidence suggest that Tardigrada rep-
resents the outgroup of an arthropod + onychophoran 
lineage in a monophyletic Panarthropoda [67, 68, 71], 
although other relationships have been recovered in 
some analyses [69, 72], making studies of tardigrades 
critical for resolving where in panarthropod phylogeny 
important roles of Wnt genes evolved. Additionally, the 
unique body plan and developmental mode of Tardigrada 

raises intriguing questions about the roles of Wnt genes 
in this lineage. Tardigrades have a highly compact body 
plan composed of a single-segment head and four leg 
bearing trunk segments. This compact body plan evolved 
in conjunction with miniaturization [73, 74]. Embryonic 
expression analyses of Hox genes and other AP axis pat-
terning genes in the tardigrade Hypsibius exemplaris 
revealed that tardigrades have lost a mid-trunk region 
[75, 76]. The mid-trunk region that is missing in tardi-
grades develops by posterior growth in other panarthro-
pods [75, 77]. Tardigrades have lost posterior growth; 
all segments develop nearly simultaneously in these ani-
mals [78–81]. Additionally, the proximodistal (PD) axis 
of H. exemplaris legs is missing an intermediate domain 
defined by dachshund expression that is found in onych-
ophorans, arthropods, and other animals [82]. The fact 
that Wnt genes regulate the development of both the AP 
axis and PD axis in other animals suggests that the evolu-
tion of the compact tardigrade body plan may be associ-
ated with modifications to the functions of Wnt genes in 
Tardigrada.

Here, we present the first study of Wnt genes in Tar-
digrada. We discovered that several Wnt genes and 
arrow, an ortholog of Lrp5 and Lrp6 in vertebrates, which 
codes for a co-receptor of Wnt ligands, have been lost in 
the tardigrade lineage. Based on comparisons to other 
metazoan genomes, it appears that the loss of several 
Wnt genes and arrow/Lrp5/6 are common features of 
genome evolution in secondarily miniaturized animals, 
like tardigrades. Expression patterns of Wnt genes in H. 
exemplaris embryos suggest that these genes play roles 
during establishment of the AP axis, segmentation, endo-
mesodermal development, foregut development, and leg 
development. Interestingly, Wnt genes exhibit distinct 
expression patterns during segmentation and leg devel-
opment, rather than similar expression patterns like in 
many other animals. This fact, along with the extensive 
loss of Wnt genes in Tardigrada, may indicate that tardi-
grade Wnt genes exhibit reduced combinatorial interac-
tions compared to some other animals. We suggest that 
the extensive loss of Wnt genes in Tardigrada is associ-
ated with miniaturization and the associated reduction of 
cell number and simplified developmental mechanisms 
that accompany this process.

Results
Phylogenetic and genomic analyses of tardigrade Wnt 
genes
We identified eight candidate Wnt genes in the H. exem-
plaris genome and seven Wnt genes in the genome of R. 
varieornatus by BLAST search. We confirmed that all 
candidate Wnt genes encode a Wnt superfamily domain 
by CD-search analysis [83]. Our phylogenetic analyses 
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revealed that both H. exemplaris and R. varieornatus 
possess orthologs of Wnt4, Wnt5, Wnt9, Wnt11, Wnt16, 
and WntA (Fig.  1; Table  1; Additional file  1: Fig. S1). 
These species each had two paralogs of Wnt16, which we 
refer to as Wnt16A and Wnt16B. Additionally, H. exem-
plaris possesses an ortholog of Wnt2. We did not detect 
orthologs of Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10—Wnt 
genes that would be predicted to be present in tardigrade 
genomes [2, 3, 5, 6, 84]. Next, we investigated the arrange-
ment of Wnt genes in the genomes of H. exemplaris and 
R. varieornatus [71, 85]. In H. exemplaris, all Wnt genes 
were found on unique scaffolds (Table 1). Scaffolds with 
Wnt genes ranged in length from 95,696 to 1,074,739 nt 
in this species. In R. varieornatus, scaffolds with Wnt 
genes ranged in length from 1,744,794–9,333,084 nt. 

Only Wnt9 and WntA were found on the same scaffold, 
but these genes were 829,930 nt apart on this scaffold.

Identification of conserved components of canonical Wnt 
signaling in Tardigrada
We were surprised that tardigrades were missing so 
many Wnt orthologs. This led us to wonder whether 
these losses were associated with modifications to the 
cWnt signaling pathway, a highly conserved pathway 
that utilizes Wnt ligands [1, 4, 11, 16]. First, we identi-
fied orthologs of wntless, which codes for a transmem-
brane transport protein that is necessary for secretion 
of Wnt ligands, in both species of tardigrades (Table 1). 
Next, we investigated the complement of Frizzled (Fz) 
genes, which code for receptors of Wnt ligands [86, 87]. 

Fig. 1  Majority rule consensus tree of Wnt ligands. For the sake of space, taxon abbreviations are used, and branch lengths are not diagrammed. 
See Additional file 1: Fig. S1 for a version of this tree that includes branch length information. For simplicity, only branch support values relevant to 
determining the identity of the candidate tardigrade Wnt ligands are shown. Tardigrade sequences are in colored boxes. Bootstrap supports are 
shown as percentages out of 500 replicates. Species abbreviations: Ap, Acyrthosiphon pisum; Cs, Cupiennius salei; Dp, Daphnia pulex; Dm, Drosophila 
melanogaster; Ek, Euperipatoides kanangrensis; Gm, Glomeris marginata; He, Hypsibius exemplaris; Hs, Homo sapiens; Is, Ixodes scapularis; Pd, Platynereis 
dumerilii; Pt, Parasteatoda tepidariorum; Rv, Ramazzottius varieornatus; Tc, Tribolium castaneum 
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We identified four candidate Fz genes in the genomes of 
both H. exemplaris and R. varieornatus. By CD-search 
[83], we confirmed that all candidate Fz genes encoded 
both a cysteine rich domain and a seven-transmem-
brane G protein-coupled receptor domain, domains 
that are indicative of Fz proteins. A phylogenetic anal-
ysis revealed that these candidates are orthologous to 
the four Fz genes that are found in other panarthro-
pods (Fig.  2; Table  1). We also identified orthologs of 
genes that encode all major internal components of 
the cWnt signaling pathway [11], including disheveled, 
the β-catenin gene armadillo (arm), three β-catenin 
destruction complex genes—axin, shaggy, and Adeno-
matous polyposis coli tumor suppressor—and pangolin, 
which codes for a transcription factor that regulates the 
expression of targets of cWnt signaling (Table 1). How-
ever, we were unable to identify an ortholog of arrow, 
called Lrp5/6 in many animals (Additional file  2: S1). 
This gene encodes a co-receptor of Wnt ligands, which 
forms a receptor complex with Fz receptors [88–90]. 
From N-terminus to C-terminus, arrow orthologs typi-
cally encode three clusters of low-density lipoprotein 
receptor repeat class B domains separated by calcium-
binding EGF-like domains, followed by three low-den-
sity lipoprotein receptor class A domains (Fig.  3a, b). 

