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Abstract

Background: Bacterial genomes possess varying GC content (total guanines (Gs) and cytosines (Cs) per total of the
four bases within the genome) but within a given genome, GC content can vary locally along the chromosome,
with some regions significantly more or less GC rich than on average. We have examined how the GC content
varies within microbial genomes to assess whether this property can be associated with certain biological functions
related to the organism’s environment and phylogeny. We utilize a new quantity GCVAR, the intra-genomic GC
content variability with respect to the average GC content of the total genome. A low GCVAR indicates intra-
genomic GC homogeneity and high GCVAR heterogeneity.

Results: The regression analyses indicated that GCVAR was significantly associated with domain (i.e. archaea or
bacteria), phylum, and oxygen requirement. GCVAR was significantly higher among anaerobes than both aerobic
and facultative microbes. Although an association has previously been found between mean genomic GC content
and oxygen requirement, our analysis suggests that no such association exits when phylogenetic bias is accounted
for. A significant association between GCVAR and mean GC content was also found but appears to be non-linear
and varies greatly among phyla.

Conclusions: Our findings show that GCVAR is linked with oxygen requirement, while mean genomic GC content
is not. We therefore suggest that GCVAR should be used as a complement to mean GC content.

Background
The knowledge of the chemical basis for nucleic acids
goes back more than a hundred years, to the work of
Miescher [1]. By the early 1950’s, it was known that the
relative frequency of the four DNA bases ("base compo-
sition”) was different for different organisms [2], and in
general the number of A’s was equal to the number of
T’s, and the number of G’s was the same as the number
of C’s; this is known as ‘Chargaff’s first parity rule’ [3].
Further, for nearly all genomes studied, the parity rule
appears to extend to each strand of the chromosome,
when averaged over long distances [4], although in bac-
terial chromosomes, there is a clear bias of G’s towards
the replication leading strand, and for some genomes
(many Firmicutes, for example) the A’s are also biased

towards the leading strand [5]. For a circular chromo-
some with the replication origin and terminus on
exactly opposite sides, this bias of G’s towards the repli-
cation leading strand will average out to near zero,
when one only looks at the DNA sequence in the Gen-
Bank file, and the sequence will appear to conform to
Chargaff’s second rule.
From the Genbank database at NCBI http://www.ncbi.

nlm.nih.gov/genomes/lproks.cgi it can be seen that GC
content in prokaryotes ranges from 16.6% in Carsonella
ruddii strain Pv to 74.9% in Anaeromyxobacter dehalo-
genans Strain 2CP-C. Within a given genome, the GC
content along the chromosome can vary, although since
most bacterial genomes have a high coding density,
usually the variation is less than that found in eukar-
yotes [6]. The average genomic GC content is an impor-
tant property in microbial genomes and has been
associated with properties such as genome size [7], oxy-
gen, and nitrogen exposure [8,9] and specific habitats
[10-13]. For instance, intracellular bacteria have, on

* Correspondence: jon.bohlin@veths.no
1Norwegian School of Veterinary Science, Department of Food Safety and
Infection Biology, Ullevålsveien 72, P.O. Box 8146 Dep, NO-0033 Oslo,
Norway
Full list of author information is available at the end of the article

Bohlin et al. BMC Genomics 2010, 11:464
http://www.biomedcentral.com/1471-2164/11/464

© 2010 Bohlin et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
mailto:jon.bohlin@veths.no
http://creativecommons.org/licenses/by/2.0


average, smaller genomes and are mostly AT rich, while
soil bacteria tend to have larger genomes and higher %
GC [14]. Higher AT content in intracellular bacteria
may be attributed to a loss of repair genes; this loss will
eventually lead to an increase in mutation rates from
cytosine to thymine [15,16]. Genes not expressed will
eventually lead to reduced genome sizes [15,16]. Higher
GC content in soil bacteria may be due to the increased
availability of nitrogen [9]. However, increased nitrogen
in the soil does not explain why GC rich bacteria often
have larger genomes. The base composition in GC rich
genomes might reflect stronger selective forces than AT
rich genomes [17-19]. This may indicate that GC rich
microbes live in more complex environments than intra-
cellular bacteria [20]. The reasons for stronger selective
forces and GC richness is not known, but may be con-
nected to the fact that considerably more energy is
required to de-stack GC rich DNA sequences than AT
rich DNA sequences [21].
Although GC content has been found to vary only

