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Relaxed Phylogenetics and Dating
with Confidence
Alexei J. Drummond

[¤
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Department of Zoology, University of Oxford, Oxford, United Kingdom

In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a
continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and
that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing
relaxed molecular clocks have been described. These models open the gate to a new field of ‘‘relaxed phylogenetics.’’
Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to
estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our
approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between
different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets,
suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets
on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we
present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we
conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while
adding the ability to infer a timescale to evolution.

Citation: Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5): e88. DOI: 10.1371/journal.pbio.0040088

Introduction

From obscure beginnings, phylogenetics has become an
essential tool for understanding molecular sequence varia-
tion. In the past decade, huge progress has been made in
developing methods for inferring phylogenies and estimating
divergence dates. This development has been characterized
by increases, both in the complexity of the models used to
describe molecular sequence evolution, and in the sophisti-
cation of the methods for analyzing these new models.
Nevertheless, a well-known problem that has persistently
troubled phylogenetic inference is that of substitution rate
variation among lineages. In order to infer divergence dates,
it is convenient to assume a constant rate of evolution
throughout the tree [1,2]. This practice has been regularly
challenged by results from datasets showing considerable
departures from clocklike evolution [3–5], and rate variation
among lineages can seriously mislead not only divergence
date estimation [6] but also phylogenetic inference (e.g., [7,8]).

Such problems with the molecular clock hypothesis have
resulted in it being abandoned almost entirely for phyloge-
netic inference in favor of a model that assumes that every
branch has an independent rate of molecular evolution.
Under such an assumption, it is possible to infer phylogenies
(e.g., [9,10]), but not to estimate molecular rates or divergence
times, because the individual contributions of rate and time
to molecular evolution cannot be separated. If the rate and
time along each branch can only be estimated as their
product, then the position of the root of the tree cannot be
estimated without additional assumptions such as an out-
group or a non-reversible substitution process. This unrooted
alternative to the molecular clock was first suggested by
Felsenstein [10] and has formed the basis of all modern
phylogenetic inference and is implemented in all major
phylogenetic packages (e.g., PHYLIP [11], PAUP* [12], and
MrBayes [9]).

Recently, it has been realized that less drastic alternatives
to the unrooted model of phylogeny may exist. Instead of
dispensing with the molecular clock entirely, attempts have
been made to relax the molecular clock assumption by
allowing the rate to vary across the tree [13–15]. For example,
local molecular clock models estimate a separate molecular
rate for each user-circumscribed group of branches in the
tree [6,13,16]. However, assigning branches to different
groups can be a difficult exercise if the number of sequences
is large or if there is considerable uncertainty about the
phylogenetic relationships among the taxa. Essentially, such
models are only useful in cases in which there is a strong prior
hypothesis that the rate of specific taxa will differ from the
rest of the tree [6].
Bayesian relaxed-clock methods, including those published

by Thorne et al. [15] and Aris-Brosou and Yang [17], present
an enticing alternative to local clock models. These model the
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molecular rate among lineages as varying in an autocorre-
lated manner, with the rate in each branch being drawn (a
priori) from a parametric distribution whose mean is a
function of the rate on the parent branch. For example, a
lognormal distribution can be employed with the variance
scaled relative to the length of the branch in units of time,
implying that the evolutionary rate changes continuously
along the branch. Alternatively, the use of an exponential
distribution would imply that changes occurred at the nodes,
with the size of the change being independent of the branch
length.

Autocorrelation of rates from ancestral to descendant
lineages will occur whenever the largest component of rate
variation is due to inherited factors, whether these are life-
history traits or biochemical mechanisms. As one looks over
smaller and smaller timescales, the differences in such
inherited factors become smaller relative to the variance
caused by stochastic and uninherited factors (such as
environmental or chance events). An alternative way of
considering this is that the autocorrelation is so strong that
very little of the variation in rate can be attributed to
inherited factors. At the other extreme, over very long
timescales, we might expect so much variation in the
inherited determinants of rate that the autocorrelation from
lineage to lineage begins to break down, especially with sparse
taxon sampling. However, it is difficult to predict where the
boundaries between these effects are and thus to specify what
the degree of autocorrelation will be.

Relaxed-clock models present a potentially useful method
for removing the assumption of a strict molecular clock, but a
major shortcoming of the methods that have been proposed
thus far is that they require the user to specify the tree
topology. This is a problem because in many cases, important
parts of the tree may be uncertain or unresolved, resulting in
a number of plausible tree topologies. Furthermore, a
molecular clock may have been assumed when estimating
the input tree (for example to find a root), but rate variation
among lineages can adversely affect phylogenetic inference
(e.g., [7,8]). In some settings, the tree topology may actually be
a nuisance parameter and some other aspect of the model
(such as the variance in evolutionary rate, the effective
population size, or the age of the most recent common
ancestor) is the object of interest. Lastly, the assumption of a
relaxed clock will alter the posterior probabilities of
alternative tree topologies, so that the best tree under a
relaxed-clock model may differ from the best tree under an
unrooted or strict molecular clock model. For these reasons, a
‘‘relaxed phylogenetics’’ approach, in which the phylogeny
and the divergence dates are co-estimated under a relaxed
molecular clock, is preferred [18].

Here we present a Bayesian Markov chain Monte Carlo
(MCMC) [19,20] method for performing relaxed phyloge-
netics that is able to co-estimate phylogeny and divergence
times under a new class of relaxed-clock models. Its utility is
demonstrated through simulation and on 871 real datasets.
When absolute rates and divergence dates are estimated, we
use probabilistic calibration priors, rather than point
calibrations, since these more appropriately incorporate
calibration uncertainties. We have implemented this method
in the application BEAST [21] in which they can be used in
conjunction with a wide range of other evolutionary models.

