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Abstract

Background: Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The
role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests
that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant.
However, low populations in these sub-states and the transient nature of conformational transitions between these sub-
states present significant challenges for their identification and characterization.

Methods and Findings: To overcome these challenges we have developed a new computational technique, quasi-
anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the
conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that
enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals
functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction
pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl
isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational
sub-states, with critical structural and dynamical features relevant to protein function.

Conclusions: Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational
diversity and its relevance to protein function.
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Introduction

Proteins are not static entities, but exist as a dynamic ensemble

of inter-converting conformations. These ensembles exhibit a wide

range of spatial and temporal scales of internal motions; localized

protein motions involving bond vibrations and fluctuations within

a group of few atoms are fast (femtosecond-picosecond time-scale)

where as large-scale concerted, collective fluctuations involving

sub-domains or entire protein are typically slow (millisecond time-

scale and beyond) [1–3]. These wide range of motions show inter-

dependency, leading to a highly complex organization of the

conformational and energetic landscape [4]. Several studies have

shown that the protein’s conformational and energetic landscape is

organized in a multi-level hierarchy [5–8].

In the familiar representation, one can imagine the potential

energy landscape to be rugged and be formed of hills and valleys of

varying heights and depths, populated by conformations of the

protein. Within each valley, the population of conformations share

significant similarity in terms of their structures as well as internal

energies. The sub-population of protein conformations within

each of these valleys represent a sub-state. The multiple levels in the

hierarchy stem from the energetic differences (and energy barriers)

between the various sub-states. Internal protein motions driven by

thermodynamical energy fluctuations allow the protein to

transition from one sub-state to another. In cases where several

sub-states are separated by small energy barriers from each other

but collectively by a larger barrier from other sub-states, together

the collection of these sub-states can be viewed as a new sub-state

in the multi-level hierarchy.

Internal protein motions correspond to the inter-conversion of

protein conformations as they move within a sub-state or as they

visit from one sub-state to another [9,10]. Analyses of internal
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protein motions based on experimental and theoretical/computa-

tional approaches have established the importance of sampling

multiple sub-states as being vital for a number of protein functions

including molecular recognition [11], enzyme catalysis [9] and

allosteric modulation [12]. A number of enzymes have attracted

considerable interest due to the connection between conforma-

tional fluctuations and the catalytic mechanisms [3,13–15]. An

intriguing observation has been that large conformation fluctua-

tions occur in distal regions of the protein, far away (.10 Å) from

the active-site, which influence the catalytic step [14–19].

However, it is not known if these distal motions are somehow

related to the ability of enzymes to sample conformations that

facilitates the attainment of the transition state during the reaction

mechanism. More recently, fascinating insights from X-ray

crystallographic studies have indicated that there may be rare

(hidden) conformations and sub-states that critically alter the active

site environment for catalysis [20]. Internal motions have also been

implicated in biomolecular recognition by proteins [11,21,22].

Hence, apart from implicating the flexibility of a protein, it is also

equally critical to elucidate possible conformational sub-states

(including the ones with low-probabilities) and the structural

changes that enable the protein to explore these sub-states.

Experimental techniques revealed a wealth of information

about the inter-connection between conformational fluctuations

and protein function. X-ray studies and nuclear magnetic

resonance (NMR) methods have provided information about the

most populated states (or conformational sub-states) for an

increasing number of proteins [23,24]. Further, pioneering work

of Hammes and co-workers have provided information about

conformations associated with single molecules during enzyme

catalysis [25]. Recently, enzyme cyclophilin A has been investi-

gated extensively for connection between protein dynamics and

enzyme catalysis. NMR spin relaxation studies performed by Kern

and coworkers linked the motions of several residues with the

substrate turnover step in cyclophilin A, and also indicated that the

rate of enzyme conformational changes coincides with the rate-

limiting step of substrate turnover [14,20,26]. NMR studies by

Lange and co-workers have provided insights into the structural

heterogeneity of ubiquitin, relevant to its function of binding

multiple proteins, at the ms time-scales [11]. Even though surface

regions of ubiquitin and their collective motions have been

implicated in binding, the conformational sub-states involved in

the mechanism of molecular recognition have been difficult to

characterize. Similarly, correlated motions have been implicated

in sub-domain motions for lysozyme [27,28]. The detailed

characterization of how these motions lead the protein to sample

specific sub-states is yet unknown. The experimental techniques

tend to provide ensemble averaged information and are limited to

probing dynamics within narrow windows of time-scales, depend-

ing on the instrument resolution.

Computational simulations allow bridging multiple time-scales

and provide detailed atomistic insights into protein motions

[13,22,29–31]. Agarwal and co-workers performed computational

studies of cyclophilin A and identified a network of protein

residues whose motions influenced the reactive trajectories in the

active-site [18,19,32]. For ubiquitin, flexibility at ms time-scales

have provided some insights into the conformational diversity of

how ubiquitin may recognize its binding partners [22]. Similar

insights are also available for lysozyme [33,34] from atomistic

simulations; however, it is unclear if these motions translate into

transitions between sub-states. Therefore, it would be ideal to

simultaneously characterize both the flexibility of the protein and

possible transitions enabled by the protein’s flexibility between

sub-states that are functionally relevant. The achievable time-

scales of computational simulations continue to slowly reach

towards biologically relevant time-scales. The large number of

conformations sampled during single or multiple molecular

dynamics (MD) simulations poses a challenge for analysis.

Computational tools to analyze and identify conformational

sub-states in the multi-level hierarchy that will enable to intuitively

understand the biophysical basis of conformational diversity and

its relevance to protein function are still limited. The conforma-

tions sampled during MD simulations correspond to a highly

multi-dimensional data set due to the large number of degrees of

freedom associated with the protein. Characterizing the high-

dimensional multi-variate data, which is embodied in these MD

simulations, is a long standing problem in statistics and related

fields [35]. Indeed, descriptions of the conformational landscapes

spanned by protein motions have typically relied on finding

motion directions that can provide biophysically meaningful

interpretations. Note, we realize that the conformational ensemble

can be projected onto low dimensional representations based on a

variety of methods. However, the challenge lies in identifying

groups of conformations (sub-states) that provide new insights into

the mechanism of protein function.

QAA is based on pursuing higher order statistics of positional

deviations associated with the conformational data sampled during

the MD simulations. Using three different proteins - human

ubiquitin, T4 lysozyme and enzyme cyclophilin A - we show that

QAA identifies and characterizes the conformational sub-states

relevant to function. Based on the inspection of the conformation

populations in the sub-states using parameters such as internal

energy or other biophysically relevant order parameters, we

observe that the identified sub-states contain crucial structural and

dynamical elements relevant to promoting the designated function

of each of these proteins. A recursive application of QAA yields a

multi-level motion hierarchy with global modes dominating the

top level and subsequent levels revealing progressively localized

motions within the proteins. Additionally, the rare-conformational

transitions associated with the interconversion between the

identified sub-states allows vital insights into these protein’s

structure, motions and function.

Results

This section is organized as follows. First, the conformational

diversity observed in computational (MD) simulations is examined

for anharmonic motions. Then, the theoretical details behind

QAA are presented. Finally, QAA is illustrated on three different

model systems: (1) human ubiquitin, (2) T4 lysozyme, and (3)

enzyme human cyclophilin A. The results provide insights into

how intrinsic fluctuations in each of these proteins enable the

functionally important conformations to be sampled. In the

discussion section, we compare QAA with other computational

techniques that are also used to characterize the conformational

diversity.

Quantifying anharmonicity in protein fluctuations
A common measure for exploring anharmonicity (or non-

Gaussianity) is the fourth-order statistic kurtosis, k, defined for a

random variable z as the normalized fourth central moment:

k zð Þ~
E z{mð Þ4
n o

s4
, ð1Þ

where m is the mean and s the standard deviation of z, and Eftg
denotes the expected value of the quantity t. For unimodal
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distributions, kurtosis is a means of quantifying their peakiness or

equivalently the proportion of the weight in the tails. A Gaussian

distribution with zero-mean and unit variance has k~3. A value

of kw3 indicates a super-Gaussian distribution (Gs) that is more

peaked and heavier tailed than the baseline Gaussian (G).

Conversely, a distribution that is less peaked (Gs) than the baseline

Gaussian (G) has kurtosis kv3. We will use k as a measure to

quantify the anharmonicity in atomic fluctuations.

Human ubiquitin is used as a prototypical example to examine

the nature of atomic fluctuations. For comparison, we use k to

study the anharmonicity observed in ubiquitin motions from 0:5ms

long MD simulation [22](see Materials and Methods section) and

also from experimental ensembles (116 NMR structures revealing

up to ms dynamics [Protein Data Bank (PDB) code: 2K39] [11],

and 44 X-ray crystallographic structures).

In Figure 1A, observe that both Ca (backbone) and all-atom

positional deviations are anharmonic for long-timescale MD data

(k(Ca)~6:3; k(allatom)~8:2), though anharmonicity is observed

even at shorter time-scales (Figure S1). Side-chains contribute more

to anharmonicity in the protein than Ca atoms as seen in Figure 1

(blue lines) since side-chains (especially solvent exposed) have greater

degree of freedom associated with their motions. Interestingly, both

MD and NMR ensembles (Figures 1B and C) show similar

anharmonic behavior, although the X-ray ensemble shows higher

peakiness and insufficient sampling in regions far from the mean.