This structure was not encoded by the best tardigrade 
arrow hits (Fig. 3c).

Analysis of Lrp sequences in other bilaterians that exhibit 
extensive loss of Wnt orthologs
To better understand the relationship between miss-
ing Wnt ligand coding genes and the absence of a clear 
arrow ortholog in tardigrades, we searched for arrow in 
the genomes of five additional non-parasitic bilaterian 
animals that, like tardigrades, are highly miniaturized 
or evolved from miniaturized ancestors [73, 74, 91, 92], 
and are missing several Wnt ligand-coding genes [5, 93]. 
We focused on free-living miniaturized animals because 
they may have evolved under similar selective regimes 
and evolutionary constraints as tardigrades. These ani-
mals included the roundworm Caenorhabditis elegans, 
the rotifer Adineta vaga [94], the flatworm Schmidtea 
mediterranea [95], the acoel Hofstenia miamia [96], and 
the meiobenthic annelid Dimorphilus gyrociliatus [97]. 
D. gyrociliatus possessed a clear ortholog of D. mela-
nogaster arrow (Fig. 3c; Additional file 2: S1). S. mediter-
ranea encoded a gene that was a reciprocal best BLAST 
hit to D. melanogaster Arrow (Additional file 2: S1). This 
gene had been identified as an ortholog of arrow/Lrp5/6 
in a previous study [98]. The best BLAST hits from the 

Table 1  Canonical Wnt signaling components in tardigrades. GenBank accession numbers and scaffold numbers are from previously 
published genome studies [71, 85]. An ortholog of Arrow was not found

Function Ortholog Protein accession numbers Scaffold numbers

H. exemplaris R. varieornatus H. exemplaris R. varieornatus

Ligand Wnt2 OWA52741.1 – scaffold0284 –

Wnt4 OQV20568.1 GAV00263.1 scaffold0029 BDGG01000006

Wnt5 OQV25062.1 GAU92975.1 scaffold0004 BDGG01000002

Wnt9 OQV11710.1 GAU97803.1 scaffold0163 BDGG01000004

Wnt11 OQV21261.1 GAU87525.1 scaffold0024 BDGG01000001

Wnt16A OQV19782.1 GAU94914.1 scaffold0035 BDGG01000003

Wnt16B OQV22138.1 GAV05665.1 scaffold0019 BDGG01000012

WntA OQV17790.1 GAU98124.1 scaffold0056 BDGG01000004

Transmembrane transport Wntless OQV19301.1 GAV08953.1 scaffold0041 BDGG01000019

Receptor Fz1 OQV23182.1 GAU93634.1 scaffold0013 BDGG01000002

Fz2 OQV23168.1 GAU93659.1 scaffold0013 BDGG01000002

Fz3 OQV21307.1 GAU87444.1 scaffold0024 BDGG01000001

Fz4 OQV18791.1 GAV00601.1 scaffold0046 BDGG01000006

Arrow – – – –

Signal transduction Dishevelled OQV23134.1 GAV07421.1 scaffold0013 BDGG01000015

Armadillo OWA50075.1 GAV07811.1 scaffold0181 BDGG01000016

Transcription factor Pangolin OQV17172.1 GAV07782.1 scaffold0065 BDGG01000016

cWnt inhibition Shaggy OQV18828.1 GAU89015.1 scaffold0045 BDGG01000001

APC OQV22882.1 GAV03262.1 scaffold0015 BDGG01000009

Axin OQV22259.1 GAV03998.1 scaffold0018 BDGG01000010
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remaining species did not encode the pattern of pro-
tein domains that is typical of Arrow (Fig. 3c). A previ-
ous study indicated that C. elegans has lost an ortholog 
of arrow/Lrp5/6, in agreement with our results [99]. 
Next we performed a phylogenetic analysis of Arrow and 
related sequences. The D. gyrociliatus candidate Arrow/
LRP5/6 ortholog was nested within the clade of Arrow/
LRP5/6 sequences. Of the remaining miniaturized ani-
mals that we investigated, only H. miamia encoded a 
sequence that was nested within the clade of Arrow 
sequences, although this sequence was on a long branch 
(Fig.  4). Bootstrap support and posterior probability 

support was low for the Arrow/LRP5/6 clade, likely due 
to the inclusion of sequences from miniaturized animals, 
which were generally recovered on long branches. The 
best matches to D. melanogaster Arrow in tardigrade 
genomes, as determined by BLAST search (Additional 
file  2: S1), were recovered in a well-supported clade of 
LRP1 sequences (Fig. 4).