Results

Simulations
We generated alignments of nine nucleotide sequences,

each 1,000 nucleotides in length, on the rooted tree in Figure
1. The outgroup sequence, O, is only used for rooting;
otherwise, the tree is symmetric. Simulations were performed
using the program RateEvolver v1.0 [22], which can simulate
nucleotide substitution under different rate conditions,
including constant (molecular clock), autocorrelated, and
uncorrelated rates.
Fifty sequence alignments were generated under each of

five sets of rate variation models: (1) Rates were fixed at 0.01
average substitutions per site per time unit throughout the
tree (i.e., rates conformed to a molecular clock) (CLOC); (2)
rates were lognormally autocorrelated among branches, with
an ancestral rate of 0.01 average substitutions per site per
time unit and a variance parameter (S2) of 0.1, so that S2t¼0.5
(ACLN); (3) rates were exponentially autocorrelated among
branches, with an ancestral rate of 0.01 average substitutions
per site (ACED); (4) rates were uncorrelated, with the rate in
each branch independently drawn from a lognormal distri-
bution with mean 0.01 and variance parameter of 0.5 (UCLN);
and (5) rates were uncorrelated, with the rate in each branch
independently drawn from an exponential distribution with
mean (and therefore standard deviation) of 0.01 (UCED).
A normally distributed calibration prior with mean 20.0

and standard deviation 1.0 was specified for the age of the
root of the tree, and the tree topology was fixed. Each
alignment was analyzed using BEAST [21] with 5,000,000
steps, following a discarded burn-in of 500,000 steps. In each
analysis, convergence of the chain to the stationary distribu-
tion was confirmed by inspection of the MCMC samples using
the program Tracer 1.2 [23]. This application analyses
posterior samples of continuous parameters from Bayesian

Figure 1. The Rooted Binary Tree Used for Simulating Sequence

Evolution

The timescale is drawn in arbitrary time units. Apart from the branch
leading to the outgroup, sequence O, all branches are five time units in
length.
DOI: 10.1371/journal.pbio.0040088.g001
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MCMCs to allow visual inspection of the chain behavior,
estimating of the effective sample size of parameters and the
plotting of marginal posterior densities. The effective sample
size is the number of independent samples that would be the
equivalent to the autocorrelated samples produced by the
MCMC. This provides a measure of whether the chain has
been run for an adequate length (for example, if the effective
sample sizes of all continuous parameters are greater than
200).

In four of the five cases, the uncorrelated relaxed-clock
approach to estimating rates performed well (Table 1). In all
cases, the rate estimates made under the UCED had the
largest 95% highest posterior densities (HPDs). This can be
most clearly seen in the rates estimated from sequences
generated under a molecular clock, with the average 95%
HPD size under the UCED model exceeding that under the
UCLN model by an order of magnitude.

When the sequences were simulated under a molecular
clock, the 95% HPD interval of the posterior rate estimate
almost always contained the true rate under all three analysis
models (Table 1). For sequences simulated under any of the
other models, CLOC did extremely poorly, with the true rates
included in the 95% HPDs between only 3% and 11% of the
time. Clock estimates of rates from data generated under
exponential rate models (ACED and UCED) were poorer than
those from data generated under lognormal rate models
(ACLN and UCLN); this was expected, since the variance of
the exponential distribution is larger than those of the
lognormal distributions in our simulations.

For the data generated under lognormal models (ACLN
and UCLN), both of the uncorrelated models (UCED and
UCLN) performed well with respect to coverage, with the
95% HPD containing the true rate between 93% and 100% of
the time for individual branches. However, for the UCED
model this was at the expense of power, with the average size

of the HPDs being twice as large as those for the UCLN
model.
For data generated under UCED, the UCED model

performed better than UCLN with both models giving the
same average size of HPDs, but with the latter model
including the true rates in the HPDs slightly less often
(82%). Neither model performed as well when the data were
generated under an ACED model, with the true rate in the
95% HPD between 36% and 90% of the time.
The accurate estimation of molecular rates is important

because it has a direct impact on the estimation of branch
lengths, which can in turn affect the inferred tree topology.
Collectively, the results provide a strong recommendation
against assuming a molecular clock when analyzing data that
have not evolved under clocklike conditions, but the
uncorrelated relaxed-clock models also perform well when
the data are clocklike. The results favor the use of the UCLN
model in that it has an accuracy comparable to the UCED
model, but it results in considerably smaller HPDs. In
particular, because the UCLN model has the variance of the
lognormal distribution as a parameter, it can better accom-
modate data that are close to being clocklike. This is not
contradicting the findings of a previous simulation-based
study [22], which suggested that the autocorrelated exponen-
tial model outperformed the lognormal model in rate
estimation, because the uncorrelated models presented here
are fundamentally different from autocorrelated models.
Moreover, the previous simulation study considered only the
accuracy of the estimates, and not their precision.

Dengue Virus Type 4 and Human Influenza A Virus
We selected two virus datasets that were matched in the

number of sequences (n ¼ 69) and the time span over which
the data had been sampled (17 y). The first dataset was a
previously published sequence alignment of the E gene of
dengue-4 virus (1,485 base pairs [bp]) from Puerto Rico [24].

Table 1. The Proportion of Datasets (50 Simulations for Each of Five Models) for Which the True Rate Was within the 95% HPD Limits at
the Given Branch

Simulated Model CLOC ACLN ACED UCLN UCED

Analyzed Model CLOC UCED UCLN CLOC UCED UCLN CLOC UCED UCLN CLOC UCED UCLN CLOC UCED UCLN

Sequence A 1.00 1.00 1.00 0.12 1.00 0.92 0.02 0.58 0.36 0.18 1.00 0.94 0.02 0.94 0.78

Sequence B 1.00 1.00 1.00 0.02 1.00 0.94 0.06 0.66 0.38 0.06 1.00 0.96 0.10 0.98 0.80

Sequence C 1.00 0.96 1.00 0.12 1.00 0.94 0.02 0.58 0.46 0.10 1.00 0.90 0.02 1.00 0.92