slightly within prokaryotic genomes some regions differ
more than others. A large region flanking the replication
origin, for instance, is more GC rich than the average
genomic GC content [22] whereas the region around
replication terminus is more AT rich [5]. Surface pro-
teins and RNA genes often have GC content that differs
from the average genomic GC content [22], and protein
coding regions have been found to be, on average,
approximately 5% more GC rich than non-coding
regions [18]. In addition to being more GC rich, coding
regions have been found to be more homogeneous in
terms of base composition than non-coding regions
[18]. The GC heterogeneity in coding regions has, how-
ever, been found to be associated with mean genomic
AT content in non-coding regions [18,23]. In other
words, GC content variability tends to increase with
higher mean genomic AT content in non-coding
regions.
Horizontally transferred DNA may have a different

fraction of GC than the host genome as a result of dif-
ferent evolutionary pressures [6,24-26]. Since horizon-
tally transferred DNA is often linked to pathogenesis in
microbes [27], detection of such regions is of great
importance. The GC content of foreign DNA will, how-
ever, become progressively more similar to the host gen-
ome in a process known as amelioration [24] making
such regions more difficult to detect as time progress
[25]. The conformation of base compositional patterns
from foreign DNA to host DNA may be related to the
finding that a particular subunit of the DNA polymerase
III, the Pol III a subunit, appears to be driving genomic
GC content in prokaryotes [28].
There is a considerable amount of research and docu-

mentation related to mean genomic GC content in

prokaryotes demonstrating that this property is the
result of many factors interacting in a highly complex
manner [29]. On the other hand, analysis of genomic
GC content variability within microbial chromosomes,
has received much less attention. A more recent over-
view of methodology used to analyze GC content varia-
tion within genomes can be found in Bernaola-Galvan
et. al., [30], and a study of how intra-genomic GC con-
tent variation affects codon usage is described by Dau-
bin et. al. [31]. In the present work, we introduce the
GCVAR measure to examine GC content variability
within prokaryotic genomes. The GCVAR metric gives a
measure of how GC content varies within a given gen-
ome with respect to the mean genomic GC content.
A low GCVAR thus points to little GC content variation,
or GC content homogeneity, within the genome, while a
high GCVAR designates varying GC content, or GC
content heterogeneity.
To the best of our knowledge, no study has exam-

ined the interplay between environmental factors and
GC content homogeneity in prokaryotes. In the pre-
sent study the aim was therefore to examine whether
GC content homogeneity in prokaryotes, measured
here using the GCVAR measure, could be related to
specific factors in the environment such as tempera-
ture and oxygen, as well as the broader properties
implicated in phylogeny and GC content. To do this,
regression analyses were performed using GCVAR as
the response variable. The response variable was fitted
to the following variables: oxygen requirement (a cate-
gorical variable defined as either aerobic, anaerobic or
facultative), phylum, genomic GC content, genome
size, growth temperature (a categorical variable used to
define psychrophiles, mesophiles and thermophiles),
pathogenicity (a dichotomous variable describing
whether the microbe is pathogenic or not) and habitat
(a categorical variable describing the environment
where the microbe is found, i.e. aquatic, host-asso-
ciated, multiple, specialized and terrestrial). The data-
set consisted of 488 genomes (526 chromosomes) with
similar strains and species removed from the analysis
to reduce phylogenetic bias.

Results and Discussion
GC distribution within genomes
The histograms in Figure 1 shows the statistical distribu-
tions of GC content differences, Di = GCi - GC (Equation
(1), Methods section), within four AT-rich and four GC-
rich genomes. The statistical distributions shown in Fig-
ure 1 are based on the differences, or residuals, between
the GC content of a 100 bp non-overlapping sliding
window and mean genomic GC content for each of the 8
genomes. Figure 1 therefore shows the statistical distribu-
tions of how GC contents differences are distributed

Bohlin et al. BMC Genomics 2010, 11:464
http://www.biomedcentral.com/1471-2164/11/464

Page 2 of 8



within each of the described genomes. With the excep-
tion of Carsonella rudii, one of the smallest bacterial gen-
omes currently sequenced (~160 kbp), all empirical
distributions follow the bell shaped Gaussian curve. This
indicates that GC difference within prokaryotic genomes
appears to be a sum of many independent processes, giv-
ing a Gaussian like distribution according to the central
limit theorem (see, for instance, [32]). Thus, it seems
likely that for most prokaryotic genomes intra-genomic
GC content variation appears to follow a random, white-
noise like pattern, devoid of any complex and long-range
interacting factors.