Expression patterns of Wnt genes during tardigrade 
development
We analyzed expression of Wnt genes at four differ-
ent developmental stages in H. exemplaris—stage 11, 

Fig. 2  Majority rule consensus tree of Frizzled receptors. Tardigrade sequences are in colored boxes. Bootstrap supports are shown as percentages 
out of 500 replicates. For simplicity, only branch support values relevant to determining the identity of the candidate tardigrade Frizzled receptors 
are shown. Species abbreviations: Ct, Capitella teleta; Cg, Crassostrea gigas; Dp, Daphnia pulex; Ek, Euperipatoides kanangrensis; Gm, Glomeris 
marginata; He, Hypsibius exemplaris; Is, Ixodes scapularis; Mm, Mus musculus; Pt, Parasteatoda tepidariorum; Rv, Ramazzottius varieornatus; Tc, Tribolium 
castaneum; Xl, Xenopus laevis; Zn, Zootermopsis nevadensis 
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the elongation stage (Fig.  5a, b), stage 12 and 13, when 
segmental features first appear (Fig. 5c–f), and stage 14, 
the leg bud stage (Fig. 5g, h) [100]. He-Wnt9 was broadly 
expressed across embryos at all embryonic stages that 
we investigated, but may exhibit strongest expression 
in the endomesodermal layer (Additional file  3: Fig. 
S2e–h). We did not detect clear He-Wnt16A expression 
at any stage that we investigated (Additional file  3: Fig. 
S2m–p). The AP axis forms by a process referred to as 
elongation during stage 11 in H. exemplaris—a process 
during which the entire AP axis forms simultaneously, 
rather than forming in anteroposterior order as would 
be indicative of posterior growth (Fig.  5a, b) [100]. We 
analyzed He-six3 expression, a marker of anterior iden-
tity [76, 101], with in situ hybridization at stage 11 to dis-
tinguish  between the anterior and posterior embryonic 
poles (Fig.  6a, b). In stage 11 embryos, an internalized 
cell layer extended to the external ectodermal cell layer 
at one embryonic pole (Fig. 5a, b). Six3 was expressed at 
the opposite pole (Fig. 6a’, b’), indicating that the internal-
ized cells connect to the ectoderm at the posterior side 
of stage 11 embryos. At stage 11, He-Wnt2, He-Wnt4, 
and He-Wnt16B were expressed in the ectodermal layer 
near the posterior embryonic pole (Fig. 6c, c’, d, d’, i, i’). 
He-Wnt11 appeared broadly expressed at this stage, but 

the strongest signal was located near the presumptive 
posterior end of the embryo (Fig.  6h–h’’’; Additional 
file 3: Fig. S2i). The expression domains of He-Wnt5 and 
He-WntA were localized to the ectodermal layer, between 
the anterior and posterior poles of embryos (Fig.  6e–g’, 
j, j’). He-Wnt5 expression extended across the presump-
tive dorsoventral axis, whereas He-WntA expression 
was restricted to the presumptive ventrolateral region of 
embryos. The He-Wnt5 expression domain shifted to a 
slightly more anterior location in late stage 11 embryos 
(Fig. 6g, g’), which may be associated with movement of 
cells during the elongation process.

After elongation, the AP axis is curved in a character-
istic “C” shape. At stage 12, the developing foregut in 
the head and trunk endomesoderm is visible (Fig. 5c, d) 
[100]. We did not detect strong signal for He-Wnt2 at this 
stage or later stages (Additional file  3: Fig. S2a–c). He-
Wnt4 was expressed in the endomesodermal layer of the 
developing trunk (Fig. 7b, b’). He-Wnt5 was expressed in 
the ventrolateral ectoderm of the posterior head (Fig. 7c, 
d). He-Wnt11 signal was detected broadly across embryos 
at stage 12, but the strongest expression was localized to 
the posteriormost region of developing embryos (Fig. 7e, 
e’; Additional file 3: Fig. S2j). He-Wnt16B was expressed 
broadly across the posterior half of the developing trunk, 

Fig. 3  Conserved domains in LRP sequences. Blue boxes represent low-density lipoprotein receptor repeat class B domains. Gold boxes represent 
calcium-binding EGF-like domains. Green boxes represent low-density lipoprotein receptor class A domains. a Pattern of conserved domains in 
Arrow/LRP5/6 orthologs. b General pattern of conserved domains in Arrow/LRP5/6 orthologs. c Pattern of conserved domains in the best matches 
to Arrow/LRP5/6 in species that have lost several Wnt ligands. The lower case letter after the H. miamia sequence does not indicate specific 
orthology. The specific orthology of this sequence is unclear based on our analyses. The S. mediterranea sequence represents a highly derived 
Arrow/LRP5/6 ortholog based on functional analyses [98]
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excluding the posteriormost region (Fig. 7f, f ’). He-WntA 
was expressed in the ectodermal layer in the anterior-
most region of the developing trunk and posteriormost 
part of the head (Fig. 7g–h).

At stage 13, segmentation is clearly visible in the form 
of ectodermal furrows and endomesodermal pouches 
(Fig. 5e, f ) [100]. He-Wnt4 was expressed strongest in the 
endomesodermal layer of the developing trunk (Fig.  8a, 

Fig. 4  Majority rule consensus tree of LRP sequences. Tardigrade sequences are in colored boxes. Bootstrap supports are shown as percentages 
out of 500 bootstrap replicates. For simplicity, only branch support values relevant to determining the identity of the candidate tardigrade LRP 
sequences are shown. Lower case letters after taxon names indicate unclear orthology. The orthology of the S. mediterranea LRP5/6 sequence is 
based on functional analyses [98]. Species abbreviations: Ad, Adineta vaga; Ce, Caenorhabditis elegans; Dg, Dimorphilus gyrociliatus; Dm, Drosophila 
melanogaster; Ek, Euperipatoides kanangrensis; He, Hypsibius exemplaris; Hm, Hofstenia miamia; Mm, Mus musculus; Ob, Octopus bimaculoides; Rv, 
Ramazzottius varieornatus; Sm, Schmidtea mediterranea; Tc, Tribolium castaneum 