Sequence D 1.00 1.00 1.00 0.08 1.00 0.92 0.02 0.62 0.52 0.10 1.00 0.90 0.16 0.94 0.84

Sequence E 1.00 1.00 1.00 0.08 0.96 0.90 0.00 0.62 0.50 0.06 1.00 0.90 0.10 0.94 0.82

Sequence F 1.00 1.00 1.00 0.08 0.98 0.90 0.06 0.70 0.38 0.10 1.00 0.96 0.04 0.96 0.74

Sequence G 1.00 1.00 1.00 0.12 0.98 0.88 0.02 0.72 0.56 0.20 1.00 0.92 0.10 0.96 0.80

Sequence H 1.00 1.00 1.00 0.06 1.00 0.92 0.06 0.72 0.50 0.12 1.00 0.90 0.04 0.96 0.80

Node 09 1.00 1.00 1.00 0.08 1.00 0.98 0.04 0.78 0.54 0.06 1.00 0.94 0.10 0.98 0.84

Node 10 1.00 1.00 1.00 0.08 1.00 1.00 0.00 0.76 0.62 0.14 1.00 0.96 0.18 1.00 0.80

Node 11 1.00 0.98 1.00 0.08 1.00 1.00 0.04 0.90 0.68 0.12 1.00 0.92 0.06 0.96 0.84

Node 12 1.00 1.00 1.00 0.10 0.98 0.98 0.02 0.80 0.62 0.16 1.00 0.94 0.08 0.98 0.82

Node 13 1.00 1.00 1.00 0.08 1.00 1.00 0.02 0.84 0.78 0.08 1.00 0.92 0.18 0.96 0.82

Node 14 1.00 1.00 1.00 0.06 1.00 0.98 0.10 0.90 0.76 0.08 1.00 1.00 0.14 0.96 0.88

Overall 1.00 1.00 1.00 0.08a 0.99 0.95 0.03a 0.73a 0.55a 0.11a 1.00 0.93 0.09a 0.97 0.82a

Average HPD size 0.002 0.056 0.006 0.006 0.047 0.024 0.003 0.022 0.016 0.009 0.049 0.023 0.002 0.025 0.025

Each cell reports the results at the branch above the specified node for a particular combination of simulated and analyzed rate models. Node labels correspond to those given in Figure 1.
The simulated models were CLOC, ACLN, ACED, UCLN, and UCED. The models used for inference were CLOC, UCED, and UCLN.
aThe overall false-positive rate is significantly greater than 5% for these combinations of simulated and analyzed modes.
DOI: 10.1371/journal.pbio.0040088.t001
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The second dataset was an alignment of hemagglutinin
sequences from human influenza A virus selected to have a
similar time frame (1981–1998; see Protocol S1 for details). In
both of these datasets, each sequence in the alignment
represents a consensus of the viral population within a single
infected human host at the time of sampling. Therefore, both
genealogies represent the ancestral relationships between the
virus populations in a sample of 69 infected people spanning
a 17-y period. These two viral datasets, particularly influenza
A virus, are expected to exhibit the effects of natural
selection, given the nature of their life histories [24–26].

Both datasets were analyzed under the strict molecular
clock and the UCLN and UCED models. For all analyses the
HKY (Hasegawa-Kishino-Yano) model of nucleotide substi-
tution [27] was used with gamma-distributed rate hetero-
geneity among sites [28]. Calibration information for the rate
of evolution stems from the fact that each sequence has a date
of sampling associated with it [29]. A constant-population
coalescent prior was assumed [30]. For each combination of
data and model, two independent MCMC analyses were each
run for 10,000,000 steps, resulting in acceptable mixing as
determined by Tracer 1.2 [23]. Given adequate sampling,
these two runs were combined to obtain an estimate of the
posterior distribution. The resulting estimates for the overall
rate of evolution and coefficients of variation from the six
analyses are presented in Table 2.

The estimated coefficient of variation, rr, was 0.39 for the
dengue virus dataset under the UCLN model. This compares
with 0.51 for the influenza A dataset, suggesting that the
dengue virus sequences are evolving in a more clocklike
manner than the influenza virus sequences. Under the UCED
model, both datasets produce an estimated rr of 0.99. Under
the exponential distribution rr should be equal to 1.0 by
definition, and the small discrepancy arises because of the
discretization procedure described in Materials and Methods.
In both datasets the estimated average rate was higher under
the UCED model, especially in the internal branches. This
elevated rate also corresponded with a lower estimate of the
effective population size. Figure 2 shows a tree topology
sampled from the posterior of the UCLN analysis of the
influenza A virus dataset.

Marsupials
In addition to the viral sequences, we analyzed a marsupial

dataset. The alignment contained concatenated nuclear
protein–coding genes (APOB, RAG1, IRBP, vWF, and BRCA1;

3,772 bp) for 17 marsupials and seven (outgroup) placental
mammals, obtained from Amrine-Madsen et al. [31].
The extensions to BEAST for inferring divergence times,

described here, are well suited to the marsupial dataset. It
possesses some phylogenetic uncertainty, so it is more
reasonable to integrate over the posterior distribution of
topologies than to assume a single true topology. Further-
more, the dataset includes taxa that have evolved to
substantially different sizes, life histories, and niches, which
are all hypothesized predictors of molecular rate variation
[32,33].
The early fossil record of marsupials [34] is poorly known.