The GCVAR regression model
We define GCVAR as a measure of the intra-genomic GC
variation in a genome. A linear regression model was fitted
to data for 526 prokaryote chromosomes with GCVAR as
the response and with GC content, size, phylum, oxygen
requirement, growth temperature, pathogenicity and habi-
tat as covariates (Equation (3) in the Methods section).
The results of the GCVAR regression model can be
observed in Table 1, and in Figure 2 we show the 95%
confidence intervals for the significant effects. The vari-
ables: size, growth temperature, pathogenicity and habitat

had no significant influence on GCVAR, and were there-
fore discarded from further analyses.

GCVAR in phyla
Table 1 shows that GCVAR is significantly influenced by
phylum. We find that 10 phyla have GCVAR signifi-
cantly above the average phylum, and 4 phyla have
GCVAR significantly below average. The two phyla, Cre-
narchaeota and Euryarcheota, (both archaea) are among
the groups with an above average GCVAR. The archaea
domain, consisting predominantly of organisms living in
extreme environments, had a significantly higher
GCVAR than bacteria (p < 0.001). The highest GCVAR
are found in the aquatic group Cyanobacteria, which is
largely populated with species capable of photosynthesis
[33]. The lowest GCVAR are found in the phylum of the
aquatic Planctomycetes, but this group is only based on
one single genome, therefore no conclusions can be
assumed at the phylum level.

Environmental factors and phylogenetic bias
To examine how GCVAR was affected by phylogenetic
bias a regression model similar to the one described
above was fitted, i.e. GCVAR was the response variable,

Figure 1 The distributions of GC difference within genomes. The histograms show the distribution of GC difference, Di, (Equation (1) in the
Methods section) for eight different microbial genomes. The blue curves are empirical density estimates, while the red curves are Gaussian
densities using based on the same means and standard deviations as the empirical estimates. The upper panels show the statistical distributions
for four AT rich genomes, while the lower panels show the distributions for four GC rich genomes.
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with mean genomic GC content, oxygen requirement,
habitat, optimal growth temperature, and genome size
as predictors. In addition, an interaction term between
GC content and phylum was added to account for more
similar GC content within phyla (Equation (5) in the
Methods section). Using this regression model we found
that oxygen requirement was the only significant factor
(p < 0.001). GCVAR was significantly higher in the gen-
omes of anaerobic microbes (103 chromosomes) as
compared to the genomes of aerobic microbes, meaning
that the genomes of anaerobic microbes tend to have a
more heterogeneous distribution of GC content than
genomes of aerobic microbes (246 chromosomes).
Facultative microbes were found to have GCVAR values
in the region between aerobic and anaerobic microbes
(see Figure 2).

The associations between mean genomic GC content,
GCVAR and oxygen requirement
The regression models described above indicates that
aerobic microbes have genomes with more homoge-
neous GC content than those of organisms with faculta-
tive and anaerobic oxygen requirement (see Figure 2). It
has been shown that GC rich genomes tend to be more
homogeneous in terms of base composition than AT
rich genomes [18,19,34]. Aerobic microbes have been
associated with GC rich genomes [8]. This result is sup-
ported by our linear regression model only when we
ignore phylogenetic bias is (p < 0.001). However, adding
phyla as a predictor (Equation (5) in the Methods sec-
tion) fails to demonstrate such an association (p ~0.9).

We found that mean genomic GC content was asso-
ciated with GCVAR, but there was no linear relationship
between mean genomic GC content and GCVAR (Figure
3), although this does not exclude a non-linear
relationship.