Fig. 5  Elongation, segmentation, and leg development stages in H. exemplaris. Panels to the left show DAPI stained embryos. Models are provided 
to the right of each data panel. The key for the color-coding in models is provided at the bottom of the figure. a Early elongation (stage 11). b Late 
elongation (stage 11). a, b Arrowhead points to internalized cells that connect to the external ectoderm. c, d Stage 12. e, f Stage 13. e–e’’ Views 
from more lateral to more medial. e, f Dashed lines in the model denote the position of ectodermal furrows. g, h Stage 14. Anterior is towards the 
top in all panels. All panels show a lateral view of embryos facing right except for d, f, and h, which show bilateral views. All panels show internal 
anatomy, except for e and g, which show external features. ant anterior; ep1–ep4 endomesodermal pouch 1–endomesodermal pouch 4; fg foregut; 
l1–l4 leg 1–leg 4; pos posterior, t1–t4 trunk segment 1–trunk segment 4

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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b). At stage 13, He-Wnt5  expression  looked very simi-
lar to  its expression at stage 12. At this stage, He-Wnt5 
was primarily expressed in a ventrolateral region of the 
ectodermal layer of the developing head (Fig. 8c, d). He-
Wnt11 was expressed broadly across developing embryos 
(Additional file 3: Fig. S2k). He-Wnt16B was expressed in 
the lateral ectoderm of the third and fourth trunk seg-
ment, excluding the posteriormost region of the fourth 
trunk segment (Fig. 8e, f ). He-WntA was expressed in a  
dorsolateral stripe in the boundary between the head and 
the first trunk segment (Fig. 8g, g’).

At stage 14, developing legs are clearly visible (Fig. 5g, 
h). Other features, such as pharynx and trunk ganglia 
are also visible [100]. At this stage, He-Wnt4 was very 
weak or absent (Additional file  3: Fig. S2d). He-Wnt5 
was expressed broadly across the inner surface of devel-
oping legs, between the developing hind legs, in the 
ventrolateral ectoderm of the head, and in the develop-
ing pharynx (Fig.  9a–b’’). He-Wnt11 exhibited strongest 
expression in the posteriormost region of the AP axis, 
between the developing hind legs, at this stage (Fig.  9c, 
d). We also detected staining for He-Wnt11 in other 
parts of the embryo (Additional file 3: Fig. S2l). At stage 
14, He-WntA was expressed in a dorsolateral ectodermal 
stripe between the head and first trunk segment, and 
in the developing pharynx (Fig.  9g, g’). He-Wnt16B was 
expressed in a stripe in each developing leg (Fig. 9e, f ’, f ’’). 
We also detected expression of this gene in the posteri-
ormost region between the developing hind legs (Fig. 9e, 
f ’’), and near the posterior part of the pharynx, which 
likely represents the esophagus (Fig. 9f ).

Discussion
Evolutionary dynamics of Wnt genes in Tardigrada
Orthologs of Wnt2, Wnt4, Wnt5, Wnt9, Wnt11, Wnt16, 
and WntA are conserved in Tardigrada (Fig. 1). By con-
trast, Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10 are missing 
in the genomes of two tardigrade species, H. exempla-
ris and R. varieornatus. These genes were most likely 
lost specifically within the tardigrade lineage (Fig.  10). 
However, these two tardigrade species are fairly closely 
related [78]. Therefore, whether these genes were lost 
in an ancestor of all tardigrades, or within crown group 
Tardigrada is unclear. Likewise, it is difficult to place the 
duplication event that gave rise to Wnt16 paralogs. It is 
clear that this duplication event occurred somewhere in 

the tardigrade lineage, because tardigrade Wnt16 genes 
formed a well-supported monophyletic group in our phy-
logenetic analyses (Fig. 1). It is also clear that these genes 
evolved by a duplication event that occurred in an ances-
tor of both H. exemplaris and R. varieornatus, rather 
than by independent duplication events (Fig. 10). The fact 
that the closest relative of He-Wnt16A is Rv-Wnt16A and 
the closest relative of He-Wnt16B is Rv-Wnt16B supports 
this conclusion (Fig. 1). As with the losses of Wnt genes, 
this duplication event could have occurred in any com-
mon ancestor of H. exemplaris and R. varieornatus in the 
tardigrade lineage. Genomic data from more distantly 
related tardigrade species would enable a more precise 
phylogenetic resolution of tardigrade specific losses and 
duplication of Wnt genes. By contrast, we can more pre-
cisely resolve the absence of Wnt2 in the genome of R. 
varieornatus as a loss in the lineage leading to this species 
after it split from the lineage leading to H. exemplaris, 
because Wnt2 is retained in H. exemplaris and outgroups 
of Tardigrada (Fig. 10).

Additionally, our results suggest that Wnt genes are 
dispersed throughout a chromosome or several chro-
mosomes in the tardigrade species that we investigated, 
rather than clustered like Wnt genes in some other ani-
mal genomes [2, 5, 59]. The dispersion of Wnt genes in 
the genome most likely represents a derived state and 
could be related to the extensive loss of Wnt genes. Dis-
persion of ancestrally clustered paralogs in tardigrade 
genomes has been previously suggested for Hox genes 
and NK homeobox genes [75, 102]. Therefore, disper-
sion of ancestrally clustered paralogs of developmental 
genes could represent a general pattern of genome evo-
lution in the tardigrade lineage. The evolution of rapid 
embryogenesis has been suggested to abrogate purifying 
selection that would otherwise maintain clustered Hox 
genes and Parahox genes [103], and may also explain the 
dispersion of Wnt genes and NK homeobox genes in tar-
digrade genomes. Additionally, dispersion of ancestrally 
clustered paralogous developmental genes has been sug-
gested to represent a general outcome of miniaturization 
[74].