As a result, point calibrations that utilize the oldest fossils
that mark divergences of one group from another are likely
to be substantial underestimates, whereas simply defining
wide calibration bounds can poorly represent our under-
standing of the fossil record. We selected prior probability
distributions as calibration priors (Table 3) with the intention
of providing realistic assessments of the uncertainty associ-
ated with the fossil record [35].
First, to ascertain the joint prior distribution on the nodes

of interest, the four calibration points, the Yule prior, and the
reciprocal monophyly constraints were analyzed without any
sequence data. The combined results of two runs of
10,000,000 steps are given in Table 3.
In order to analyze the marsupial data, we assumed a

general time-reversible [36] model of nucleotide substitution
with gamma-distributed rate heterogeneity among sites [28]
and a proportion of invariant sites. In addition, we assumed a
UCLN model of rate variation among branches in the tree. A
Yule prior on branching rates was employed and the
reciprocal monophyly of the ingroup and outgroup was
assumed a priori. Four independent MCMC analyses were
each run for 10,000,000 steps, resulting in acceptable mixing
as determined by Tracer 1.2 [23]. These four runs were
combined to obtain an estimate of the posterior distribution
(Table 3). The 95% credible set of the marsupial analysis
included 12 unique tree topologies, and the maximum a
posteriori (MAP) tree topology accounted for 0.32 of the total
posterior probability. The estimated rate of the fastest branch
in the MAP topology was 2.7 times faster than that of the
slowest branch. The mean rate of evolution was 0.944
substitutions per site per billion years (95% HPD: 0.817–
1.073). The birth rate of the Yule prior was estimated to be
0.0133 (95% HPD: 0.0035–0.0234).
There was a slight tendency toward a positive correlation in

Table 2. Rate and Variance Estimates for Two Viral Datasets (Human Influenza A Virus and Dengue Type-4 Virus)

Virus Clock

Model

Parameters Coefficient of

Variation (rr)

Mean

Rate

External

Rate

Internal

Rate

Log

(Marginal

Posterior)

Log

(Tree

Likelihood)

Log

(Coalescent

Prior)

Population Size

Scaled by

Generation Length

Dengue-4 Clock 1 — 0.00098 — — �3939.60 �3709.95 �229.65 11.10

Exponential 1 0.99 0.00113 0.00138 0.00088 �3901.47 �3690.44 �211.03 8.55

Lognormal 2 0.39 0.00099 0.00103 0.00094 �3927.62 �3701.53 �226.10 10.58

Influenza A Clock 1 — 0.00505 — — �4367.76 �4202.48 �165.28 4.30

Exponential 1 0.99 0.00551 0.00598 0.00502 �4310.65 �4164.33 �146.33 3.27

Lognormal 2 0.51 0.00517 0.00518 0.00519 �4331.27 �4172.54 �158.74 3.92

DOI: 10.1371/journal.pbio.0040088.t002
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Figure 2. A Tree of 69 Influenza A Virus Sequences Drawn Randomly from the Posterior Distribution

The divergence times correspond to the mean posterior estimate of their age in years. The yellow bars represent the 95% HPD interval for the
divergence time estimates. Both the mean and 95% HPD of the divergence times were calculated conditional on the existence of the clade defined by
the divergence. Each node in the tree that has a posterior probability greater than 0.5 is labeled with its posterior probability. The sampling times of the
tips were assumed to be known exactly. Branches colored in red had a posterior rate greater than the average rate, whereas branches colored in blue
had a lower-than-average rate.
DOI: 10.1371/journal.pbio.0040088.g002

Table 3. Prior Probability Distributions and Posterior Probability Densities of the Marsupial Calibrations

Calibration Nodea Prior MCMC Results

Distribution Mean

[95% CI]b
Mean, No Data

[95% HPD]c
Mean, Posterior

[95% HPD]d

Elephants versus sirenians Normal 61.5 [52,71] 61.3 [52.2,70.9] 56.1 [46.2,65.2]

Dasyurids versus diprotodontians Normal 64 [54,74] 64.2 [55.1,74.1] 65.2 [56.7,73.7]

Phascogale versus Dasyurus Normal 17 [10,24] 17.1 [10.5,24.3] 14.4 [9.7,18.9]

Marsupials versus placentals Translated Lognormal 145 [132,180] 148.4 [131.5,170.4] 170.0 [140.0,204.6]

aCalibration nodes are defined as the most recent common ancestor of the pair of taxa at any given step in the MCMC chain.
bThe mean and 95% confidence intervals (CIs) of the prior probability distribution in millions of years.
cThe mean and 95% HPD intervals of the posterior probability distribution in millions of years given by the MCMC procedure run without any sequence data. This will reveal the joint prior
distribution on these parameters.
dThe mean and 95% HPD intervals of the posterior probability distribution in millions of years.
DOI: 10.1371/journal.pbio.0040088.t003
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the rate of parent and child branches but this was not
significant (zero was included in the 95% HPD). The
coefficient of variation was estimated to be 0.32 (95% HPD:
0.23–0.43), suggesting that the marsupial dataset is more
clocklike than both of the virus datasets. Figure 3 shows the
(A) prior and (B) posterior distributions of the clades present
in the MAP tree topology.

Autocorrelation of Rates amongst Lineages
We see no autocorrelation for the viruses we analyzed (the

HPD interval of the covariance of parent and child branches
was [�0.17,0.15] and [�0.18,0.15] for influenza and dengue-4
datasets respectively under the lognormally distributed
model of rate variation and [�0.2,0.13] and [�0.19,0.13] for
the exponentially distributed model of rate variation). For the

marsupial dataset there is a small degree of autocorrelation
suggested by the mean estimate, but it is not significantly
different from zero (mean: 0.07, HPD: [�0.256, 0.4]). We would
expect that larger datasets, particularly of diverse organisms
that vary considerably in life-history traits or proofreading
mechanisms, might exhibit substantial autocorrelation.