GCVAR and DNA uptake
There are many indications that mean genomic GC con-
tent is as much affected by the environment as by phyla
[10-13]. It is also well known that chromosomally inte-
grated foreign DNA may differ in base composition as
compared to host DNA. The difference in base compo-
sition between foreign and host DNA is assumed to be
the result of exposure to different selective pressures. It
is thought that such genetic regions may be acquired
from horizontal transfer or other means of DNA uptake
[6,24-26]. Since pathogenesis is often associated with
horizontally transferred DNA, i.e. pathogenicity islands,
[27], establishing a link between any genomic property
and horizontal transfer is of considerably interest. How-
ever, no significant association (p ~ 0.25) was found
between the dichotomous pathogenicity factor and
GCVAR using the regression model that included all
covariates discussed above (Equation (3) in the Methods
section).

Base composition and oxygen requirement
The introduction of atmospheric oxygen is presumed to
have had profound effects on environment and life [35].
Increase in atmospheric oxygen is believed to have influ-
enced cellular compartmentalization and thus to have

Table 1 The coefficient estimates from the GCVAR regression model

Factor Category Chromosomes Average %GC Average size (mbp) Coefficient estimate p-value

Phylum Acidobacteria 2 60 7.8 -0.23 0.05

Phylum Actinobacteria 42 66 4.8 -0.11 0.003

Phylum Bacteroides 16 44 3.6 0.18 <0.001

Phylum Betaproteobacteria 64 64 3.4 0.1 0.002

Phylum Chlamydiae 8 43 1.9 -0.28 <0.001

Phylum Crenarchaeota 16 48 2 0.22 <0.001

Phylum Cyanobacteria 17 48 4.4 0.3 <0.001

Phylum Deltaproteobacteria 18 58 4.7 0.15 0.001

Phylum Epsilonproteobacteria 12 38 1.9 0.1 0.04

Phylum Euryarcheota 31 46 2.4 0.16 <0.001

Phylum Firmicutes 89 37 2.6 0.12 <0.001

Phylum Gammaproteobacteria 92 47 3.7 0.12 <0.001

Phylum Planctomycetes 1 55 7.2 -0.48 0.002

Phylum Spirochaetes 11 37 1.7 0.14 0.01

Oxygen Anaerobic - - - 0.11 <0.001

GC - - - - 0.37 <0.001

The variable GC is continuous while phylum and oxygen are categorical variables. Note that for the phylum variable we have used the sum-to-zero
parameterization, i.e. all estimated effects are deviations from the mean phylum effect. For the oxygen requirement variable however, we used a relative
parameterization where the category “aerobic” is the reference, i.e. the estimated effect is the deviation from the aerobic effect. In addition, the number of
chromosomes, average %GC, and average genomes size in mbp, are included for each phylogenetic group.
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Figure 2 Significant effects on GC variation. The bars indicate 95% confidence intervals for the effects of various phyla (top panel) and
oxygen requirements (lower panel) based on the regression model described by Equation (3) in the Methods section. Note that the values on
the horizontal axis are scaled differently in the two panels. Categories with non-overlapping intervals can be said to differ significantly at a 5%
level. Only significant effects are included.

Figure 3 Overall relation between GC content and GCVAR. The Figure shows GCVAR on the vertical axis versus %GC on the horizontal axis.
The trend line is made using standard loess smoother.

Bohlin et al. BMC Genomics 2010, 11:464
http://www.biomedcentral.com/1471-2164/11/464

Page 5 of 8



been instrumental in the evolution of eukaryotes [36].
Prokaryotes were also affected by the introduction of
oxygen [35] in that while some remained anaerobic
others adapted to an aerobic metabolism [37].
The precise effect of increase in atmospheric oxygen

on prokaryotic genomes is debated [37,38]. A negative
correlation has been found between proteomic oxygen
content and genomic GC content [37]. Although it has
been suggested that genomic GC content is also affected
by an aerobic lifestyle [8], the effects on prokaryote gen-
ome composition has remained unclear [37,38]. Indeed,
our own results presented above do not support any
connection between genomic GC content and aerobio-
sis. Our results did, however, find a significant associa-
tion between GCVAR and oxygen requirement. This
greater GC content homogeneity found in aerobes
implies that the genomes of these organisms have been
subjected to stronger selective pressures than the gen-
omes of anaerobes. This is supported by the recent
report that metabolic networks of aerobic bacteria are
more complex than those of anaerobic bacteria [35].
From Figure 2 it can be seen that GCVAR appears to be
progressively decreasing in facultative and aerobic pro-
karyotes, respectively.

