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Abstract The remarkable capacity of some viruses to

adapt to new hosts and environments is highly dependent

on their ability to generate de novo diversity in a short

period of time. Rates of spontaneous mutation vary amply

among viruses. RNA viruses mutate faster than DNA

viruses, single-stranded viruses mutate faster than double-

strand virus, and genome size appears to correlate nega-

tively with mutation rate. Viral mutation rates are

modulated at different levels, including polymerase fide-

lity, sequence context, template secondary structure,

cellular microenvironment, replication mechanisms,

proofreading, and access to post-replicative repair. Addi-

tionally, massive numbers of mutations can be introduced

by some virus-encoded diversity-generating elements, as

well as by host-encoded cytidine/adenine deaminases. Our

current knowledge of viral mutation rates indicates that

viral genetic diversity is determined by multiple virus- and

host-dependent processes, and that viral mutation rates can

evolve in response to specific selective pressures.
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Abbreviations

APOBEC Apolipoprotein B mRNA-editing catalytic

polypeptide-like enzymes

ADAR dsRNA-dependent adenosine deaminase

AZT Azidothymidine

CTL Cytotoxic T lymphocyte

DDR DNA damage response

HBV Hepatitis B virus

HCV Hepatitis C virus

MMR Methyl-directed mismatch repair

PKR Protein kinase R

ROS Reactive oxygen species

SHAPE Selective 20-hydroxyl acylation analyzed by

primer extension

UNG Uracil DNA glycosylases

Introduction

The mutation rate of an organism is defined as the proba-

bility that a change in genetic information is passed to the

next generation. In viruses, a generation is often defined as

a cell infection cycle, which includes attachment to the cell

surface, entry, gene expression, replication, encapsidation,

and release of infectious particles. Mutations are not

restricted to replication since they can also result from

editing of the genetic material, or spontaneous nucleic acid

damage. The mutation rate should not be confused with the

frequency at which mutations are found in a given viral

population. The latter is a measure of genetic variation that
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depends on a number of other processes such as natural

selection, random genetic drift, recombination, and so on

(Fig. 1a). Higher mutation rates lead to higher genetic

diversity but, except in special cases, it is not possible to

infer mutation rates directly from observed population

mutation frequencies [1]. Although genetic diversity

depends on multiple factors, the mutation rate is of par-

ticular interest because it constitutes the ultimate source of

genetic variation. Similarly, mutation rates should not be

confused with molecular evolutionary rates. The neutral

theory of molecular evolution posits a linear relationship

between these two rates, but whereas mutation is a bio-

chemical/genetic process, molecular evolution refers to the

fixation of new alleles in populations [2, 3].

Knowledge of the processes underlying viral mutation

rates has implications for understanding and managing

drug resistance, immune escape, vaccination, pathogenesis,

and the emergence of new diseases. In clinics, the impor-

tance of viral mutation rates can be illustrated by the

history of anti-HIV treatment. The nucleoside analog azi-

dothymidine (AZT) was the first approved anti-HIV drug

but, unfortunately, the appearance of drug-resistant vari-

ants rapidly frustrated this monotherapy. HIV-1 is a fast-

mutating virus and produces every possible single-base

substitution (including AZT-resistance mutations) within a

patient everyday [4]. The subsequent success of highly

active antiretroviral therapy did not reside on merely

increasing drug potency but mainly in combining different

drugs (including AZT), such that the chances of resistance

mutations appear were minimized. Qualitatively, the same

argument holds for other rapidly mutating viruses such as

hepatitis C virus (HCV). Multiple resistances have been

already described against new HCV treatments [5], and

analysis of population sequences has shown that resistance

to protease inhibitors and non-nucleoside polymerase

inhibitors pre-exist naturally in treatment-naı̈ve patients,

that is, in the absence of selection favoring these mutations

[6]. At present, combination therapies are the only effective

treatment strategy for chronic diseases caused by fast-

mutating viruses.