Assessing Accuracy and Precision with Five Large Datasets
Five large datasets were obtained from previous studies: (1)

amino acid alignments of 102 genes from eight bacterial
species; (2) nucleotide alignments of 106 genes from eight
yeast species [37]; (3) nucleotide alignments of 61 genes from
nine plants; (4) amino acid alignments of 99 genes from nine
metazoans; and (5) 500 nucleotide alignments of non-coding
sequence from nine primates. The bacterial dataset was a

Figure 3. The Analysis of 17 Marsupials and Seven Placental Mammals

(A) The combined prior distribution of divergence times for the MAP tree topology. The green bars represent the 95% HPD interval for the divergence
times. (B) The posterior distribution of the divergence times. The divergence times correspond to the mean posterior estimate of their age in millions of
years. The yellow bars represent the 95% HPD interval for the divergence time estimates. Both the mean and 95% HPD of the divergence times were
calculated conditional on the existence of the clade defined by the divergence. Each node in the tree is labeled with its posterior probability if it is
greater than 0.5. The three nodes with normally distributed calibration priors are indicated by orange bars. Branches colored in red had a posterior rate
greater than the average rate, whereas branches colored in blue had a lower-than-average rate.
DOI: 10.1371/journal.pbio.0040088.g003
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subset of a larger dataset comprising 730 genes representing
45 species of bacteria [38]. Eight species of Proteobacteria
were selected due to their close phylogenetic relationship, as
well as representation among the 730 genes. A total of 102
genes spanned all eight of the species that were retained for
analysis. The plant dataset was taken from a larger dataset
comprising 61 genes from 12 taxa [39]. Nine species were
selected in accordance with the stipulation that their
phylogeny was known with almost complete certainty. The
metazoan alignment was a subset of a larger dataset
comprising 123 genes from 36 eukaryotes [40]. Nine
metazoan taxa were selected from this dataset so that the
tree relating the selected taxa was not in dispute. Genes that
were unavailable for one or more of the nine selected taxa
were removed, leaving 99 genes in the final dataset used for
phylogenetic analysis. The primate dataset was a subset of a
2,160,276 bp alignment of non-coding DNA from 19
mammals [41,42]. The non-primates were removed from the
alignment, and sites with a gap in any sequence were
removed. The remaining alignment was broken up into 500
alignments of equal length (632 bp). These individual align-
ments were each intended to represent the data produced by
an ordinary phylogenetic study in which a gene fragment has
been sequenced from a number of organisms. The question
being asked is if we only have one such alignment, how well
are we able to reconstruct the phylogenetic relationships of
the organisms?
To assess the accuracy of the phylogenetic methods being

tested, estimates of the phylogeny need to be tested against
the true phylogeny for each dataset. In order to obtain the
best possible estimates of the phylogeny for each dataset, the
alignments in each of the five datasets were concatenated.
The five concatenated alignments were analyzed under the
HKY model of nucleotide substitution with gamma-distrib-
uted rate variation among sites and a proportion of invariant
sites. Each analysis was run for 5,000,000 MCMC steps, with a
discarded burn-in of 500,000 steps. Identical trees were
obtained using BEAST with a UCLN model and with MrBayes
(Figure 4). The trees inferred from the plant, metazoan, and
primate datasets agree well with the established trees for
these groups. However, the bacterial and yeast phylogenies
are relatively uncertain [37,43], and the trees inferred from
the concatenated alignments are probably the best estimates
currently available. Even if these trees turn out to be
different from the true evolutionary histories of the studied
organisms, we can at least assume that the trees used in this
analysis are very near in tree space to the truth, and
therefore we would expect our results to be little affected.
The yeast tree inferred in this study from concatenated data
agreed with that published by Rokas et al. [37], also
confirmed by Phillips et al. [43] under different phylogenetic
models.
For each of the five groups of data, each alignment was

analyzed using MrBayes (unrooted Felsenstein [UF] model),
BEAST with a molecular clock (CLOC); and uncorrelated
lognormal relaxed clock (UCLN). The HKY model of
nucleotide substitution was assumed, with gamma-distributed

Figure 4. The ‘‘True’’ Phylogenies for the Large Datasets

The datasets are as follows: (A) bacterial, (B) yeast, (C) plant, (D)
metazoan, and (E) primate.
DOI: 10.1371/journal.pbio.0040088.g004
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rate variation among sites and a proportion of invariant sites.
Most analyses were run for 500,000 MCMC steps with 50,000
burn-in steps, although some datasets required 1,000,000
steps with 100,000 burn-in steps. All analyses were checked
for convergence using the program Tracer 1.2 [23]. The 95%
credible set of trees was obtained for each alignment and
compared with the ‘‘true’’ trees obtained using the method
described above. The accuracy of the methods was considered
to be the frequency with which the true tree was contained in
the 95% credible set, whereas the average size of the credible
sets was taken to represent precision. These terms have
statistical definitions, but we take liberties here to facilitate
easier interpretation.

All three methods performed poorly in analyses of the
bacterial and metazoan datasets. This result is not surprising,
however, considering the substantial time depth of these
trees. The uncorrelated relaxed-clock method produced the
most accurate estimates of phylogeny overall (Table 4). It
outperformed other methods in analyses of the bacterial,
yeast, metazoan, and primate data, but the molecular clock
method was the most accurate in the analysis of the plant
data. A large proportion (76%) of the yeast alignments were
significantly non-clocklike (as measured by a likelihood ratio
test [10] on the true tree topology), which explains the
considerable difference in accuracy between the uncorrelated
relaxed-clock method (85.8% of the credible sets contain the
true tree) and the molecular clock method (67.9% of the
credible sets contain the true tree). The superior perform-
ance of the molecular clock in the analysis of the plant data,
for which the molecular clock was rejected for 67% of the
alignments, may be due to the sensitivity of the likelihood
ratio test to even small departures from the clock assumption.

In the case of the primate data, all three methods were
similarly accurate in estimating phylogenies. This is probably
because the data were relatively clocklike, with the molecular
clock assumption rejected for less than a third of the
alignments. For all of the datasets that were analyzed, the
phylogenetic estimates made using a strict molecular clock
were the most precise. As expected, the average size of the
95% credible set of trees was always the smallest for the
molecular clock method, and nearly always greatest for the
unrooted method. Under conditions in which the data more

or less conform to a molecular clock, such as the primate data
examined in this study, the molecular clock method should be
used due to its superior precision.