In contrast to the extensive loss of Wnt orthologs, 
we identified nearly all other components of the cWnt 
signaling pathway in tardigrades (Table 1). This was not 
surprising given that cWnt signaling regulates many 
developmental processes in other animals. However, we 

(See figure on next page.)
Fig. 6  In situ hybridization results for Wnt genes in stage 11 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled 
with DAPI (blue). Images that share the same letter represent data from the same embryo. Arrowheads point to internal cells that connect to the 
ectoderm at the posterior end. Anterior is towards the top. a Six3 expression in early elongation stage embryos. b Six3 expression in late elongation 
stage embryos. c Wnt2 expression. d Wnt 4 expression. e, f Wnt5 expression in early elongation stage embryos. g Wnt5 expression in late elongation 
stage embryos. h Wnt11 expression. i Wnt16B expression. j WntA expression. f, g’, h’’’, j’ Bilateral view showing internal anatomy. h’’ Bilateral view of 
outer ectoderm. All other panels show lateral views of embryos that are facing right. a’–d’, h’, i’ show internal anatomy of laterally viewed embryos



Page 10 of 21Chavarria et al. BMC Ecology and Evolution          (2021) 21:223 

Fig. 6  (See legend on previous page.)
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were unable to identify an ortholog of arrow (Additional 
file 2: S1), referred to as Lrp5/6 in many animals, which 
codes for a co-receptor of Wnt ligands [88–90, 104]. The 
closest match to arrow in tardigrades is a gene that most 
likely codes for an Lrp1 ortholog (Figs.  3c, 4). Possibly, 
the Wnt ligands that were lost in Tardigrada represent 
the Wnt ligands that required Arrow as a co-receptor to 
activate cWnt signaling in the ancient ancestors of tardi-
grades. To test this hypothesis, more studies are required 
to determine exactly which Wnt ligands require Arrow 
for cWnt signaling broadly across Metazoa.

Potential correlates of Wnt gene loss in Tardigrada
Barring initial redundancy, which is a poor explanation 
for long-term retention of Wnt paralogs [3], the loss of 

Wnt genes in the tardigrade lineage is most likely asso-
ciated with modifications to development in Tardigrada. 
However, identifying exactly how development has been 
modified in tardigrades is extremely difficult, especially 
given the relatively scarce functional data for most Wnt 
genes. Additionally, we should not draw strong con-
clusions based on the loss of several Wnt genes in Tar-
digrada, given that gene loss is very common in this 
lineage [97, 105], and given that the loss of one or more 
Wnt gene(s) is fairly common across Metazoa [3]. None-
theless, a comparative approach may help explain the 
extensive loss of Wnt genes in Tardigrada. First, we note 
that, in addition to tardigrades, several other secondar-
ily miniaturized animals exhibit extensive loss of Wnt 
genes (Fig.  10, Caenorhabditis, Adineta, Schmidtea, 

Fig. 7  In situ hybridization results for Wnt genes in stage 12 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled 
with DAPI (blue). Images that share the same letter represent data from the same embryo. Anterior is towards the top. a Six3 expression. Dashed 
line outlines the posterior tip. b Wnt4 expression. c, d Wnt5 expression. e Wnt11 expression. f Wnt16B expression. g, h WntA expression. All panels 
show lateral views of embryos that are facing right except for d and h which are bilateral views showing internal anatomy. a’, b’, e’, f’ show internal 
anatomy of laterally viewed embryos. b’ Dashed lines outline developing endomesodermal pouches. d, h Dashed line demarcates the boundary 
between the head and the trunk
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Dimorphilus, Hofstenia) [3, 5, 97, 106, 107]. The exten-
sive loss of Wnt genes in some secondarily miniaturized 
animals may be due to the evolution of simpler cell fate 
specification mechanisms related to reduction in cell 
number and simplified morphology that often accompa-
nies miniaturization. Along these lines, our expression 
data suggest that combinatorial interactions among Wnt 
genes may play a much less important role during devel-
opment of tardigrades compared to typical macroscopic 
animals. In arthropods, onychophorans, and anne-
lids, several Wnt genes are coexpressed in the posterior 
growth zone and are expressed in similarly positioned 
segmentally reiterated stripes [3, 28, 108]. Although 
Wnt genes exhibit different expression patterns during 
appendage development between arthropods and onych-
ophorans (see below), within each lineage, several Wnt 
genes exhibit very similar expression patterns during 
appendage development [3, 28, 63]. Similar expression 
patterns of different Wnt genes in arthropods, onych-
ophorans, and annelids most likely reflect combinatorial 
interactions of these genes during development [3]. Nec-
essary combinatorial interactions of several Wnt paral-
ogs could partly explain their conservation across much 
of Metazoa. None of the Wnt genes in H. exemplaris 
exhibited highly similar expression patterns during seg-
mentation or leg development. Therefore, combinatorial 

interactions between Wnt orthologs must be less impor-
tant during development of tardigrades. In some second-
arily miniaturized animals, like tardigrades, one or more 
Wnt genes may become superfluous or redundant with a 
reduced requirement of combinatorial interactions, ulti-
mately leading to loss by neutral evolutionary processes.

A second non-mutually exclusive possibility is that the 
loss of one or more Wnt genes in Tardigrada is related to 
the loss of posterior growth, a process that is regulated 
by cWnt signaling in many macroscopic animals [20, 
21, 27, 109, 110]. As with tardigrades, posterior growth 
is reduced, absent, or highly modified in many second-
arily miniaturized animals ([79, 100, 111, 112], Martín-
Durán JM, pers. comm.), which have also lost several 
Wnt genes (Fig. 10, Caenorhabditis, Adineta, Schmidtea, 
Dimorphilus, Hofstenia). Additionally, long germband 
insects may retain fewer ancestral Wnt genes than their 
short germband relatives that continue to utilize poste-
rior growth (Fig. 10, compare the long germband insects 
Drosophila, Anopholes, and Apis to the shortband insect 
Tribolilum) [3]. Arrow/Lrp5/6 is also necessary for nor-
mal posterior growth in arthropods and vertebrates [54, 
113–115]. Therefore, the loss of arrow/Lrp5/6 in tar-
digrades and several other miniaturized animals may 
represent an additional genomic signature of the loss of 
posterior growth in these animals.