Using a Gaussian fit to the Ca positional deviations from MD

simulations, we compute how often each Ca atom is found three

standard deviations or more away from the mean of the

approximating Gaussian distribution (Figure 2). Ubiquitin’s flexible

loop regions b1{b2,b3{b4 (collectively referred to as region R1),

b2{a1, b4{a2, and the C-terminal tip of a1 (region R2) of

ubiquitin populate the long-tails of the distributions (Figure 2A).

Long-tails refer to non-trivial populations at extreme positional

deviations. Given that these are highly flexible regions and have a

functional role in substrate binding [11], their associated anhar-

monic distributions warrant closer study. To this end, we examine

the kurtosis of the positional deviations projected onto a principal

coordinate system built locally for each Ca (Figure 2B). We observe

that at least 52% of the Ca atoms are super-Gaussian (Gs; kw3) and

47% are sub-Gaussian (Gs; kv3) along the first principal

components (38% are super-Gaussian along all three principal

components). It is further interesting to note that non-Gaussian (Gs

and Gs) distributions are associated with protein regions R1 and R2,

which are both involved in forming primary contacts with substrates

[11]. Thus, atomic deviations at functionally relevant protein

regions are mixtures of G, Gs, and Gs distributions.

Individual atoms exhibit significantly anharmonic positional

deviations. However, to understand coupling between different

protein regions, we examine the joint positional deviations of atom

pairs and measure for comparison how a well known approach in

the literature, called quasi-harmonic analysis (QHA) [36], models

the underlying distributions (Figure 3). When the deviations are

more Gaussian-like, the QHA basis vectors, which maximize

variance, align well with the intrinsic orientation of the data

(Figure S2 and description in Text S1). However, when the source

distributions combine Gs or Gs, the intrinsic orientations of the

data can be non-orthogonal, necessitating higher-order correlations.

Under these circumstances, QHA does not capture the intrinsic

motions in its sole pursuit of variance. Thus, for internal motions

of the complete protein (involving 3N dimensions, where N refers

to the number of protein atoms), QHA bases may not adequately

capture the complex dependencies in positional deviations arising

from mixtures of G, Gs, and Gs distributions.

From a biophysical perspective, the joint distributions in

positional deviations illustrate a potential and more serious

limitation of QHA. Considering the same residues illustrated in

Figure 3, we paint the positional deviations with the internal energy

(sum of van der Waals and electrostatic interactions computed by

NAMDEnergy [37]) for each pair of residues considered (Figures 3A

and 3B, lower panels). When we examine the case where source

distributions combine both Gs and Gs, the peripheral regions along

the joint positional deviations are enriched by high energy

conformers. These peripheral regions represent sub-states that have

lower populations, where the motion of one residue implicates a

preferential energy state (either low or high) for not only the pair of

residues considered, but also for the entire protein (data not shown).

The QHA bases (shown as black arrows) poorly align with directions

that indicate high-energy states.

Quasi-anharmonic representation of protein dynamics
To address the issues of both higher-order correlations and non-

orthogonality, as well as address the limitations of QHA, we

propose quasi-anharmonic analysis (QAA), a method based on

diagonalizing a tensor of fourth-order statistics describing

positional fluctuations and their couplings. We use an efficient

algebraic technique called joint-diagonalization of cumulant

matrices (JADE), a well known algorithm in the machine learning

literature for analysis of multi-variate data [38].

Figure 1. Anharmonic distribution of positional deviations (Å) in ubiquitin from 0.5 ms-MD, NMR, and X-ray ensembles. For each
atom, the positional displacement (Dq) from the mean position was calculated at 50 ps intervals. The same bin size (0.54 Å) was used for all
histograms. Dotted curve shows a Gaussian fit to the Ca distribution. The probability distributions of positional deviations [p(Dq)] are plotted in log-
scale.
doi:10.1371/journal.pone.0015827.g001
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We model the observable positional deviation vector, ~xx, as a

linear combination of anharmonic sources, ~cc, such that: ~xx~A~cc.

Here, A is an unknown coupling matrix where each column Ai

encodes an anharmonic mode of motion describing the intrinsic

higher-order correlations between different regions of the protein.

The excitation of the anharmonic modes can be quantified as

~cc~A{1~xx. Unlike in QHA, the basis matrix A can be non-

orthogonal and hence the anharmonic modes can be intrinsically

Figure 2. Rare-conformations in ubiquitin are functionally relevant. (A) shows the amount of time spent by each Ca atom exhibiting
anharmonic fluctuations. Note that functionally relevant regions in ubiquitin forming primary (b1{b2 and b3{b4 called R1 collectively) and
secondary binding interfaces (a1{b3 called R2 and b2{a1) spend relatively a large fraction of the time exhibiting anharmonic fluctuations.
(B) illustrates which regions of the protein exhibit G (Gaussian), Gs (sub-Gaussian) and Gs (super-Gaussian) motions. Note that the protein is
predominantly anharmonic.
doi:10.1371/journal.pone.0015827.g002

Figure 3. Intrinsic non-orthogonality and energetic coupling in pair-wise distributions of positional fluctuations in ubiquitin. Top
panels show pair-wise distributions of atomic fluctuations considered along the Ca atom’s x and y (A) and x and z (B) directions for the residue pair 31
and 45. The black arrows represent the directions from QHA whereas the red arrows represent the directions from QAA. Note that only the non-
orthogonal QAA directions align well with the natural orientation of the data. QHA directions, which are orthogonal, do not model this distribution
well. Lower panels illustrate the energetic coupling in pair-wise distributions. QAA directions are biophysically relevant as they point to directions
where the high-energy states exist. The corresponding energy distributions of the pair-wise interactions (non-bonded electrostatic and van der
Waals) are shown in respective insets. Although illustrated for a particular residue pair, a thorough comparison of positional fluctuations also reveals
that this intrinsic non-orthogonality occurs throughout the protein. The dotted line in these plots represent the extent of these joint distributions,
highlighting the anharmonicity in positional fluctuations for the residues considered here.
doi:10.1371/journal.pone.0015827.g003
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coupled. It is important to estimate both A and ~cc to suitably

describe the anharmonic landsacpe. We term this analysis quasi-

anharmonic for two reasons: first, we study anharmonicity explicitly

whereby the sources are fully decorrelated and higher-order

dependencies are minimized; second, we impose a linear model

which ignores any non-linear coupling that may exist in the

fluctuations between different parts of a protein.

To derive A it is instructive to consider QHA, where the

positional deviations ~xx are modeled as a linear combination of

harmonic sources ~aa given by

~xx~B~aa: ð2Þ

The harmonic modes B are conveniently expressed by the

eigenvalues S and eigenvectors U of the covariance matrix given

by

C~Ef~xx~xxTg~USUT : ð3Þ

For exposition, we will set the QHA bases B to

B~US1=2, ð4Þ

and it follows that

~aa~S{1=2UT~xx: ð5Þ

The covariance matrix C captures only second-order correlations

in atomic fluctuations ~xx and the QHA basis remove these

dependencies, i.e.

Ef~aa~aaTg~I , ð6Þ

where I is an identity matrix of size 3N|3N . However, ~aa might

exhibit higher-order dependencies and we capture this by

estimating a fourth order cumulant tensor.

The fourth order cumulant tensor K comprises of auto and

cross-cumulants given by

k(ai)~Efa4
i g{3E2fa2

i g, ð7Þ

and

k(ai,aj ,ak,al)~Efai,aj ,ak,alg{Efai,ajgEfak,alg

{Efai,akgEfaj ,alg{Efai,xlgEfak,ajg:
ð8Þ

Since Ef~aa~aaTg~I , it implies that Efaiajg~1 when i~j and 0
when i=j. The cumulant tensor will have a total 3N|(3Nz1)=2
matrices each of size 3N|3N accounting for auto- and cross-

cumulant terms.

We can reduce the fourth order dependencies by minimizing

the sum of the cross-cumulant terms, which is equivalent to

diagonalizing the tensor K. However, no closed form solution

exists for diagonalizing a tensor, but an approximate solution can

be found using efficient algebraic techniques such as Jacobi

rotations [39]. Just as the rotation matrix U diagonalizes the

covariance matrix C, a rotation matrix D can be found which

approximately diagonalizes the cumulant tensor K, leading to:

~cc~D~aa: ð9Þ

Substituting for ~aa from above:

~cc~DS{1=2UT~xx, ð10Þ

and thus~cc~A{1~xx implying

A~US1=2DT : ð11Þ

Thus, A represents the anharmonic modes of motion derived by

minimizing the fourth-order dependencies in positional fluctua-

tions, in addition to eliminating the second-order correlations (as is

the case with QHA). The anharmonic modes of motion Ai, which

are the columns of matrix A, are sorted in decreasing order of their

amplitudes (EAiE). A public domain implementation of the JADE

procedure is available in [38].