A similar scenario can be depicted for antiviral immu-

nity. Viruses showing high mutation rates tend to evade

immunity more efficiently. There are numerous examples

of cytotoxic T lymphocyte (CTL) and antibody evasion in

HIV-1, HCV, and hepatitis B virus (HBV), three fast-mu-

tating viruses causing chronic infections. In HBV, the most

common cause of hepatitis worldwide with nearly 350

million people chronically infected, a series of point

mutations have been associated with immune escape and

vaccination failure [7]. In acute viruses, immune escape

takes place at the host population level instead of at the

intra-host level. In this case, the benefit of escape resides in

the ability of the virus to re-infect hosts that have devel-

oped protective immunity or infect hosts with that

recognize the same antigens. The best-known example is

influenza virus, which constantly undergoes antigenic

changes and therefore requires yearly vaccine updates.

Current efforts focus on developing influenza vaccines that

target evolutionarily more conserved, yet sufficiently

immunogenic protein domains [8]. Viral genetic diversity,

which is ultimately determined by mutation rates, has

therefore a profound effect on the design of antiviral

strategies.

Viral mutation rates are not merely caused by poly-

merase errors, but also by the ability of a virus to correct

DNA mismatches by proofreading and/or post-replicative

repair. Furthermore, other sources of mutation include host

enzymes, spontaneous nucleic acid damage, and even

special genetic elements located within some viral gen-

omes whose specific function is to produce new mutations

Fig. 1 Mutation rate definition. a Basic processes determining

population genetic diversity. The observed population frequency of

a mutation depends on the rate at which it is produced (mutation rate),

but also on natural selection, random genetic drift, and recombination,

among other processes. Most mutations are deleterious and tend to be

removed from the population by selection, whereas beneficial

mutations or combinations of mutations can be maintained/favored.

Recombination can also contribute to the maintenance of genetic

diversity. Random genetic drift leads to allele fixation and hence

reduces population genetic diversity. b Basic processes determining

viral mutation rates. Mutations originate from replication errors,

nucleic acid damage, and editing of the genetic material by host-

encoded proteins or by specialized molecular systems such as

diversity-generating retro-elements (DGRs). If these changes are not

corrected, they will be passed to the viral progeny and hence will

contribute to elevating the viral mutation rate. Expression of host

error-prone polymerases may also contribute to creating new

mutations in viruses. Recombination can also enhance the ability of

some viruses to create new mutations by increasing gene copy

number or by producing genome rearrangements
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(Fig. 1b). Mutation rates are modulated by additional fac-

tors, including proteins involved in replication other than

the polymerase, the mode of replication, and the template

sequence and structure. In this review, we discuss how

these different factors control viral mutation rates.

RNA viruses versus DNA viruses

The Baltimore classification of viruses establishes the fol-

lowing categories according to the genetic material

contained in the virion: positive-strand RNA viruses (e.g.,

rhinoviruses, hepatitis C virus, noroviruses, tobacco mosaic

virus), negative-strand RNA viruses (influenza viruses,

Ebola virus, rabies virus), double-strand RNA viruses (ro-

taviruses, bursal disease virus), retroviruses (HIV, human T

cell leukemia virus), para-retroviruses (hepatitis B viruses),

single-stranded DNA viruses (parvoviruses, bacteriophage

/X174), and double-stranded DNA viruses (papillo-

maviruses, herpesviruses, adenoviruses, poxviruses).