Fig. 8  In situ hybridization results for Wnt genes in stage 13 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled 
with DAPI (blue). Images that share the same letter represent data from the same embryo. Anterior is towards the top. a, b Wnt4 expression. c, d 
Wnt5 expression. e, f Wnt16B expression. g, g’ WntA expression. a, c, e, g Lateral view of embryos that are facing right. d, g’ Bilateral views showing 
external anatomy. f Bilateral view showing internal anatomy. Dashed line demarcates the boundary between the head and the trunk. a, b, c, e, g 
Dashed lines demarcate segment boundaries. t1–t4 trunk segment 1–trunk segment 4
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Although feasible, there are significant difficulties asso-
ciating the loss of Wnt genes and arrow/Lrp5/6 with the 
loss of posterior growth. First, the loss of arrow/Lrp5/6 
is not tightly associated with the loss of Wnts genes or 
posterior growth. For example, D. gyrociliatus retains 
an arrow/Lrp5/6 ortholog (Figs.  3c, 4; Additional file  2: 
S1), but is missing several Wnt genes (Fig. 10, Dimorphi-
lus) [97] and lacks posterior growth (Martín-Durán JM, 
pers. comm.). Likewise, although long germband insects 
have lost several Wnt genes and do not utilize posterior 
growth, they retain arrow [88]. Therefore, arrow clearly 
plays important developmental roles besides regulat-
ing posterior growth. Evidence for an additional role of 
arrow/Lrp5/6 comes from studies of the flatworm S. 
mediterranea. In this species, this gene is required to reg-
ulate posterior cell fate and proliferation during AP axis 
regeneration [98]. Second, given the sparse data available 

in regards to which Wnt gene regulates posterior growth, 
and the apparent interchangeability of Wnt gene function 
in this process based on data that are available [26, 58], 
it is not possible to associate with confidence the loss of 
any particular Wnt gene in tardigrades with the loss of 
posterior growth. Nonetheless, based on a comparative 
perspective, it remains possible that reduced combina-
torial interactions and the loss of posterior growth, both 
associated with miniaturization, contributed to the loss 
of several Wnt genes and arrow/Lrp5/6 in Tardigrada.

Wnt genes and regionalized AP cell fate specification
Several Wnt genes appeared to be expressed in regional-
ized patterns along the developing AP axis during embry-
ogenesis in H. exemplaris. Given the absence of segment 
markers during elongation, it is difficult to determine 
precisely where the Wnt genes are expressed during this 

Fig. 9  In situ hybridization results for Wnt genes in stage 14 H. exemplaris embryos. Green color represents gene expression. Nuclei are labeled with 
DAPI (blue). Images that share the same letter represent data from the same embryo. Arrows point to the developing pharynx. Asterisks mark the 
region between the posteriormost legs. Anterior is towards the top. a, b Wnt5 expression. a Ventral surface of legs is in view. b, b’ Dorsal surface of 
legs is toward the outside and the ventral surface is toward the inside of the embryo. c, d Wnt11 expression. d Bilateral view. The posterior end of 
embryo is outlined. e, f Wnt16B expression. g WntA expression. a–b’’, e, f’, f’’ Dashed lines outline legs. a, c, e, g Lateral view of embryos that are 
facing right. b–b’’, f–f’’, g’ Bilateral view showing internal anatomy. g, g’ Dashed lines demarcate the boundary between the head and the trunk. 
l1–l4 leg 1–leg 4
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stage relative to each other (Fig. 6). However, the relative 
order of expression along the AP axis of some Wnt genes 
appeared to be maintained between the elongation stage 
and later stages during which segmental features are 
developing (Figs. 7, 8, 9). In other bilaterians, Wnt genes 
play a critical role in establishing the AP axis by pro-
moting posterior identity, in part, by repressing anterior 
identity [9, 15–19]. We did not detect expression of any 
Wnt genes at the anterior pole of embryos at the elon-
gation stage, besides He-Wnt9 and He-Wnt11, genes that 
exhibited very broad expression patterns. Therefore it is 
possible that some Wnt genes are playing roles in pro-
moting posterior identity in H. exemplaris and other tar-
digrades. Interestingly, several Wnt genes are expressed 

in regionalized AP patterns in the onychophoran Euperi-
patoides kanangrensis during early stages of segmen-
tation [28]. Based on these regionalized patterns, it has 
been suggested that Wnt genes may specify segment 
identities in onychophorans [28]. Potentially, one or more 
Wnt genes are playing a role in specifying segment iden-
tities in tardigrades. Future functional studies may help 
resolve this issue.

Wnt genes and segment polarity
In many arthropods, wg, en, and hh, interact positively as 
part of a regulatory network to establish segment polarity 
[30–34, 43–45, 50, 52, 57]. A segmentally reiterated pat-
tern of gene expression emerges, which includes a stripe 

Fig. 10  Summary of distribution of Wnt orthologs in metazoan genomes. “X” in white boxes indicates the loss of a Wnt gene. “?” in white boxes 
indicates that a fully sequenced genome is unavailable for the associated lineage, so it is unclear whether the ortholog has been lost, or is present, 
but unsequenced. Gray boxes associated with Hofstenia indicate unclear orthology of the four Wnt genes found in the genomes of representatives 
of this lineage. Dashed lines coming off of Hofstenia represent different hypotheses of the relationship of this lineage with other bilaterians. The 
interrelationships of panarthropod phyla (Arthropoda, Onychophora, Tardigrada) are depicted as a polytomy because they are not currently 
resolved [69]. Arthropoda = Drosophila–Ixodes; Onychophora = Euperipatoides; Hypsibius–Ramazzottius = Tardigrada
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of wg expression positioned immediately in front of a 
stripe of en and hh expression. Parasegmental boundaries 
develop between the stripes of wg and the stripes of en 
and hh expression. Parasegmental boundaries are then 
replaced by segmental boundaries, which develop poste-
rior to the en and hh stripes. In spiders, a different Wnt 
gene most likely substitutes for wg to regulate segment 
polarity [58]. Segment polarity genes have been inves-
tigated in two onychophoran species, Euperapatoides 
kanangrensis [64, 65] and E. rowelli [66]. The expression 
patterns of the segment polarity genes in onychophorans 
are remarkably similar to those in arthropods. However, 
in contrast to arthropods, in onychophorans, Wnt genes 
and other segment polarity genes, besides en in E. kanan-
grensis, are first expressed in stripes after the earliest 
signs of segmentation appear [64, 66]. Therefore, unlike 
in arthropods, wg and other Wnt genes most likely do not 
play a role in segment formation in onychophorans [28, 
64, 66]. Nonetheless, a conserved segment polarity net-
work is most likely regulating intrasegmental patterning 
in onychophorans after segments develop [65, 66].