We first illustrate that QAA works correctly in the pairwise

distributions considered in Figure 3. The red arrows in each case

show the QAA basis vectors. Observe that when the fluctuations

are anharmonic, QAA clearly aligns along the directions which are

descriptive of the individual atomic fluctuations. From a

biophysical perspective, the QAA directions have important

implications for understanding the energy landscape in these two

dimensional plots (Figure 3 lower panels and Figure S2 in Text

S1). First, note that the alignment along preferential directions of

fluctuations in the atoms indicates that QAA can identify and

characterize conformational sub-states with low populations in the

landscape. Second, the motions described along QAA basis vectors

are more relevant to the intrinsic motions of atom-pairs since the

directionality of the motions lead to an energetically homogeneous

state. This unique ability to distinguish energetically homogenous

sub-states enables QAA to provide novel insights into the

conformational landscape of the entire protein. These aspects

are further elaborated on three model protein systems as described

in the subsequent sections.

Examining the multi-scale conformational diversity in
ubiquitin binding using QAA

Ubiquitin is universally expressed in eukaryotes and plays a

fundamental role in the proteosomal degradation pathway by

labeling specific proteins. The protein’s three-dimensional struc-

ture is highly conserved over evolution [40]. Further, it is known to

bind a large number of proteins with high specificity implying that

its intrinsic mechanism of binding is finely tuned to respond to its

diverse set of targets. Recently, it was proposed that the solution

structure of ligand-free ubiquitin exhibits all (or most) of its

conformational diversity required to bind diverse targets [11].

These studies imply that ligand-free ubiquitin might occasionally

visit conformations that resemble the ligand-bound structure.

Hence, it is of interest to quantify from an ensemble, how many of

these conformations exhibit the required diversity to resemble

ligand-bound conformations.

Here, we considered the Ca atoms for residues 2-70 (N~69)

and sampled 10,000 conformations spread evenly over 0:5ms MD.

The highly flexible free-ends of ubiquitin (residues 1 and 71-76)

were excluded from analysis. The 3N dimensional space was first

projected on to the top 30 QHA dimensions (covering 96% of the

overall variance). The projection on to this sub-space mitigates the

Conformational Sub-States in Protein Function
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effects of fast and local fluctuations (noise) and provides a subspace

tractable for convergence. Projecting the 10,000 conformers of the

simulations onto the top three anharmonic modes (c1, c2 and c3),

as shown in Figure 4, we observe that the landscape separates into

unique conformational wells. Using a mixture-of-Gaussian (MoG)

[41] model (for which a public domain implementation is available

[42]), we identify four clusters representing conformational wells

(labeled I through IV) with boundaries marked by ellipses drawn 3

standard deviations (s) from the respective cluster centers. The

mean structures from each well reveal novel features of ubiquitin’s

ability to sample a wide range of conformations even at

equilibrium. In the cluster shown in blue (Figures 4B & 4C) and

consisting of over 8,000 structures, ubiquitin adopts a conforma-

tion whereby region R1 is constrained (13.6 Å), whereas b1{b2

and R2 are far apart (11.5 Å). Observe that a majority of the

NMR ensemble (43 conformers within 2s and 78 within 3s) and

the X-ray ensemble (42 within 2s and 44 within 3s) fall within

cluster I, indicating that MD sampling has indeed visited all of the

bound/unbound conformers observed in this three-dimensional

space. QAA reveals three other clusters (shown in purple, green,

and red in Figure 4A). They form the peripheral regions of cluster

I, exhibiting motions along b3{b4 and b2{a1 regions, indicating

motions complementary to R1 and R2 (Figure 4B and Figure 4C).

In cluster IV, the mean structure shows an open conformation

where region R1 is extended over 18 Å and R2 is close to b1{b2

at 7.6 Å. Note that motions in both R1 and R2 are implicated in

binding diverse substrates [11,22,43].

We next examine if these conformational wells exhibit any

similarity in terms of their internal energies, defined as the sum of

van der Waals and electrostatic energy over all interactions in the

protein and computed using the program NAMDEnergy [37]. We

plot the scaled internal energy values [44,45] on the data in

Figure 4 and illustrate it in Figure 5 (Level 1). Scaled internal

energy refers to the sum of non-bonded interaction (electrostatic

and van der Waals) energies between all residues in the protein

that have been normalized (zero mean, unit variance). While

cluster I shows considerable diversity in its internal energies,

clusters II, III and IV are homogeneous. The homogeneity in the

internal energy distributions are quantified further in Figure S3

and supporting text S1. Clusters I and III are separated by high-

energy structures possibly indicating a transition state between the

two wells. The largest conformational well (cluster I) is highly

diverse with respect to its internal energy distributions and

positional deviations (Figure 5). Thus, we can examine the

conformational diversity in this cluster by iteratively performing

QAA only for this subset of conformations to see if a subsequent

decomposition might homogenize this landscape. This corre-

sponds to Level 2 in the conformational hierarchy. Figure 5 (Level

2) reveals that cluster I separates into 3 sub-states having unique

structural and energetic properties. The largest sub-state in Level 2

comprises more than 6,000 conformations, and the internal energy

distribution in this cluster is quite diverse (Figure 5; Level 2).

Hence we use QAA to descend one more level in the

conformational landscape. At Level 3 and Level 4 of QAA, we

observe that the landscape splits into three and two sub-states

respectively. The hierarchy in the energy landscape as revealed by

QAA indicates that one can segment the highly complex

conformational landscape of ubiquitin into energetically homog-

enous conformational sub-states. This successive homogenization

in positional and energetic terms also provides for an intuitive

understanding of the motions involved in ubiquitin binding, as

illustrated above each panel in Figure 5. At Level 1, the

fluctuations are global involving the pincer regions: b1{b2 (red),

b2{a1 (cyan; R1), C-terminal tip of a1 (R2; orange) and

Figure 4. Quasi-anharmonic analysis (QAA) of ubiquitin conformational landscape. (A) The MD ensemble projected onto the top three
anharmonic modes of motion. The anharmonic modes are represented by c1 , c2 and c3 . Level 1 (L1) indicates the level of the hierarchy. The projection
(units Å) shows four distinct clusters (I-IV). The clusters were identified using a mixture of Gaussian (MoG) [41] model, with boundaries marked by
ellipses drawn 3 standard deviations (s) from the respective cluster centers. The cluster centers are shown in blue (7,880 conformers; I) green (773; II),
purple (692; III) and red (655; IV). The X-ray ensemble consisting of 44 crystal structures is shown as blue diamonds; 42 of these structures are covered
within 2s of cluster I. The ms time-scale NMR ensemble [11] consisting of 116 conformers are shown as orange squares; 78 conformers lie with 3s
deviations from cluster I, indicating that the MD sampling has visited most bound/unbound conformations in the space spanned by c1 , c2 and c3 .
(B and C). Two different view-points (rotated around y-axis by 180u) of the mean conformations from each cluster (bold circles in A) show significant
structural deviations in R1 and R2. The distance between centroids of R1 and R2 are shown here for reference. In cluster I, the average distance
between R1 is only 13.6 Å where as in the other three clusters (II, III and IV), the distance is 18.1 Å. The distance between R1 and R2 is maximum in
cluster I (11.5 Å), where as decreases to about 7.5 Å in clusters II, III and IV.
doi:10.1371/journal.pone.0015827.g004
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b3{b4{a2 (blue) regions. At Level 2 the motions become

localized to the protein binding loops: R1 albeit with lower

amplitudes (see Movie S1 depicting the ubiquitin motions between

the conformational sub-states). At Level 3 b2{a1 is coupled to R1

and at Level 4, R2 is coupled to R1.

The separation between the high- and low-energy conforma-

tions from each cluster, as identified by QAA, provides a unique

opportunity to examine the biophysical relevance of the relative

populations and its impact on ubiquitin binding. Note that at any

given level of the conformational hierarchy, the presence of a

minor population of conformations sharing either high- or low-

internal energy. These minor populations deviate from the largest

heterogenous cluster in exhibiting motions along functionally

relevant regions. As one descends the conformational hierarchy, it

becomes clear that the flexible regions of the protein do not

change; only the amplitude of the actual conformational change

changes (with proportional change in internal energy of the

conformer). These changes in both motions and energetics allow

ubiquitin to sample conformations that may in fact exceed the

observed diversity in all of its bound conformations. Observe that

the top 3 anharmonic modes of motion covers all of the

conformational heterogeneity exhibited by the bound X-ray

ensemble (Figure 4; blue diamonds). The hierarchy of motions

in ubiquitin allow the protein to sample conformations that involve

modulating the pincer regions (R1 and R2) to varying degrees.

This subtle interplay between global conformational fluctuations

(Level 1 motions) as well as its ability to modulate local motions

(Levels 2 through 4) can thus enhance ubiquitin’s ability to target

multiple substrates [11].