Viruses are the biological systems with the widest variation

in mutation rates, the largest differences being found

between RNA and DNA viruses. A summary of mutation

rates for different viruses is provided in Table 1. As dis-

cussed in previous work, the reliability of some of these

rates is compromised by several sources of estimation error

and bias [1]. Despite these uncertainties, it can be inferred

that viral mutation rates roughly range between 10-8 and

10-4 substitutions per nucleotide per cell infection (s/n/c),

with DNA viruses occupying the 10-8–10-6 range and

RNA viruses the 10-6–10-4 range (Fig. 2a). These dif-

ferences have several mechanistic bases. First, the

polymerases of the vast majority of RNA viruses lack 30

exonuclease proofreading activity and hence are more

error-prone than those of DNA viruses [9, 10]. The

exception to this rule is provided by coronaviruses, a

family of positive-strand RNA viruses encoding a complex

RNA-dependent RNA polymerase that has a 30 exonucle-
ase domain [11]. Reverse transcriptases (RTs) also lack 30

exonuclease activity [12, 13] and, hence, retroviruses

(viruses with RNA-containing virions and a cellular DNA

stage) and para-retroviruses (viruses with DNA-containing

virions and a cellular RNA stage) mutate and evolve at

rates similar to those of non-reverse transcribing RNA

viruses (the latter are often called riboviruses).

Whereas the dichotomy between RNA/RT and DNA

viruses is well established from genetic and mechanistic

standpoints, differences are less clear from the point of

view of molecular evolution [14]. Some DNA viruses have

been shown to evolve at rates close to those of RNA

viruses, including emerging canine parvovirus strains [15],

human parvovirus [16], tomato yellow leaf curl gemi-

nivirus [17], beak-and-feather disease circovirus [18], and

African swine fever virus (ASFV) [19], among others. This

underscores the fact that evolution depends on multiple

factors other than mutation rate, but also that mutation rates

are unknown for many DNA viruses and may, in some

cases, be higher than currently believed. Recent work with

human cytomegalovirus has suggested a genome-wide

average of 2 9 10-7 s/n/c, a value slightly higher than

previously thought for a large double-strand DNA virus

[20], although this estimate was indirect. Since many DNA

and RNA viruses share similar lifestyles, the question

arises as to why mutation rates should have evolved so

differently in these two broad groups.

Single-strand viruses show higher mutation rates
than double-strand viruses

Single-strand DNA viruses tend to mutate faster than

double-strand DNA viruses, although this difference is

based on work with bacteriophages, as no mutation rate

estimates have been obtained for eukaryotic single-strand

DNA viruses [1]. Within RNA viruses, there are no obvi-

ous differences in mutation rate among Baltimore classes

(Fig. 2a). The mechanisms underlying these differences are

not well understood. One possible explanation for the dif-

ferences between single and double-strand viruses is that

single-strand nucleic acids are more prone to oxidative

deamination and other types of chemical damage. Elevated

levels of reactive oxygen species (ROS) and other cellular

metabolites during viral infections can induce mutations in

the host cell and in the virus. For instance, ethanol is likely

to synergize with virus-induced oxidative stress to increase

the mutation rate of HCV [21]. Differences among single-

and double-strand DNA viruses may also be explained in

terms of their access to post-replicative repair. Work with

bacteriophage /X174 has provided interesting clues on this
issue. In enterobacteria, methyl-directed mismatch repair

(MMR) is performed by MutHLS proteins and Dam

methylase. Dam methylation of GATC sequence motifs is

used to differentiate the template and daughter DNA

strands and is thus required to perform mismatch correction

[22]. Mismatches are recognized by MutS, which interacts

with MutL and leads to the activation of the MutH

endonuclease, which excises the daughter strand. However,

the genome of bacteriophage /X174 has no GATC

sequence motifs, even if approximately 20 such sites are

expected by chance. As a result, the /X174 DNA cannot

undergo MMR. This contributes to explaining the rela-

tively high mutation rate of this virus, which falls on the

order of 10-6 s/n/c, a value three orders of magnitude

above that of Escherichia coli and highest among DNA

viruses [23]. Avoidance of GATC motifs may be a con-

sequence of selection acting on mutation rate, but also of
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other selective factors. For instance, inefficient methylation

of the phage DNA may render it susceptible to cleavage by

MutH, therefore imposing a selection pressure against

GATC sequence motifs [24].