In H. exemplaris, the first signs of segmentation are 
the formation of endomesodermal pouches [100]. He-En 
expression is first detected in the ectoderm at a later stage 
in segmentally reiterated stripes immediately anterior to 
where ectodermal furrows develop between the underly-
ing endomesodermal pouches [116]. Our results suggest 
that wg has been lost in the tardigrade lineage. Therefore, 
if cWnt signaling regulates en expression to establish seg-
ment polarity in the tardigrades of our study, this inter-
action must be mediated though a different Wnt gene. 
No Wnt gene was expressed in stripes in the ectoderm 
at the earliest stages of the segmentation process in H. 
exemplaris (Figs. 7, 8). It is possible that cWnt signaling 
is not required for maintaining en expression during seg-
ment formation in Tardigrada. However, cWnt signaling 
could be maintaining en expression during segment for-
mation in Tardigrada via a slightly modified mechanism. 
He-Wnt4 was expressed broadly throughout the endo-
mesodermal layer of the trunk during segment formation 
(Figs. 7b’, 8a, b), rather than in the ectoderm as would be 
expected for a Wnt gene interacting with en. Nonethe-
less, the ligand that  He-Wnt4 encodes could be provid-
ing a signal to En expressing cells. No other Wnt gene 
was expressed in a segmentally reiterated pattern that 
would be indicative of a role in segment formation. The 
only Wnt gene that was expressed in a stripe-like pattern 
in H. exemplaris was He-Wnt16B, which was expressed 
later in developing legs (Fig. 9e, f ’, f ’’). Although this gene 
is unlikely to be playing a role in segment formation, its 
stripe-like expression pattern may indicate a later acting 
segment polarity function. However, by the time that legs 
are visible, He-En is no longer expressed in segmentally 

reiterated stripes [116]. Taken together, our results raise 
the interesting possibility that Wnt genes may not play a 
role in regulating segment polarity via regulatory inter-
actions with en in Tardigrada. The precise developmen-
tal roles of Wnt4, Wnt16B, and other Wnt genes need 
to be clarified before a strong conclusion can be drawn 
regarding a role of cWnt signaling in regulating segment 
polarity, or the lack thereof, in Tardigrada. Additionally, 
other commonly conserved components of the segment 
polarity network, such as hh, need to be investigated in 
tardigrades. Resolving these issues is critical for deter-
mining the antiquity of the roles that the segment polar-
ity network plays during development in Arthropoda and 
Onychophora.

Wnt genes and leg development
In arthropods, Wnt genes also play important roles in 
regulating appendage development. First, wg activates 
expression of Distal-less (Dll) to initiate appendage out-
growth [46, 51, 117, 118]. Dll most likely also regulates 
appendage growth in onychophorans [119, 120]. Wg and 
several other Wnt genes are expressed in a distal pattern 
in developing appendages in E. kanangrensis, suggesting 
that wg, and potentially other Wnt genes, may also be reg-
ulating growth via Dll in onychophorans [28, 120]. Dll is 
expressed broadly across the developing legs of H. exem-
plaris, and most likely plays a role in regulating leg out-
growth in Tardigrada [82]. The tardigrades we analyzed 
appear to have lost wg. Therefore, wg cannot be activat-
ing Dll expression in these species. It is possible that Wnt 
signaling is not required for activating Dll expression in 
Tardigrada. Alternatively, one or more other Wnt genes 
may play this role. Wnt4 is a potential candidate for 
regulating Dll expression in tardigrades. In H. exempla-
ris, this gene is expressed in the endomesodermal layer 
below where legs will develop in the overlying ectoderm 
(Fig.  8a, b). Two additional strong candidates are Wnt5 
and Wnt16B (discussed in more detail below), which are 
both expressed strongly in developing legs (Fig. 9a–b’, e, f ’, 
f ’’). Functional studies are required to determine whether 
these Wnt genes or others are required to activate Dll 
expression in Tardigrada.

Later in appendage development in arthropods, wg 
specifies ventral appendage fate [40, 42, 46, 51, 121–123]. 
As with wg, several other Wnt genes are expressed in 
the developing ventral leg domain in arthropods and 
likely play a redundant or combinatorial role in speci-
fying ventral appendage fate [3, 60, 62, 63]. Unlike in 
arthropods, no Wnt genes are expressed in the ventral 
appendage domain in onychophorans [28]. It has been 
suggested that ventral expression of Wnt genes in devel-
oping appendages evolved in the arthropod lineage [28]. 
The tardigrades that we studied lack a wg ortholog, so 
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this gene cannot be playing a role in establishing ventral 
appendage fate in these species. However, in H. exempla-
ris, He-Wnt5 is expressed on the inner side of developing 
legs (Fig. 9a–b’). Although not definitive, we interpret the 
inner side of the developing legs as ventral (Fig.  5h). In 
this interpretation, He-Wnt5 may specify ventral append-
age fate in H. exemplaris. Wnt5 is not expressed in a ven-
tral stripe in developing legs of arthropods [3, 58, 63]. 
This may indicate that a role of Wnt5 in specifying ven-
tral fates in developing H. exemplaris legs, even if pre-
sent, is not homologous to the function that Wnt genes 
play in specifying ventral fates in arthropod appendages.