Discussion

The relaxed phylogenetics methods described here co-
estimate phylogeny and divergence times under a relaxed
molecular clock model, thus providing an integrated frame-
work for biologists interested in reconstructing ancestral
divergence dates and phylogenetic relationships. The method
presented here naturally incorporates the time-dependent
nature of the evolutionary process without assuming a strict
molecular clock. One of the byproducts of estimating a
phylogeny using a relaxed clock is an estimate of the position
of the root of the tree, even in the absence of a non-reversible
model of substitution [44,45] or a known outgroup.
Recently, a number of authors have begun to investigate

the impact of various forms of model misspecification on the
accuracy of posterior probabilities of clade support [46–48].
In a Bayesian framework, the absence of a molecular clock
assumption (either strict or relaxed) represents a prior belief
that the tree topology provides no information about relative
branch lengths. We suggest that this represents a poor prior
belief, and that Bayesian estimation of phylogeny from short
sequences may be biased when the time-dependency of the
evolutionary process is not modeled. We would argue that the
complex time-dependency of the evolutionary process should
not be ignored a priori as has been common practice, but
should instead be carefully modeled. This paper represents a
first attempt at incorporating a relaxed-clock model into a
Bayesian method of phylogenetic inference.
We have presented a large analysis of 102 bacterial, 106

yeast, 61 plant, 99 metazoan, and 500 primate alignments that
overall suggests the relaxed-clock models are both more
accurate and more precise at estimating phylogenetic
relationships than current unrooted methods implemented
in MrBayes and other programs. Overall, these initial results
suggest that a relaxed phylogenetic approach may be the most
appropriate even when phylogenetic relationships are of
primary concern and the rooting and dating of the tree are of
less interest.

Table 4. Accuracy and Precision of Phylogenetic Inference Using Three Bayesian Methods: CLOC, UCLN, and UF

Dataset Sample

Size

Average

Length

Clock

Rejected

by LRT

Accuracy (%) (True Tree in 95% Credible Set)a Precision (Number of Trees in 95% Credible Set)b

CLOC UCLN UF CLOC UCLN UF

Bacteria 102 170 aa 26% 46.1 48.0 42.2 5.7 10.3 11.3

Yeast 106 1,198 bp 76% 67.0 84.9 79.2 3.5 5.9 6.5

Plants 61 647 bp 67% 91.8 88.5 83.6 7.5 15.4 9.2

Animals 99 197 aa 59% 64.6 69.7 57.6 5.7 10.2 14.2

Primates 500 632 bp 13% 88.8 89.0 88.8 3.1 3.4 5.1

aThe percentage of alignments for which the 95% credible set contained the ‘‘true’’ tree. The numbers in boldface indicate the better performing model.
bThe largest 10% of credible sets were treated as outliers and excluded from the calculation of the average. The medians were comparatively uninformative and are not given here.
aa, amino acids; LRT, likelihood ratio test.
DOI: 10.1371/journal.pbio.0040088.t004

PLoS Biology | www.plosbiology.org May 2006 | Volume 4 | Issue 5 | e880706

Relaxed Phylogenetics



Materials and Methods

The molecular clock assumption can be relaxed in a variety of ways
[13–15,17,49–52]. In Bayesian treatments of the relaxed clock, there is
a vector of rates R¼fr1,r2,. . .,r2n�1g and a corresponding vector of
node heights t¼ft1,t2,. . .,t2n�1g in units of time. The node height
vector, in conjunction with an edge graph, E, define an ancestral tree
g¼ fE,tg in units of time. To convert this tree from units of time to
molecular evolutionary units, the rates are either assigned to
branches [15,17] or to nodes [53,54]. In both types of models, the
prior probability of the rates fR(Rjg) can be calculated by the product
of the probability of each rate r2 in the tree given the ancestral rate
rA(i) and the time Dti between the ancestral and derived rate:

fRðRjgÞ ¼ P
i
f ðrijrAðiÞ;DtiÞ: ð1Þ

The first such model to be described [15] assigned rates to the
midpoints of branches and the assumed lognormal prior distribution
relating the midpoint of the ancestral branch to the midpoint of the
derived branch. Another interesting model is the exponential
distribution model of Aris-Brosou and Yang [17], which employed
an exponential prior distribution on rate r with a mean (and
therefore standard deviation) equal to the ancestral rate rA, and with
no dependence on the time between the two rates. This second model
represents a more punctuated view of change in evolutionary rate, so
that only the number of branching events, and not the length of time
between events, determines the amount of change in evolutionary
rate. In all autocorrelated relaxed-clock models, an additional
assumption must be made about the rate at the root. For models
that assign rates to nodes, it is necessary to treat the root node in a
special way, as it does not have a parent node [15]. For models that
assign rates to branches, a branch above the root is implied and must
be assigned a rate.

In the autocorrelated relaxed-clock models that have been
described, including the commonly used lognormal model
[15,17,55], it is also necessary to specify the degree of autocorrelation
as a prior. Other prior models of rate change, such as the gamma
distribution model and the Ornstein-Uhlenbeck process [55], require
more than one hyperparameter to be specified, so that selecting
suitable values for a particular dataset may be an even more difficult
exercise. The effects of varying these hyperparameters are poorly
understood [22], but there is likely to be a considerable impact on
posterior estimates of rates.

Uncorrelated relaxed clocks. We present an alternative to the
autocorrelated prior in which there is, a priori, no correlation of the
rates on adjacent branches of the tree. Instead we propose a model in
which the rate on each branch of the tree is drawn independently and
identically from an underlying rate distribution. We investigate two
candidates for the rate distribution among branches:

r;ExpðkÞ; ð2Þ

r;LogNormalðl;r2Þ: ð3Þ

These uncorrelated priors can be framed in a hierarchical Bayesian
framework, as with the autocorrelated priors. In this scenario the
exponential version of uncorrelated relaxed clock would have a prior
probability on the rate vector of:

fRðRjgÞ ¼ f ðRÞ ¼ P
i

ke�kri : ð4Þ

This model corresponds to an exponential prior distribution on
rate ri with a mean (and therefore standard deviation) equal to k�1

and no dependence on either the rate of the previous branch or the
time between the two rates. The parameter k is a hyperparameter
that is fixed and not estimated via MCMC, and represents a prior
statement about both the mean and the variance of branch rates. This
prior reflects a punctuated view of change in evolutionary rate, so
that the prior expectation of the rate at all branches is the same, with
no autocorrelation between adjacent branches. Notice that the
posterior distribution of rates among branches need not be the same
as the prior in this setup and that autocorrelation may exist in the
posterior, even though it is not specified in the prior.