Overall, QAA allows the identification of energetically homog-

enous sub-states as well as a multi-level hierarchy of internal

motions for ubiquitin. In addition, conformational transitions

identify how the binding regions are modulated between different

sub-states in the hierarchy. These motions are directly relevant in

the context of ubiquitin’s ability to recognize multiple binding

partners. In the next section, we will examine the ability of QAA

Figure 5. Hierarchical organization of conformational sub-states in ubiquitin motions. Level 1 decomposition identifies four sub-states.
Each conformation is colored using the scaled internal energy [44]. The internal energy is the sum of the non-bonded interaction energy between all
pairs of residues in the protein. The energy distribution is normalized to be zero-mean, unit-variance for ease of interpretation. Levels 2, 3 and 4 are
derived from the largest sub-state of the preceding level indicating more homogeneity in both positional deviations and internal energy. Motions
along the top anharmonic mode (c1) are illustrated in each panel in a movie like representation, showing only the Ca trace of the protein (see SI
Movies). The primary and secondary binding regions b1{b2, b2{a3 , a1 and b3{b4 are highlighted in red, cyan, orange and blue respectively to
highlight large-scale fluctuations in these regions. While in Level 1 the motions are global - involving the entire protein, Levels 2, 3 and 4 show
subsequent localization of motions, as evidenced by their relative decrease in amplitude. The motions in each level involve well defined transitions
from a relatively heterogenous population to a energetically homogenous sub-state. These motions have implications in ubiquitin recognizing
multiple binding partners [11,22].
doi:10.1371/journal.pone.0015827.g005
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to extract low dimensional representations of the conformational

landscape and describe it in terms of a biophysically relevant order

parameter.

QAA reveals modulation of substrate-binding pocket in
T4 lysozyme

T4 lysozyme catalyzes the hydrolysis of glycosidic bonds in

polysaccharides from bacterial cell walls [46]. Lysozyme (164

residues) is composed of two individual sub-domains: N- and C-

terminal linked by a single long a-helical chain. The relative

placement of the N- and C-terminal sub-domains forms a deep

pocket where the ligand can bind. Ligand binding and release are

associated with motions involved in opening and closing of this

binding pocket relative to the N- and C-terminal sub-domains as

evidenced from experiments and computational studies [46–48].

From a 120 ns simulation of lysozyme (Materials and Methods

section) a total of 12,000 equally spaced conformations were analyzed

using QAA. The C-terminal end residues 163–164) were excluded for

QAA since these residues undergo large fluctuations. The original 3N

dimensional space for the Ca atoms was 486 (N~162); this was first

projected onto a 60 dimensional space using QHA (covering 70% of

the overall variance) and then QAA was performed.

In addition to obtaining insights into the conformational sub-

states in lysozyme, the motivation for this simulation was to test

QAA on variety of criteria. First, it will help validate if QAA is

robust to different implementations of force-fields (OPLS-AA

[49,50] force-field was used for lysozyme simulation, while

AMBER parm98 [51,52] was used for ubiquitin and cyclophilin

A simulations). Second, it will also illustrate if the sub-states

identified using QAA can be mapped onto a physically observable

order parameter, which is important when using low-dimensional

representations. Given the relatively large binding pocket and

well-documented motions, lysozyme provides an opportunity to

evaluate if QAA can be used to isolate and characterize the sub-

states involved in controlling the binding pocket. Finally, the time-

scale of the lysozyme simulations allows the comparison of QAA

(and its representation) to other techniques (see Discussion section).

Similar to ubiquitin, the hierarchy reveals conformational wells

that are homogenous in their internal energy distributions. As

shown in Figure 6, Level 1 consists of four distinct conformational

sub-states when organized along the top three anharmonic modes

(c1{c3). The largest cluster consists of over 80% of the conformers

and the rest occupy the three smaller peripheral regions emerging

from this cluster. An examination of these sub-states reveal that

Figure 6. QAA reveals a hierarchy of sub-states in T4 lysozyme sharing similar internal energy and order parameter distributions.
(A) The conformational hierarchy of lysozyme as described by QAA. Conformations are first projected onto the top three anharmonic modes (c1 , c2

and c3) for each level of the hierarchy. Only two levels of the hierarchy are shown. Each conformer is painted with the scaled internal energy [44]
described in the text. (B) To validate QAA can extract suitable order parameters, we painted each level of the hierarchy with an order parameter dED

defined as the distance between the Ca distance between catalytically important residues: Glu11 and Asp20. As illustrated, each conformational sub-
state shares a remarkable similarity in the defined order parameters. In Level 1, sub-states II, III and IV share relatively smaller distance in between the
catalytic sites; in Level 2, there is a clear separation in between the catalytic sites. (C) Beside each level, the motions involved in the first (c1)
anharmonic mode is shown in a movie-like fashion. The frames of the movie (see SI movies) are colored according to the internal energy of the
protein; darker shades represent higher-energy conformers. In Level 1, as shown in the cartoon-like representation at the top, we observe large-scale
fluctuations in the larger lobe of the protein and the helix (shown in green), where as in Level 2, the motions are along both the lobes of the protein.
doi:10.1371/journal.pone.0015827.g006
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while clusters I, II and III consist of heterogenous energy

distributions, cluster IV is enriched for higher energy conformers.

Given the heterogenous population of conformers in Level 1,

QAA was applied to this conformational well. In Level 2 of the

hierarchy, the energy separation between the conformational sub-

states become even more apparent: 73% of the conformers

populate cluster I; others populate two low energy (clusters II and

III) and one high energy (cluster IV). This homogeneity observed

across the sub-states suggests that irrespective of the force-field

(and the MD simulation package) used, QAA reveals intrinsic

properties of the conformational landscape associated with both

the internal dynamics and energetics of lysozyme.

The transitions described by QAA are also directly related to

the relative motions between N- and C-terminal domains of

lysozyme. To quantify these motions, we used an order parameter

dED defined as the distance between the Ca atoms of catalytic

residues Glu11 and Asp20. Both residues are implicated in the

catalytic mechanism; Glu11 protonates the glycosidic oxygen atom

while Asp20 is crucial for stabilizing the reaction intermediate.

Note that dED qualifies as a direct geometric observable from the

simulation that quantifies the opening/closing of the binding cleft

[33]. The conformers projected onto the top three anharmonic

modes and colored by dED show clear separation across the sub-

states. The homogeneity in the internal energy distributions and

the dED values are quantified further in Figure S4 and Figure S5.

This homogeneity implies that for the set of chosen QAA basis

vectors, the projections of the conformers clearly distinguish the

increase/decrease in dED as the simulation progresses. Thus, a

small number of QAA basis vectors can be used reliably to extract

biophysically relevant order parameters from MD simulations.

The anharmonic modes of motion allow for a natural

decomposition of the landscape that are directly coupled to the

motions in the lysozyme binding pocket. While sub-states II, III

and IV at Level 1clearly show a low dED, the largest

conformational well consists of a heterogenous distribution of

dED, implying that the motions in Level 1 of the hierarchy

identifies transitions associated with the decrease of dED. Moving

along any QAA basis vector in this reduced dimensional space

would entail a global breathing motion in lysozyme that brings

both the N- and C-terminal sub-domains close to each other

(Movie S2). In Level 2 of the hierarchy (based on iteratively

applying QAA to cluster I from Level 1), there are more subtle

changes in the protein’s conformation that lead it to sample two

conformational sub-states (II and IV in Figure 6). The motion

along c1 in Level 2 decreases dED with motions detected along the

C-terminal end of the protein, where as motion along c2 in Level 2

increases dED, with motions. Thus, QAA can evaluate the

suitability of an order parameter for obtaining biophysical insights

and it can also distinguish how global and local motions may

modulate different regions to achieve a functionally relevant

conformation.

QAA provides detailed insights into how changes in dED are

directly related to the internal energetics of lysozyme. In Level 1 of

the hierarchy, a global motion involving the entire protein leads to

a higher energy state with a corresponding decrease in dED.

Although, only 4% of conformers sample this higher-energy state,

the motions indicate the ability of lysozyme to sample this

biologically relevant states even at equilibrium. In Level 2 of the

landscape, we find that other collective fluctuations, more local

than the ones described in Level 1, predominantly visible along the

C-terminal sub-domain of lysozyme play a role in controlling the

binding cleft conformation. Taken together, the motions indicate

that both local and global motions are exquisitely coupled and

activation of a particular mode can substantially alter lysozyme’s

energy landscape. The higher-energy conformers represent rare

but conformationally accessible excited sub-states which are both

relevant to the change in the binding cleft conformation. The

rarity of these transitions is mainly associated with the overall

internal stress in lysozyme resulting from the twisting motions in

the N-terminal end and torsional motions in the C-terminal sub-

domain. Thus, QAA enables the identification of biologically

relevant rare-conformational transitions in the landscape. Al-

though analysis of the variance using PCA based techniques also

reveals similar motions (see Discussion section), QAA modes have

provided an intuitive interpretation of motions that activate

transitions from low to high energy sub-state (and vice-versa).

For lysozyme, QAA yields distinct energetically homogenous

sub-states as well as separation between sub-states in terms of

order parameters (dED). Note that the use of order parameter dED

provides the utility of QAA as a general tool to distinguish various

sub-states based on other parameters beyond internal energy (as

demonstrated for ubiquitin). Similar to the observations from

ubiquitin, the lysozyme landscape is also composed of sub-states

that share common structural features which have direct relevance

in binding to its substrate.