Conclusion
In summary, we found that GCVAR was associated with
oxygen requirement. It is possible that GCVAR is asso-
ciated with GC content, but from Figure 3 it appears to
be a highly non-linear relationship. Other factors such
as genome size, habitat and growth temperature were
not found significant in the GCVAR model. GCVAR was
however found to be higher in archaea than bacteria. By
adding an interaction term to model the closer similarity
between the genomes in the same phylogenetic group,
we found that oxygen requirement was not significantly
associated with mean genomic GC content in microbes.
The different results obtained for the models describ-

ing GCVAR and mean genomic GC content imply that
these properties are governed by different influences, or
are interrelated in a non-linear manner. Thus, our find-
ings suggest that GCVAR is linked with oxygen require-
ment, while mean genomic GC content is not.

Methods
All genomes and related information were gathered
from the NCBI web site http://www.ncbi.nlm.nih.gov/
genomes/lproks.cgi. The statistical package R[39] was
used for statistical analyses and graphical
representations.

The GCVAR measure
To calculate GC variation within a prokaryotic genome,
the number of guanine and cytosine nucleotides in a

chromosome were counted and divided by chromosome
size, giving the mean chromosomal GC content GC.
A similar counting was performed for all 100 bp non-
overlapping windows along the chromosome, giving the
mean GC content GCi for window i. The difference, Di,
between the mean GC content of window i, and the
mean chromosomal GC content, can therefore be writ-
ten as:

D GC GCi i= − (1)

The quantity GCVAR is then defined as the log-trans-
formed average of the absolute value of the difference
between the mean GC content of each non-overlapping
sliding window i and mean chromosomal GC content:

GCVAR
N

D
i

N

i=
=
∑log( | |)

1

1

(2)

N is the maximum number of non-overlapping 100 bp
sliding windows that can fit into the chromosome that
is being analyzed. The log-transformation makes
GCVARs empirical distribution more Gaussian-like, for
convenience in subsequent linear regression model fit-
ting and statistical inference. Since the optimal sized
sliding window varies from genome to genome [18], dif-
ferent window lengths were tested. The sliding window
width of 100 bp was chosen to make the test as sensitive
as possible. The other sliding window lengths tested
contained 500, 1000, and 2000 bp. The 100 bp sliding
window was found to be large enough to carry genome
specific information without discarding weak genomic
signals as noise. Since the aim of this study was to
examine GC content difference within genomes, non-
overlapping sliding windows were used to avoid bias
and interactions from neighboring genetic regions.

Linear models
Linear regression analysis was used to examine influ-
ences affecting GCVAR. In our first analysis we made a
regression of GCVAR onto GC and Size (genome size in
Mb), also including the categorical variables phylum (22
phylogenetic groups), required oxygen (aerobic, faculta-
tive, anaerobic), growth temperature (psychrophilic,
mesophilic and thermophilic), pathogenicity (pathogenic,
non-pathogenic) and habitat (aquatic, host-associated,
multiple, specialized and terrestrial) as predictors or
explanatory variables. The model can be written as:

E GCVAR

GC Size
yotah y o t

a h

( ) = + + + +
+ + + ⋅ + ⋅

   
   

(3)

where μ is the overall intercept, ay, y = 1, ...,22, are
the effects of phylum, δo, o = 1,2,3, are the effects of
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oxygen requirement, �t, t = 1,2,3, are the effects of
growth temperature, la, a = 1,2, are the effects of
pathogenicity and hh, h = 1,...4, are the effects of habitat.
b and g are the regression coefficients for the continu-
ous variables GC and Size, respectively.
Based on the inference using the regression model

described by (3) we eliminated the non-significant vari-
ables and obtained a reduced set of predictors: GC, phy-
lum and oxygen requirement. In this reduced model, we
included phyla only as an interaction with GC. The rea-
son for this is that genomes within the same phylum
tend to have similar GC content. Hence, a main effect
of phylum may actually be a phylum-dependent GC
effect. The model formulated as follows:

( ) ( )E GCVAR GCoy o y= + + + ⋅    (4)

The ay in this model are defined as regression coeffi-
cients for each of the 22 phylum categories.
To test for possible associations between aerobiosis

and mean genomic GC content, a regression model was
fitted with GC as the response variable and aerobiosis as
a group variable:

E GC y o( ) = + +   (5)

μ, ay, δo are the same effects as those described for
Equation (3).
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