Instead of framing Equations 2 and 3 as prior distributions in a
hierarchical Bayesian framework, they can instead be reformulated as
a full likelihood model. In this case, the branch rates are not
independent random variables with a prior distribution, but are
instead constrained so as to fit one of the distributions in Equations 2
and 3 exactly. The parameters of the rate distribution are no longer

hyperparameters of a prior distribution, but are instead parameters
of the likelihood model. This is closely analogous to the common way
in which rate heterogeneity among sites is treated [28].

Priors on phylogeny. A particular requirement of Bayesian
phylogenetic inference is the responsibility given to users to specify
a prior probability distribution on the shape of the phylogeny (node
ages and branching order). This can be either a benefit or a burden,
largely depending on whether an obvious prior distribution presents
itself for the data at hand. For example, the coalescent prior [56,57] is
a commonly used prior for population-level data and has been
extended to include various forms of demographic functions [58,59],
sub-divided populations [60], and other complexities. Traditional
speciation models such as the Yule process [61] and various birth–
death models [62,63] can also provide useful priors for species-level
data. Such models generally have a number of hyperparameters (for
example, effective population size, growth rate, or speciation and
extinction rates), which, under a Bayesian framework, can be sampled
to provide a posterior distribution of these potentially interesting
biological quantities.

In some cases, the choice of prior on the phylogenetic tree can
exert a strong influence on inferences made from a given dataset [64].
The sensitivity of inference results to the prior chosen will be largely
dependent on the data analyzed and few general recommendations
can be made. It is, however, good practice to perform the MCMC
analysis without any data in order to sample wholly from the prior
distribution. This distribution can be compared to the posterior
distribution for parameters of interest in order to examine the
relative influence of the data and the prior (Figure 3).

Bayesian inference. The full Bayesian sequence analysis with an
uncorrelated relaxed-clock model allows the co-estimation of
substitution parameters, relaxed-clock parameters, and the ancestral
phylogeny. The posterior distribution is of the following form:

f ðg;H;U;XjDÞ ¼ 1
Z
PrfDjg;U;XÞfGðgjHÞfHXUðH;X;UÞ: ð5Þ

The vector U contains the parameters of the relaxed-clock model
(e.g., l and r2 in the case of lognormally distributed rates among
branches). The term PrfDjg,U,Xg is the standard Felsenstein like-
lihood, where g is a tree with branch length measured in units of time.
For the purposes of calculating this likelihood, branch lengths are
converted to units of substitutions by multiplying the rates defined by
U with the internode distance between node i and parent node j in
tree g. The tree prior, fG(gjH), can either be a coalescent-based prior
[30,65] for within-population data or some other appropriate prior if
the sequences come from multiple populations/species [55]. The
vector H contains the hyperparameters of the tree prior. The vector
X contains the parameters of the substitution model (such as

Figure 5. A Lognormal Distribution Discretized into 12 Rate Categories

Each of the 12 categories has equal probability (p ¼ 1/12). The i th rate
category (numbered from left to right) corresponds to the (I � 0.5)/12
quantile of the lognormal distribution.
DOI: 10.1371/journal.pbio.0040088.g005
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transition/transversion ratio, j; shape parameter for gamma-distrib-
uted rates among sites, a; and proportion of invariant sites, pinv).

We summarize the posterior density in Equation 5 using samples
(g,H,U,X) ; f obtained via MCMC. If, for example, the divergence
times are of primary interest then the other sampled parameters can
be thought of as nuisance parameters, and vice versa.

The formulation in Equation 5 implies that the branch-rates could
be integrated analytically in the Felsenstein likelihood. Although this
could be accomplished relatively easily by discretizing the rate
distribution and averaging the likelihood over the rate categories on
each branch, we elected to do the integration using MCMC. This was
achieved by assigning a unique rate category c 2 f1,2,. . .,2n�2g to each
branch j of the tree. During the calculation of the likelihood the rate
category c is converted to a rate by the following method:

rc ¼ D�1
c� 1=2
2n� 2

� �
: ð6Þ

The function D�1(x) is the inverse function of the probability
distribution function, D(x)¼P(X�x), of the relaxed-clock model
specified by Equations 2 and 3. This discretization of the underlying
rate distribution is illustrated in Figure 5 for a lognormal distribution
with 12 rate categories (sufficient for a tree of seven tips). To
integrate the branch rates out, the assignment of rate categories c to
branches was sampled via MCMC.

Model selection. One issue that remains largely unresolved in this
piece of work is the issue of model comparison and model selection.
Within a Bayesian framework, Bayes factors are usually regarded as
the correct way to deal with model selection. Typically this involves a
technique known as reversible-jump MCMC. We have not imple-
mented this, but we do plan on developing a reversible-jump MCMC
version of this framework in the future. Typically model selection is
easy when one model produces a much better fit. Because all of the
models for rate variation examined here differ by one free parameter
at most, a simple comparison of the average log posterior
probabilities will usually be revealing. It is only when the log
posteriors are very similar and the results are qualitatively different
between the two models that model selection becomes an issue. This
combination of conditions did not occur in any of our real datasets.