Conformation sub-states explored during enzyme
catalysis by cyclophilin A

Enzyme cyclophilin A is a peptidyl-prolyly isomerase (PPIase) as

it catalyzes cis/trans isomerization of peptide bonds in small

peptides and proteins [2,26]. The enzyme’s active-site, located on

one face of the molecule, is formed by a pocket of hydrophobic

residues including the conserved Phe113 and Ala101. This

hydrophobic pocket allows the substrate proline residue to be

held during the rotation of the amide oxygen preeceding the target

proline residue, while hydrophilic residue Arg55 makes hydrogen

bonds with the substrate [53]. The reaction mechanism of

cyclophilin A has been the subject of experimental and

computational studies as a prototypical system for investigating

the interconnection between intrinsic dynamics and the enzyme

mechanism [3,14,18,19,26]. NMR studies have indicated the rate

of conformational fluctuations of the protein backbone, in several

surface loop regions, coincidence with the substrate turnover step

[14,26]. Computational investigations have revealed the existence

of a network of vibrations, formed by conserved residues, that

connects the thermodynamical fluctuations of the surrounding

solvent with the active-site [3,19]. More recently, in a fascinating

study hidden alternative conformations of cyclophilin A have been

discovered that provide valuable insights into the promoting role

of conformational fluctuations in the reaction mechanism of this

enzyme [20].

QAA allows the identification and characterization of the

conformational sub-states associated with the cis/trans isomeriza-

tion catalyzed by cyclophilin A (Figure 7). As previously described

the reaction pathway was modeled by using the amide bond

dihedral angle (v) as reaction coordinate [18,19]. The change

from the reactant state (trans, v = 180u) to the product state (cis,

v = 0u) was modeled by using a series of umbrella sampling runs

with 37 independent runs. 18,500 enzyme conformations (with

bound substrate) collected during these runs and were first

projected on to the top 60 QHA dimensions (covering 70% of

the overall variance); and then analyzed using QAA. Note, this

methodology provides exploration of a non-equilibrium process as

compared to the equilibrium state that is explored in free MD

simulations of ubiquitin and lysozyme. Additionally, cyclophilin A

system consisted of the protein enzyme bound to the catalyzed

substrate.
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The multi-level hierarchy of the protein conformations along

the reaction pathway of cyclophilin A also indicated the presence

of the conformational sub-states, as seen in both ubiquitin and T4

lysozyme. As depicted in the Figure 7A, at Level 1 the majority of

the conformations fall in a central cluster but there are 3 additional

clusters that are observed. Note that the scheme for painting here

is different than the other two systems; here the conformations are

colored based on the value of the reaction coordinate the

cyclophilin A explores. This coloring scheme provide a more

meaningful interpretation as it corresponds to the movement of

enzyme over the reaction pathway (coordinate). A careful

characterization indicates the enzyme intrinsic ability is to explore

conformation that correspond to various sections of the reaction

pathway, in addition to separate (and intuitively) the lower energy

states corresponding to the reactant and product states. Note,

these clusters correspond to the lower energy states in the free

energy profile for the cis/trans isomerization reaction.

The most interesting feature revealed by QAA is the presence of

a separate conformational sub-state that shows a significant

presence of the structures that correspond to the transition state

during the enzyme reaction. This region is colored light green in

the figure, and note that as previously indicated the transition state

for this reaction corresponds to v& 90u–100u) (Figure 7D), and

the top of the free energy profile [18,19]. At Level 2 (Figure 7B), a

further decomposition of the largest cluster at Level 1 also

indicates the presence of additional sub-states with a large sub-

state corresponding to the enzyme conformations with features

that correspond to the transition state. Both at Levels 1 and 2, the

existence of separate sub-states with conformations that corre-

spond to this region of the reaction pathway that correspond to the

transition state provides vital insights into the conformational

landscape of this enzyme. The movement along the vectors

connecting the clusters (indicated by arrows in the figure),

correspond to internal protein motions that allow the enzyme to

sample conformations that have feature suitable to promote the

transition state [14,26]. This is consistent with the recent

observation of the hidden alternate conformations that are

explored by the enzyme during the catalytic mechanism [20].

Note, that even though naturally these motions are sampled by

cyclophilin A at a much slower rate (hundreds of microseconds,

corresponding to the time-scale of the reaction), the use of a

reaction coordinate with umbrella sampling allows the enzyme to

sample these higher energy states more frequently in our

simulations.

The comparison of enzyme conformations between these

clusters (both at Level 1 and 2) provide insights into the intrinsic

dynamical features of the enzyme. The movement along the

vectors between these clusters (corresponding to rare-conforma-

tional transitions or slow conformational fluctuations) show that

the largest motions is located in the protein regions that are

colored in the Figure 7B. These include the cyclophilin A regions

13–16, 55–60, 66–86, 87–97, 101–108, and 141–156, which have

been previously implicated in a network of coupled protein

vibrations. This observation is consistent with the previous

observations from the computational (based on QHA) and

NMR studies [14,19]. Previously, it was proposed that these

Figure 7. QAA describes conformational sub-states leading to transition state during catalysis in cyclophilin A. (A) Level 1 (top panel)
of the catalytic landscape of cyclophilin A showing regions of high flexibility (bottom panel). Each conformation from the simulation is painted with
the reaction coordinate (Dv). Note the separation between the ground-state conformers (cluster II) and transition state conformers (cluster III).
Observe that flexible loops 12–15, 26–40, 54–60, 66–76 and 101–110 show relatively large motions leading to the transition state. Most of these
regions have also been previously implicated in enabling catalysis by allowing the enzyme and substrate peptide to interact favorably so that the
isomerization can proceed further. (B) In Level 2 (top panel), motions leading to the transition state activate complementary regions in addition to
motions observed in Level 1. Note that the motions in the flexible loops highlighted in Level 1 undergo lower amplitude motions; however, flexible
loops 77–96, 120–126 show pronounced fluctuations at this level. Note that in both (A) and (B), the color scale from the amide bond dihedral is used
to paint the conformers; the transition state conformers are painted in light green. (C) The coupling observed confirms previous studies which
identifies a network of coupled motions extending from the flexible surface regions all the way to the active site connected by hydrogen bonds. Note
the motions of Phe83 and Asn103 are critical for enzyme function. (D) shows the free-energy profile for the cis/trans isomerization of the bound
peptide.
doi:10.1371/journal.pone.0015827.g007
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highly flexible regions are connected by a network of conserved

network residues that originate on the surface regions and reach all

the way into the active-site. Particularly, the surface residue Phe83

(located in the flexible region 66–86) is connected to Asn103 by a

conserved network hydrogen bond. Additional interactions

(indicated by black arrows) relay the motions into the active-site,

where they mediate the enzyme-substrate interactions through

residues such as Phe113. Movies describing these motions are

depicted in Movie S3.

A careful analysis at Level 2 also indicates that the conserved

active-site Phe113 switches conformation from one cluster to

another cluster. This induces an important change in the

hydrophobic environment in the active-site. Similarly on the

other side, the region 13–16 is interconnected to 141–156 and 55–

60 eventually allowing catalytically important Arg55 to mediate

the substrate orientation through two important hydrogen-bonds

(Figure 7C). As previously observed small changes in the active-site

environment have important implications for the reaction

mechanism [53]. Overall, QAA allows the exploration of

cyclophilin A conformational landscape associated with the cis/

trans isomerization reaction. The decomposition of the landscape

in sub-states allows identification of the conformations that have

features relevant to the transition state, and therefore, allows

identification of the subtle changes in various dynamically relevant

residues. Ongoing analysis of reactive trajectories as they visit these

sub-states will allow us to quantify the rates of interconversion and

its connection to the reaction kinetics.

Intuition for energetic homogeneity in sub-states
described by QAA

Based on the results from three different proteins, we have

illustrated the ability of QAA to delineate events linked to

molecular recognition of binding partners and enzyme catalysis

under equilibrium and non-equilibrium conditions respectively. In

each case, QAA identified energetically coherent conformational

sub-states and functionally relevant global motions.

The energetic homogeneity in the sub-states discovered by

QAA is a consequence of pursuing super- and sub-Gaussian

fluctuations explicitly. Gaussian fluctuations arise when atoms are

moving under the influence of an harmonic potential well, whereas

super- and sub-Gaussian fluctuations are sampled from wells that

could have non-harmonic shapes including square well, double-

well/multi-well. This is consistent with previous studies that

evaluated the nature of atomic fluctuations from picosecond time-

scale MD simulations [54–56]. Further, in the case of two

dimensional data shown in Figure 3 (as well as Figure S2), rare

fluctuations represent a separation in the energetic properties (high

to low or vice-versa). QAA in its pursuit of higher-order statistics

can, therefore, distinguish these different shaped potentials and

thus, provide a natural means of decomposing the complex energy

landscape into energetically homogenous sub-states. The identifi-

cation of rare-conformational transitions as well as collectively

fluctuating regions in the protein is of functional importance.

Rare-conformational transitions between sub-states have biophys-

ical relevance in both binding and catalysis, as we have

demonstrated in this paper for ubiquitin and cyclophilin A

respectively. Further, NMR and more recently X-ray crystallog-

raphy have at various levels implicated the presence of small

populations of such rare conformational changes as being

important for its function in several proteins [9,20].

