Impact of short-lived non-CO₂ mitigation on carbon budgets for stabilizing global warming

Joeri Rogelj^{1,2,*}, Malte Meinshausen^{3,4}, Michiel Schaeffer^{5,6}, Reto Knutti², Keywan Riahi^{1,7}

* corresponding author: rogelj@iiasa.ac.at

Affiliations:

¹Energy (ENE) Program, International Institute for Applied Systems Analysis (IIASA)

²Institute for Atmospheric and Climate Science, ETH Zurich

³ Australian-German College of Climate & Energy Transitions, School of Earth Sciences, The University of Melbourne

⁴ PRIMAP Group, Potsdam Institute for Climate Impact Research (PIK)

⁵ Climate Analytics

⁶ Environmental Systems Analysis Group, Wageningen University and Research Centre

⁷ Graz University of Technology

Supplementary Table 1: Carbon budgets between 2011 and 2100 in line with limiting warming to specific temperature limits with a particular probability level during the 21^{st} century (rounded to the nearest 5 PgC). Note that all cases are not equally plausible across the various temperature levels (see Discussion section in main text). These absolute emissions are underlying the relative changes in Table 2 in the main manuscript. All values are in PgC (= GtC). Corresponding values in GtCO₂ are obtained by multiplying the reported values by a factor of 3.66. Note that only for the 1.5°C and 2°C temperature limits the results reflect peak warming budgets. For both the 3°C and 4°C limit, CO₂ emissions are not at or below zero by 2100 and temperatures thus not yet stabilized. In the latter case, the budgets are affected by transient warming in 2100 rather than peak warming during the 21st century.

Carbon budgets between 2011-2100				
Temperature (T) limit relative to preindustrial levels	1.5°C	2°C	3°C	4°C
50% chance of staying below T limit in 2100				
Reference case	130	460	1005	1510
No CH ₄ mitigation	ND	310	855	1450
Stringent CH ₄ mitigation	230	560	1200	1920
Delayed stringent CH ₄ mitigation	200	525	1160	1865
BC measures	135	470	1010	1515
Frozen BC baseline	145	445	940	1380
No energy access policies	105	435	980	1475
SO ₂ measures	135	455	980	1470
Frozen SO ₂ and NO _x baseline	ND	505	1175	1915
Updated HFC projections	ND	265 to 370	840 to 930	1325 to 1420
66% chance of staying below T limit in 2100				
Reference case	ND	340	870	1325
No CH₄ mitigation	ND	205	700	1230
Stringent CH ₄ mitigation	135	435	1020	1640
Delayed stringent CH ₄ mitigation	ND	405	980	1590
BC measures	ND	350	875	1330
Frozen BC baseline	ND	335	815	1220
No energy access policies	ND	325	850	1305
SO ₂ measures	ND	340	845	1285
Frozen SO ₂ and NO _x baseline	ND	360	1010	1615
Updated HFC projections	ND	135 to 245	690 to 785	1145 to 1240
75% chance of staying below T limit in 2100				
Reference case	ND	260	780	1210
No CH₄ mitigation	ND	130	610	1090
Stringent CH₄ mitigation	ND	355	910	1480
Delayed stringent CH₄ mitigation	ND	320	870	1435
BC measures	ND	265	785	1215
Frozen BC baseline	ND	260	735	1125
No energy access policies	ND	250	770	1200
SO ₂ measures	ND	260	760	1175
Frozen SO ₂ and NO ₄ baseline	ND	250	900	1470
Updated HEC projections	ND	ND to 160	595 to 695	1035 to 1130
COMPARISON		112 10 100		1000 to 1100
IPCC AR5 WGIII Table SPM.1				
(Summary for Policymakers and Chapter 6 in IPCC. 2014)				
(likely' (>66%) probability	ND	170 to 320	170 to 665	170 to 1360
'more likely than not' (>50%) probability	ND	260 to 390	700 to 910	ND
'about as likely as not' (33-66%) probability	ND	270 to 420	ND	ND
ND: no data	110	2,010 120		112
no data				