Proposing new states in the MCMC kernel. The MCMC must
sample the tree topology, the divergence times, and the individual
parameters of the substitution model and tree prior(s). Therefore, a
series of proposal distributions (often called ‘‘moves’’) needs to be
employed. Our MCMC implementation employs an array of moves,
each of which is designed to explore a certain subspace in the overall
parameter/model space being explored. For example, some moves
propose local changes to the tree topology while keeping the
coalescent interval and all the other parameters constant. Some
moves propose a change to a single substitution parameter (such as
the shape parameter of the gamma distribution) while keeping
everything else constant. The general scheme is to (1) choose a
random move with a probability proportional to a specified weight,
then (2) apply the move to the current state, and (3) assess the relative
score of the new state. The new state is adopted if it has a higher
posterior probability; otherwise it is adopted with probability equal
to the ratio of its posterior probability to the posterior probability of
the previous state. The weights allow the researcher to favor certain
moves which can help with the performance of the MCMC, but
generally the default weights give good results. Most of the moves
used in our MCMC implementation have been previously described
[30]. The two new moves involve sampling the rate categories of the
branches (a random pair of branches are chosen and their categories
are swapped) and dealing with rate categories of branches when a
change to the tree topology is made. (We implement two alternatives:
keeping all the rate categories the same when a subtree is moved or
performing a single rate swap simultaneously with a tree topology
change.) These moves are very simplistic, and we suspect that better
proposal distributions exist. We have found a small number of
datasets in which our current proposal distribution does not work
well. Nevertheless, for a large number of datasets including the ones
presented in this paper, our scheme performs more than adequately
as assessed by repeated runs and estimation of integrated autocorre-
lation times.

Summarizing the posterior distribution. The output of an MCMC
analysis is a set of samples from the posterior distribution. In the case
of the uncorrelated relaxed-clock models described above, the
posterior distribution is a distribution over tree topologies, dates of
divergence, branch rates, and parameters of the rate and substitution
models. This complex set of samples can be summarized in many
ways. One of the simplest summaries of the branch rate distribution is

to sample the coefficient of variation (rr; the standard deviation
divided by the mean) of the branch rates. Under the exponential
model, rr ¼ 1 by definition; under the lognormal model, rr gives a
measure of the degree of clocklikeness of the data. If rr¼ 0 then the
data are perfectly clocklike, whereas larger values correspond to
increasing rate heterogeneity among branches. A posterior estimate
of rr can be easily calculated:

E½rrjD� ¼
1
L

XL
i¼1

rðiÞr : ð7Þ

This is the simple average of the calculated rðiÞr over all L samples
in the estimated posterior distribution. In addition, 95% HPD limits
can also be calculated. In a similar manner, marginal posterior
estimates can be calculated for

E½tj jD� the length of time the jth branch represents;

E½rj jD� the rate of evolution on the jth branch; and;

E½rjtj jD� the expected number of substitutions per site occurring

on the jth branch:

Some subtlety in the interpretation of the posterior distribution of
rates is required because both the amount of time a branch
represents, tj , and the rate of evolution along the branch, rj, are
random variables in the MCMC analysis. For example, in general,
E[rjtjjD] 6¼ E[rjjD]�E[tjjD]. For the purposes of this paper, when we refer
to the average rate for a set of branches B (such as the set of external
branches or the set of internal branches), we define it as the weighted
average:

rðBÞ ¼
X
j2B

rjtj=
X
j2B

tj ; ð8Þ

rather than the simple unweighted average 1
jBj Rj2B rj . Thus the

posterior estimate of average rate over the whole tree is E[r(T)jD],
where T ¼ f1,2,. . .,2n�2g. In general, this will be different from the
mean of the underlying rate distribution because the rate at each
branch is weighted by the time represented by the branch. The
justification for this is that the overall rate is best summarized by the
total amount of substitutions over the total amount of time, which is
what Equation 8 calculates.

Calibrating the rate of evolution. In the above discussion on rate
models, it was assumed that it is possible to estimate absolute rates of
evolution and the variance in absolute rates. In fact, even under a
molecular clock assumption, the divergence times and the overall
substitution rate can only be separately estimated if there is a source
of external calibration information. In the framework described here,
this information can come from one of three sources: (1) Prior
information on the age of internal nodes: In a phylogenetic context,
calibration information is often obtained by assigning the age of a
known fossil to a particular internal node [2]. Uncertainty in the
association between an internal node and the fossil record can be
accommodated by providing a prior probability distribution for the
age of the node. Previous studies have used a uniform distribution
with upper and lower bounds on the age [54], although other
distributions may be suitable [35]. In the above Results section, we
presented examples in which calibration times are treated with
parametric prior distributions (normal and lognormal). Assigning an
age to a particular node is only possible when the tree itself is
assumed to be known and fixed, a limitation of previous relaxed-clock
implementations [15,17,54]. In the framework presented here, the
tree itself is being sampled and thus we cannot define the age of a
particular internal node. Instead we specify the age, or the prior
distribution of age, for the most recent common ancestor of a set of
taxa. Every time a new tree is proposed in the MCMC chain, the most
recent common ancestor of the specified taxa is located in the tree,
and the prior probability of the age of this node is used to assess the
acceptance probability of the proposed tree. (2) Known ages of the
sequences: Recently it has also been demonstrated that calibrations
can be associated with the sequences at the tips of the tree if they are
sampled at significantly different times [29,30,66] with respect to
their rate of evolution. Again, there may be uncertainty in calibration
dates [67]. The RNA virus data in this study provide examples of this
form of calibration information. (3) A strong prior on the
substitution rate: If the mean substitution rate is known from a
previous study on independent data, then this can be incorporated as
prior knowledge. In the simplest case this can be achieved by fixing
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the rate of evolution to a known value. It is also straightforward to
sample the rate from a parametric distribution obtained from a
previous (independent) analysis [68,69]. If there is no prior
information about the mean substitution rate, then it can be fixed
to 1, resulting in time being in units of substitutions per site.

All of these forms of calibration information can be incorporated
into our MCMC implementation either on their own or in any
combination, as appropriate.

Supporting Information

Protocol S1. Relaxed Phylogenetics and Dating with Confidence

Found at DOI: 10.1371/journal.pbio.0040088.sd001 (167 KB DOC).
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