Coupling between QAA modes
Unlike QHA, the anharmonic modes from QAA need not be

orthogonal. Hence, it is possible for these anharmonic modes to

activate each other depending on their intrinsic coupling. The

coupling coefficient or the interaction strength can be measured as

g~AT
i Aj= jjAijj jjAj jj

� �
. As depicted in Figure 8 for ubiquitin

most modes are weakly coupled [57]. For example, consider QAA

modes c1 and c2 at Level 1 in ubiquitin: c1 shows global

fluctuations involving regions R1 and R2 whereas c2 activates

motions along b2{a1 and R1. As illustrated in Figure 8 (right),

commonly activated residues and their interactions were identified

by thresholding the matrix AiA
T
j = EAiE EAjE
� �

based on their

interaction strength. These specific activation patterns along

particular anharmonic modes of motion may provide insights into

how energy transfers from local to global conformational

fluctuations [58]. One way to test the coupling empirically is to

use biased MD simulations where energy is pumped into a specific

QAA mode and observe how it propagates into the other coupled

modes [32].

QAA has clear advantages over established methods in

segmenting a protein’s energy landscape into multi-scale, energet-

ically coherent conformational sub-states, and in identifying novel

reaction coordinates. It is also important to note that choice of

Figure 8. Coupling between anharmonic (QAA) modes of motion. (A) Most anharmonic modes are weakly coupled as indicated by the
coupling co-efficients (jccjw0:3). (B) An example of anharmonic coupling between modes 1 and 2 (jccj~0:41) for ubiquitin shows spatially coupled
regions in the protein. Observe the long-range coupling between R1 and b2{a1 . Ca atoms are shown as gray spheres and residues commonly
activated by modes 1 and 2 are marked and connected by gray lines.
doi:10.1371/journal.pone.0015827.g008
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non-orthogonality amongst the basis vectors in QAA does not limit

its ability to define suitable order parameters. Indeed, as we have

shown, the dED parameter is separated well within the conforma-

tional sub-states for lysozyme (see Figure 6). Further, in the case of

cylcophilin A, the conformations clearly identify a separation

between the ground and transition states based on the reaction

coordinate (v; Figure 7). Thus, in terms of discovering relevant

order parameters, the use of QAA provides not only biophysical

rigor but also enhances the interpretability of the potential energy

landscape. It remains to be seen whether the defined order

parameters can be reliably used for umbrella sampling approach-

es, which will be studied in the near future.

Comparison of QAA to other methods
With QAA we emphasized two statistical properties of internal

protein motions: anharmonicity and non-orthogonality. Previous

work characterizing anharmonicity in MD simulations used

picosecond length trajectories [54,56]. Anharmonic statistics were

also used to refine X-ray crystallographic data [59]. In

comparison, our work uses long, extensive atomistic level MD

simulations of length up to 0.5 ms as well as a reaction pathway

sampling method that allows conformational sampling for an

enzyme reaction at 0.1 milliseconds.

For investigating protein dynamics in collective coordinate

space, a number of techniques have been developed for identifying

biophysically meaningful directions of the conformational land-

scape using orthogonal motion basis [60]. An obvious approach is

is to approximate the conformational landscape as a single

harmonic well with known second derivatives of the potential

function, as in normal mode analysis (NMA) [61–63]. A closely

related approach is to resolve the second-order statistics of the

collective coordinates with approaches based on principal

component analysis (PCA) [64], such as QHA and essential

dynamics [65]. NMA- and PCA-based approaches are popular

due to their inherent simplicity: beginning with a single X-ray

crystal structure, an experimental ensemble of structures, or MD

simulation trajectory, it is possible to obtain useful insights into the

internal motions and intrinsic flexibility of a protein [11,12]. While

useful, the general suitability of these methods for interpreting

anharmonic motions or reliably isolating conformational sub-states

has been questioned [57,66–68].

In the results section, we have motivated how QAA differs from

QHA in terms of interpreting overall motions using the joint

distributions of positional fluctuations in two dimensions. In higher

dimensions (3N{6; N~69) for ubiquitin, QHA describes the

overall fluctuations involving global motions in the primary

binding regions (R1 and R2). However, when we paint the

internal energy for each conformation projected onto the top three

harmonic modes of motion, we observe that energetic homoge-

neity is lacking between the conformations (Figure S6 and see

description in Text S2). Thus, from the perspective of overall

motions, even though QHA implicates the flexible regions of the

protein, it cannot accurately single out conformational transitions

between energetically homogenous sub-states. In QHA, this is a

consequence of blind pursuit of variance and imposition of an

orthonormal basis representation. QAA, by using higher-order

statistics can easily separate if the atomic fluctuations are sub- or

super- or purely Gaussian. Further, by not imposing an

orthonormal basis representation, QAA can pursue directions in

the complex multi-dimensional space that are clearly relevant to

the protein’s function. While this observation is true for a cartesian

coordinate representation of the protein conformation, we expect

it to also hold in an internal coordinate based representation.

Interestingly, a comparison between QAA and dihedral PCA

shows that although dihedral PCA separates the conformational

space better than PCA based approaches, it still does not provide

insights into energetically homogenous sub-states (for a compar-

ison of QAA with dihedral PCA [69–71] see Figure S7 and the

corresponding description Text S2). Further, it is not only the top

3 anharmonic modes of QAA (c1{c3) that identify energetically

homogenous sub-states, but lower amplitude modes also identify

directions in the landscape that lead to energetically homogenous

sub-states (Figures S3 and S4).

The existence of nonlinearly related motions has already

motivated mutual information (MI) based decoupling approach

called full correlations analysis (FCA) for detecting higher-order

correlations [34] which is in turn based on independent

component analysis [38,72,73] a popular approach in signal

processing and other non-linear methods [74–77]. To avoid costly

entropy calculations required by FCA, the work here pursues

kurtosis, a statistic which approximates mutual information. Note

that for lysozyme (Figures S8), a comparison between negentropy

and kurtosis reveals almost similar distributions, indicating that the

information contained by both techniques are indeed similar. It

must also be pointed out that both FCA and QAA start out by

projecting the conformational landscape into a reduced dimension

representation using PCA. In addition, both methods retain

explicit emphasis on anharmonicity. However, unlike FCA, QAA

permits non-orthogonal motion representation. For joint distribu-

tions in positional deviations, FCA does not recover the intrinsic

orientation of the dependencies observed because of orthogonal

choice in representing motions (see Figure S2 and description in

Text S1). Further, the orthogonal choice need not provide the

clear separation in terms of order parameters as shown in Figure

S9 and Text S3.

Overall, by pursuing higher-order statistics and anharmonicity

of protein motions, it has been possible to obtain novel insights

into the conformational sub-states and transitions between these

sub-states that would have been otherwise difficult (using second-

order correlation techniques such as QHA and dihedral PCA).

Further, examining the non-orthogonal dependencies in atomic

fluctuations delineates energetic differences within and between

various sub-states in the landscape (Figure 3 and Figure S2). The

non-orthogonal directions also enable identification of coupling

between different regions of the protein and inter-dependencies

between different protein motions.

Discussion

Proteins are not rigid structures but intrinsically capable of

exploring an ensemble of conformations, enabled by a wide range

of internal motions. The role of these conformational fluctuations,

if any, in the designated functions of the proteins including

biomolecular recognition and enzyme catalysis has been challeng-

ing to characterize. The challenge partly arises from the fact that

the internal protein motions occur on a wide range of time-scales,

while the individual experimental instruments only provide access

to information corresponding to narrow windows of resolution.

Computational methodology recently provided vital insights, due

to its ability to provide atomistic level information on a wide range

of time-scales. Emerging evidence has indicated the possibility that

certain parts of the conformational ensembles (or sub-states) may

posses structural features that could be relevant and even vital for

the mechanism of designated function. Unfortunately, due to the

low probability of finding these conformations in the multi-level

hierarchy of a protein’s conformational landscape, makes the

identification and characterization of these sub-states rather

difficult.

Conformational Sub-States in Protein Function
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In this paper, a new methodology QAA is described that allows

automated discovery of a hierarchy of sub-states associated with

the conformational ensemble of proteins. Utilizing atomistic level

MD simulations of proteins or protein in association with other

molecules (such as binding partners or enzyme-substrate complex)

as input, this methodology pays close attention to the anharmonic

nature of internal protein motions and pursues the higher-order

statistics of the internal motions. One of the most important

advantages of this approach is that it allows clean separation

between the conformational sub-states, by projecting the confor-

mations sampled during the MD simulations in a lower

dimensional space represented by QAA vectors. Characterization

of the populations in these sub-states for any relevant properties

(such as internal energy, distance order parameter, or reaction

coordinate) allows the detailed characterization. In addition, to

identifying these sub-states, the motions associated within the sub-

states and inter-conversion between the sub-states provide new

insights in to the inter-relationship between protein structure,

motions and function.

The use of QAA shows the equilibrium motions of human

ubiquitin at the ms-scale exhibit significant higher-order correla-

tions both for individual atoms and collective fluctuations in the

protein. The identified conformational sub-state decomposition

revealed a natural hierarchy of fluctuations that are important for

ubiquitin to bind diverse substrates. By characterizing the

anharmonic fluctuations, QAA revealed the presence of confor-

mational sub-states with different internal energies that are

homogeneous within and heterogenous between sub-states. The

unique structural features identified by QAA elucidate the

mechanism of binding motions in ubiquitin. For lysozyme, QAA

was also able to identify sub-states that not only were energetically

distinct, but analysis based on a relevant order parameter was able

to describe motions that were directly tied to the substrate-binding

pocket.