We detected expression of He-Wnt16B in a stripe in 
each developing leg (Fig. 9e, f ’, f ’’). Although not defini-
tive, these stripes may lay in the posterior region of each 
developing leg (Fig.  5g, h). The insects that have been 
studied most extensively, D. melanogaster and T. cas-
taneum, lack a Wnt16 ortholog [3]. In chelicerates and 
the millipede Glomeris marginata, Wnt16 is expressed 
in the distal tip and a ventral stripe, or just in a ventral 
stripe, in developing legs [3, 58, 63]. The Wnt16 ortholog 
of the onychophoran E. kangrenesis is expressed at the 
distal tip and in a posterior stripe in developing legs 
and other appendages, besides the frontal appendage, in 
which it is only expressed in a posterior stripe [28]. It is 
possible that a posterior stripe of Wnt16 in developing 
appendages was inherited in tardigrades and onychoph-
orans from the last common ancestor of these lineages. 
Depending on the interrelationships of the panarthropod 
phyla (reviewed in [69]), this ancestor could represent the 
last common ancestor of Panarthropoda, in which case, 
the absence of a posterior stripe of Wnt16 in developing 
arthropod appendages would represent a derived state of 
Arthropoda.

Conclusions
Studies of tardigrades hold the potential to help resolve 
the evolution of developmental mechanisms in Panar-
thropoda. Our study revealed interesting possibilities 
regarding the evolution of the roles of Wnt signaling in 
regulating the development of key features of Panar-
thropoda—segmentation and appendages. Although 
in many respects the anatomy of tardigrades may best 
represent the anatomy of the last common ancestor of 
Panarthropoda [124, 125], we cannot assume that devel-
opmental mechanisms in Tardigrada represent ancestral 
panarthropod mechanisms. In fact, studies indicate that 
tardigrade development is highly derived with simplifi-
cation representing a common theme of developmental 
evolution in this lineage. For example, tardigrades have 
lost several Hox genes, and thus the Hox code must be 
simpler in modern tardigrades then it was in the last 
common ancestor of Panarthropoda [75]. Tardigrades 

are also missing a dachshund ortholog, indicating that leg 
patterning is simpler in modern tardigrades than it was in 
the last common ancestor of Panarthropoda [82]. In this 
study, we discovered that tardigrades have lost several 
Wnt genes. Other miniaturized animals are also missing 
several Wnt genes. In fact, Tardigrada, Nematoda, and 
Rotifera, which are all miniaturized animals [73, 74, 91, 
92], exhibit the highest level of gene loss among animals 
with sequenced genomes [105]. In terms of the body plan, 
miniaturization is associated with anatomical simplifica-
tion and reduction in cell number [73, 74, 91, 92]. Devel-
opment of the simple body plans of highly miniaturized 
animals would not be expected to require the complex 
mechanisms that control development of larger animals. 
As developmental mechanisms, such as posterior growth 
or cell fate specification mechanisms that require com-
plex combinatorial interactions, are lost in association 
with miniaturization, the genes that once regulated these 
processes may also be lost. Therefore, we propose that 
independent cases of extreme miniaturization in animals 
explain remarkable examples of convergence in terms of 
genome and developmental evolution.

Methods
Identifying candidate genes and phylogenetic analyses
Reciprocal BLAST searches were performed to identify 
candidate genes. We collected sequences from a genome 
assembly for R. varieornatus [85], and a genome assem-
bly [71], an embryonic transcriptome assembly [126], and 
an adult transcriptome assembly [127] for H. exemplaris. 
We also collected sequences from genome or transcrip-
tome assemblies for A. vaga [94], S. mediterranea [95], 
H. miamia [96], D. gyrociliatus [97], and E. kanangren-
sis [65]. All other sequences that we included in our phy-
logenetic analyses were publicly available in GenBank. 
We confirmed that candidate genes encoded predicted 
protein domains by CD search analysis [83]. For phylo-
genetic analyses, protein sequences were aligned with 
MUSCLE [128]. For Wnt analyses, we aligned sequences 
to a previously published matrix [3]. Information about 
sequences used in phylogenetic analyses is available in 
Additional file  4: S2. Alignments were trimmed using 
Gblocks [129, 130]. Alignments were visually inspected 
in Mesquite [131]. Alignments are available in Addi-
tional file  5: FASTA alignments. The LG model [132] 
was used for phylogenetic analyses, with an estimated 
proportion of invariable sites and an estimated gamma 
shape parameter with four substitution rate categories. 
Maximum likelihood analyses were performed with 
PhyML [133]; branch support was calculated by boot-
strap (500 replicates) and the aLRT SH-like method. We 
produced majority rule consensus trees in Mesquite with 
required tree topologies set to 0.5 from three maximum 
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likelihood trees [131]. Bayesian analyses were performed 
with MrBayes with Nchains = 4 [134]. Tracer was used 
to diagnose convergence [135]. Posterior probabilities 
were calculated from 4500 trees from the posterior tree 
distribution.

PCR and cloning
Primers were designed from H. exemplaris gene 
sequences (sequences available upon request). GoTaq 
Green Master Mix (Promega) was used to amplify frag-
ments of Wnt genes from H. exemplaris embryonic 
cDNA. Fragments were cloned into the pCR4-TOPO 
TA vector (Invitrogen). This strategy worked for all Wnt 
genes besides He-Wnt16A and He-WntA. He-Wnt16A 
was amplified from a single exon from genomic template. 
A He-WntA fragment was synthesized by Integrated 
DNA Technologies. Sanger sequencing was performed 
by Eton Bioscience to confirm the identity of cloned or 
synthesized sequences.

In situ hybridization and imaging
In situ hybridization was performed by following a 
published protocol [136]. This protocol has been used 
successfully for several previous studies of tardigrade 
development [75, 76, 82]. After completion of the in situ 
hybridization protocol, embryos were mounted on 
slides in DAPI-Flouromount-G (SouthernBiotech). DIC 
and fluorescence images were captured on an Olympus 
FV1000 Fluoview confocal microscope. We used the flu-
orescence properties of the chromogenic in situ hybridi-
zation stain to capture confocal data [137]. Fluorescence 
data were collected using a UPlanSApo 100×/1.40 oil 
objective, a 405  nm laser to capture DAPI data, and a 
635 nm laser using the Cy5 excitation and detection pre-
sets in the Olympus Fluoview software to capture in situ 
data. Brightness and contrast of confocal stacks were 
adjusted in ImageJ. Images were produced in the Volume 
Viewer plugin in ImageJ. Image levels were adjusted in 
Photoshop.
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