For reactive systems such as the enzyme cyclophilin A, QAA

allows characterization of conformational sub-states along the

reaction pathway. A hierarchical description of the sub-states

along the reaction pathway identifies sub-states with structural and

dynamical features critical for attainment of the transition state.

Inspection of conformational transitions that allow the enzyme to

move from one sub-state to another represents rare-conforma-

tional transitions that are intrinsic properties of cyclophilin A. In

each of these functionally relevant transitions provides further

biophysical insights into the previously identified network of

coupled vibrations [18]. In addition, the mapping of localized

motions to the global fluctuations QAA provides insights into how

each protein has effectively been designed to achieve their target

function by utilizing those motions that allow the protein to

explore energetically coherent sub-states. It will be of interest to

analyze the energetic coupling between anharmonic modes as well

as free-energy changes required for such conformational diversity

and transitions between sub-states.

Materials and Methods

Ubiquitin Simulations
ms timescale simulations for ubiquitin were carried out as

described in previous work [22]. Ubiquitin simulations were

performed using AMBER molecular mechanics package and the

parm98 [51,52] force-field in explicit solvent based on SPC/E

water model [78,79]. Note the suitability of the parm98 force-field

for investigating protein dynamics has been verified previosuly

[18]. Starting with eight different crystal structures [PDB codes:

1UBQ; 1P3Q (chain U); 1S1Q (chain B); 1TBE (chain B); 1YIW

(chain A); 2D3G (chain B); 2FCQ (chain B); and 2G45 (chain B)]

that covered the structural diversity of ubiquitin’s conformation,

stable MD trajectories were generated. Each simulations was run

for 62.5 ns, collectively accounting for 0.5 ms sampling. This

approach of using short MD trajectories to obtain information

about longer time-scales was used by Caves and co-workers [80],

which showed that time-scale accessible to MD simulations from a

single 1 ns run was shorter than the time-scale accessible to a

collection of 10 individual MD runs that lasted 100 ps. Further,

Shirts and Pande [81] also showed that using a large number of

smaller MD runs could approximate long time-scale fluctuations

derived from a single long MD run.

Lysozyme Simulations
MD simulation for T4 lysozyme were initiated from the crystal

structure 2LZM [46]. For this simulation, we used the recently

developed Desmond [82] package and OPLS-AA force-field

[49,50]. After determining the protonation state for each residue

at pH 7.0, hydrogens were added to the protein using Maestro

software. After neutralizing the charge of the system using eight

Cl2 ions, the protein was immersed in a pre-equilibrated SPC

[78,79] water box such that the distance between the box-

boundary and the surface of the protein was at least 10 Å. The

system was then subjected to a series of short MD simulations to

allow it to equilibrate at 300 K. First, the solute was held fixed and

the solvent was energy minimized using conjugate gradient

technique for about 500 steps. The solute was energy minimized

to release any conflicting contacts using a similar procedure. A

small MD simulation under constant pressure (for 20 ps) with

gradual increase in temperature to 300 K was then performed with

the solvent molecules being unrestrained. This was followed by

two additional rounds of constant volume equilibration simula-

tions to allow the system to reach a stable conformation at 300 K.

A final MD run of about 200 ps was then performed under

constant volume conditions to ensure that the system was stable.

All production runs were performed using NVE conditions with

periodic boundary conditions. Bond lengths to hydrogens were

maintained through out the simulations with SHAKE algorithm.

Electrostatic interactions were evaluated using Particle Mesh

Ewald (PME) method and the long-range interactions were

truncated at 10 Å. A single continuous MD production run of

lysozyme was carried out for a total of 120 ns with snapshots being

saved every 10 ps, resulting in a total of 12,000 snapshots.

Cyclophilin A
The human cyclophilin A was modeled as previously described

with peptide substrate His–Ala–Gly–Pro–Ile–Ala based on the PDB

structure 1AWQ [18]. The reaction pathway was modeled based

on amide bond dihedral angle (v) as reaction coordinate

(Dv~1800{v); 37 windows (in 5u decrements) were used to

map the reaction from the reactant state (v~1800) the product

state (v~00). Each window was simulated for 200 ps and 500

structures from each MD simulation were collected. Therefore, a

total of 18,500 conformations were used for QAA. See reference

[18] for complete simulation details.

Supporting Information

Figure S1 Long-tail distributions at shorter time-scales;
side-chains have greater anharmonicity than backbone
atoms. Anharmonic distribution of positional deviations (Å) from

ubiquitin MD simulations at 5 ns and 50 ns. For each atom, the

positional displacement from the time-averaged position was

calculated at 50 ps intervals. The same bin size (0.54 Å) was used
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for all histograms. Distributions correspond to: Ca (red), Gaussian

fit to Ca (dotted red), side-chains (light blue) and all-atoms (black).

The probability distributions of positional deviations [p(Dq)] are

plotted in log-scale.

(TIF)

Figure S2 QAA captures intrinsic non-orthogonal direc-
tions pointing towards energetically coherent directions
in the landscape; QHA and FCA do not. For the ubiquitin

simulation (0.5 ms), (A) residues 2 and 14 exhibit Gaussian-like

fluctuations in the x and z directions respectively. When pairwise

distributions are Gaussian-like, QHA (black) and FCA (purple)

basis vectors [34] align well with the intrinsic orientation of

the data. Residues 31 and 45 are anharmonic in the (A) x,y and (B)

x,z directions, illustrative of modeling challenges for intrinsically

non-orthogonal data. QHA (black) and FCA (purple) cannot

accurately describe these orientations, whereas QAA (red arrows)

align well with the non-orthogonal directions and point towards

homogenous energy distributions. (D–F) Distributions identical to

(A–C) are colored according to scaled interaction energies (as

explained in the main text). QAA basis vectors align with

energetically coherent sub-states. In (A–F), dotted lines indicate

contours of the non-Gaussian directions in positional fluctuations.

Energy distributions are also shown below associated joint

distributions; in each the color range is thresholded above and

below +2:5 s for visual clarity. All spatial units are in Å. For each

residue pair a total of 100,000 conformers were used from the

0.5ms simulations.

(TIF)

Figure S3 Projections of ubiquitin simulation (0.5 ms;
10,000 conformations) onto eight top quasi-anharmonic
modes (c) from QAA illustrate distinct separation in
energy distributions. Structures are colored according to

scaled (zero mean, unit variance) non-bonded energies, that is, the

sum of electrostatic and van der Waals energy terms. Color bins

are thresholded at +2:5s (s - standard deviation). Ellipses indicate

clusters determined by mixture of Gaussian (MoG) model [41].

Each cluster is indicated by a colored ellipse whose major and

minor axes correspond respectively to the first two principal

components of each cluster. Neighboring panels show histograms

of energy values within each cluster. Note the colors of the ellipse

and histogram match. For each projection, the largest and most

energetically heterogenous cluster (brick ellipse) is not included in

the histogram to clarify energetic coherency of the remaining (less

populated) conformational sub-states. Boxes above the histograms

show both the means (m) and standard deviations (s) of energy

distributions in respective clusters.

(TIF)

Figure S4 Lysozyme simulation projected onto eight top
quasi-anharmonic modes (c) from QAA illustrate dis-
tinct separation in energy distributions. Structures are

colored according to scaled internal energies, as explained in the

main text. Color bins are thresholded at +2:5 standard deviations.

Ellipses indicate clusters determined by mixture of Gaussian

(MoG) model [41]. Each cluster is indicated by a colored ellipse

whose major and minor axes correspond respectively to the first

two principal components of each cluster. Neighboring panels

show histograms of energy values within each cluster. Note the

colors of the ellipse and histogram match. For each projection, the

largest and most energetically heterogenous cluster (brick ellipse) is

not included in the histogram to clarify energetic coherency of the

remaining (less populated) conformational sub-states. Boxes above

the histograms display means (m) and standard deviations (s) of

energy distributions in respective clusters. QAA commonly

resolves and separates high and low energy sub-states. Projection

systems c4,5,6 and c6,7,8 show clusters (blue ellipses) with mean

energies far from global energetic mean (1:0 and 1:3 respectively

versus 0), indicating the QAA modes’ ability to characterize

internal energetics. Compare with Figure 16, where highest

resolved cluster mean energy is 0:8 (FCA2,10,6).

(TIF)

Figure S5 Lysozyme simulation projected onto six QAA
coordinate systems. Axis labels correspond to mode indices

ranked by fluctuation magnitude, and were chosen sequentially.

Structures are colored according to dED, the distance between

catalytic sites Asp11 and Glu20. Ellipses indicate clusters

determined by mixture of Gaussian (MoG) model [41]. Each

cluster is indicated by a colored ellipse whose major and minor

axes correspond respectively to the first two principal components

of each cluster. Neighboring panels show histograms of distances

(dED) within each cluster. The colors of the ellipse and histogram

match. Note the clear separation between the conformational

clusters showing differences in distance (Asp11 to Glu20)

distributions.

(TIF)

Figure S6 Lack of homogeneity in the internal energy
distributions of QHA. For the 0.5 ms simulations of ubiquitin

(10,000 conformations), the top three basis vectors from QHA

(a1,a2 and a3) are depicted here. Projection of each conformation

is colored by the scaled internal energy (as described in the main

text). Note the apparent lack of clear separation between clusters

when compared to QAA (main text, Figure 5).

(TIF)

Figure S7 Ubiquitin landscape represented by the first
three basis vectors using dihedral PCA [69] from the 0.5
ms simulations (10,000 conformations). Projected confor-

mations show the presence of spatial clusters. However, when

colored by the scaled internal energy, energetic homogeneity is

lacking, unlike in the analogous QAA-based clusters (main text,

Figure 5).

(TIF)

Figure S8 Lysozyme simulations projected onto FCA
basis. (A) We follow the protocol used in [34] to consider six

projections from FCA (from Figure 12). Axis labels correspond to

mode indices ranked by negentropy. Plots and clustering follow the

protocol in Figure 12. Excepting FCA2,10,6 and FCA6,8,7, most

projections poorly resolve energetic differences between clusters.

(B) Comparison of FCA and negentropy for top 100 FCA modes.

Circles indicate the modes selected for the projection coordinates

in panel (A) and are sized according to the variance of the

associated modes. Note that variance is not a reliable indicator of

anharmonicity. (C) Correlation between negentropy and kurtosis

for the top 100 FCA modes. Of these modes, 85 display Gaussian

statistics (k&3:0 and negentropy &0, boxed in grey), suggesting

that modes selected by either criteria (kurtosis or negentropy)

signify key anharmonic directions.

(TIF)

Figure S9 Analysis of Lysozyme simulations using Full
Correlation Analysis. (A) Lysozyme simulation projected onto

six full correlation analysis (FCA) coordinate systems (Fig. 12)

according to procedure in [34]. Axis labels correspond to mode

indices after ranking by negentropy. Conformations are colored by
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the distance between catalytic residues as shown in the previous

plot. Observe that the separation between the clusters according to

dED is not as clear as in Figure 13.

(TIF)

Movies S1 For ubiquitin, the movies depict the motions of Ca

atoms for residues 2-70. Internal motions of ubiquitin are filtered

along the 0.5 ms MD simulation along the top-most anharmonic

mode (c1) at each level (Level 1, Level 2, Level 3 and Level 4) of

the hierarchy as illustrated in Figure 5 of the main text. Observe

that motions become more local as one descends the hierarchy.

The regions showing largest fluctuations are highlighted for visual

clarity.

(MPG)

Movies S2 For T4 lysozyme the large-scale motions for Level 1

and Level 2 (shown in Figure 6 of the main text) are shown here.

Note that the motions here depict movements of the substrate

binding regions very clearly. Also note that the motions in Level 2

show a pronounced opening of the binding cleft, as indicated by an

increase in the dED order parameter (described in the text). The

movies also highlight the two sub-domains as well as the relevant

motions between the sub-domains that cause the opening and

closing of the substrate binding pocket.

(MPG)

Movies S3 For the enzyme cyclophilin A, the movies depict

movements of the highlighted regions in Figure 7. QAA modes

chosen for our analysis at both Levels 1 and 2 are involved in

transiting from the heterogenous conformational well (cluster I) to

the transition state (cluster III) indicated by the arrow in Figure 7.

The movies highlight key regions in cyclophilin A that are linked

to the catalytic activity of the enzyme as observed from previous

studies [18,19]. For visual clarity the substrate is depicted in a stick

representation to provide the viewer with a perspective of the

catalytic site in cyclophilin A.

(MPG)

Text S1 Intuition for why QAA finds energetically coherent sub-

states

(PDF)

Text S2 Comparison of QAA with dihedral PCA

(PDF)

Text S3 Comparing QAA with Full-Correlation Analysis

(PDF)

Text S4 Movies from QAA for Ubiquitin, Lysozyme and

Cyclophilin A

(PDF)

Acknowledgments

The authors would like to acknowledge Dr. Jose Borroguero and Prof.

Daniel Zuckerman for insightful comments on early drafts of this paper.

The authors would like to thank Dr. Ivet Bahar for constructive comments

during the design of this study.

Author Contributions

Conceived and designed the experiments: AR AJS PKA CSC. Performed

the experiments: AR PKA CSC. Analyzed the data: AR AJS CJL PKA

CSC. Contributed reagents/materials/analysis tools: AR AJS PKA CSC.

Wrote the paper: AR AJS CJL PKA CSC.

References

1. Cannon WR, Benkovic SJ (1998) Solvation, reorganization energy, and
biological catalysis. J Biol Chem 273: 26257–26260.

2. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature

450: 964–972.

3. Agarwal PK (2006) Enzymes: An integrated view of structure, dynamics and
function. Microbial Cell Factories 5: 2.

4. Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple

timescale motions in protein GB3 using accelerated molecular dynamics and
NMR spctroscopy. J Am Chem Soc 129: 4724–4730.

5. Elber R, Karplus M (1987) Multiple conformational states of proteins: A

molecular dynamics analysis of myoglobin. Science 235: 318–321.

6. Frauenfelder H, Parak F, Young RD (1988) Conformational sub-states in
proteins. Annu Rev Biophys Biophys Chem 17: 451–479.

7. Frauenfelder H, Sligar S, Wolynes P (1991) The energy landscapes and motions

of proteins. Science 254: 1598–1603.

8. Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Slaving:
Solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad

Sci U S A 99: 16047–16051.

9. Boehr D, McElheny D, Dyson H, Wright P (2006) The dynamic energy
landscape of dihydrofolate reductase catalysis. Science 313: 1638–1642.

10. Benkovic SJ, Hammes GG, Hammes-Schiffer S (2008) Free-energy landscape of

enzyme catalysis. Biochemistry 47: 3317–3321.

11. Lange OF, Lakomek NA, Fares C, Schroder GF, Walter KFA, et al. (2008)

Recognition dynamics up to microseconds revealed from an RDC-derived

Ubiquitin ensemble in solution. Science 320: 1471–1475.

12. Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the
unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17: 633–640.

13. Benkovic SJ, Hammes-Schiffer S (2003) A perspective on enzyme catalysis.

Science 301: 1196.

14. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev D, Wolf-Watz M, et al.

(2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438: 117–121.

15. Kamath G, Howell EE, Agarwal PK (2010) The tail wagging the dog: Insights
into catalysis in R67 dihydrofolate reductase. Biochemistry In press.

16. Agarwal PK, Billeter SR, Rajagopalan PTR, Hammes-Schiffer S, Benkovic SJ

(2002) Network of coupled promoting motions in enzyme catalysis. Proc Natl
Acad Sci USA 99: 2794–2799.

17. Bosco DA, Eisenmesser EZ, Pochapsky S, Sundquist WI, Kern D (2002)

Catalysis of cis/trans isomerization in native HIV-1 capsid by human cyclophilin

A. Proc Natl Acad Sci U S A 99: 5247–5252.

18. Agarwal PK, Geist A, Gorin A (2004) Protein dynamics and enzymatic catalysis:

Investigating the peptidyl-prolyl cis/trans isomerization activity of cyclophilin A.
Biochemistry 43: 10605–10618.

19. Agarwal P (2004) Cis/trans isomerization in HIV-1 capsid protein catalyzed by

cyclophilin A: insights from computational and theoretical studies. Proteins:
Struct Func Bioinform 56: 449–463.

20. Fraser J, Clarkson M, Degnan S, Erion R, Kern D, et al. (2009) Hidden

alternative structures of proline isomerase essential for catalysis. Nature 462:
669–673.

21. Mchaourab HS, Oh KJ, Fang CJ, Hubbell WL (1997) Conformation of T4

lysozyme in solution. hinge-bending motion and the substrate-induced
conformational transition studied by site-directed spin labeling. Biochemistry

36: 307–316.

22. Ramanathan A, Agarwal PK (2009) Computational identification of slow
conformational fluctuations in proteins. J Phys Chem B 113: 16669–16680.

23. Petsko GA, Ringe D (2000) Observation of unstable species in enzyme-catalyzed
transformations using protein crystallography. Curr Opin Chem Biol 4: 89–94.

24. Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme

dynamics. Chem Rev 106: 3055–3079.

25. Hammes GG (2002) Multiple conformational changes in enzyme catalysis.

Biochemistry 41: 8221–8228.

26. Eisenmesser EZ, Bosco DA, Akke M, Kern D (2002) Enzyme dynamics during
catalysis. Science 295: 1520–1523.

27. Faure P, Micu A, Perahia D, Doucet J, Smith JC, et al. (1994) Correlated

intramolecular motions and diffuse x-ray scattering in lysozyme. Nat Struct Mol
Biol 1: 124–128.

28. Chen Y, Hu D, Vorpagel ER, Lu HP (2003) Probing single-molecule T4
lysozyme conformational dynamics by intramolecular fluorescence energy

transfer. J Phys Chem B 107: 7947–7956.

29. Schwartz SD, Schramm VL (2009) Enzymatic transition states and dynamic
motion in barrier crossing. Nat Chem Biol 5: 551–558.

30. Arora K, Brooks III CL (2009) Functionally important conformations of the

Met20 loop in dihydrofolate reductase are populated by rapid thermal
fluctuations. J Am Chem Soc 131: 5642–5647.

31. Garcia-Viloca M, Truhlar DG, Gao J (2003) Reaction-path energetics and

kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductaseâJ.
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