As opposed to bacteriophage /X174, the link between

post-replicative repair and mutation rate is still unclear in

eukaryotic viruses. Numerous studies have shown that

viruses interact with DNA damage response (DDR) path-

ways by altering the localization or promoting the

degradation of DDR components [25, 26]. For instance, the

adenoviral E4orf6 protein promotes proteasomal degrada-

tion of TOPBP1, a DDR component [27]. DDR activation

can occur as an indirect consequence of cellular stress due

to the infection per se or as a part of an antiviral response,

which would be in turn counteracted by viruses. Although

DNA viruses tend to promote genomic instability in the

host cell, it remains to be shown whether DDR dysregu-

lation can determine DNA virus mutation rates.

Table 1 Summary of viral mutation rates

Class Virus Genome

size (kb)

Average mutation

rate (s/n/c)a
Individual estimates (s/n/c)b and references

ss(?)RNA Bacteriophage Qbc 4.22 1.4 9 10-4 1.4 9 10-4 [29]

Tobacco mosaic virus 6.40 8.7 9 10-6 8.7 9 10-6 [128]

Human rhinovirus 14 7.13 6.9 9 10-5 4.8 9 10-4 [129], 1.0 9 10-5 [130]

Poliovirus 1 7.44 9.0 9 10-5 2.2 9 10-5 [131, 132], 1.1 9 10-4 [133],

3.0 9 10-4 [134]

Human norovirus G1 7.65 1.5 9 10-4 1.5 9 10-4 [74]

Tobacco etch virus 9.49 1.2 9 10-5 3.0 9 10-5 [135], 4.8 9 10-6 [136]

Hepatitis C virus 9.65 3.8 9 10-5 1.2 9 10-4 [137], 2.5 9 10-5 [138], 2.0 9 10-5

[138], 3.5 9 10-5 [105]

Murine hepatitis virus 31.4 3.5 9 10-6 3.5 9 10-6 [139]

ss(-)RNA Vesicular stomatitis virus 11.2 3.7 9 10-5 6.9 9 10-5 [140, 141], 1.8 9 10-5 [142],

4.2 9 10-5 [143]

Influenza A virus 13.6 2.5 9 10-5 4.5 9 10-5 [144], 7.1 9 10-6 [145], 3.9 9 10-5

[146], 3.1 9 10-5 [147]

Measles virusd 15.9 3.5 9 10-5 2.8 9 10-5 [148], 4.4 9 10-5 [149]

dsRNA Bacteriophage U6 13.4 1.6 9 10-6 1.6 9 10-6 [82]

Reverse transcribing Duck hepatitis B virus 3.03 2.0 9 10-5 2.0 9 10-5 [150]

Spleen necrosis virus 7.80 3.7 9 10-5 2.4 9 10-5 [151], 5.8 9 10-5 [152]

Murine leukemia virus 8.33 3.0 9 10-5 6.0 9 10-6 [153], 4.2 9 10-5 [154], 1.1 9 10-4

[155, 156]

Bovine leukemia virus 8.42 1.7 9 10-5 1.7 9 10-5 [157]

Human T-cell leukemia virus 8.50 1.6 9 10-5 1.6 9 10-5 [158]

HIV-1 (free virions) 9.18 6.3 9 10-5 4.9 9 10-5 [76, 159, 160], 1.0 9 10-4 [161],

8.7 9 10-5 [162], 4.4 9 10-5 [163], 3.6 9 10-5

[99], 9.3 9 10-5 [63]

HIV-1 (cellular DNA) 9.18 4.4 9 10-3 4.4 9 10-3 [63]

Foamy virus 13.2 2.1 9 10-5 2.1 9 10-5 [164]

Rous sarcoma virus 9.40 1.4 9 10-4 1.4 9 10-4 [165]

ssDNA Bacteriophage UX174 5.39 1.1 9 10-6 1.3 9 10-6 [166], 1.0 9 10-6 [23]

Bacteriophage m13 6.41 7.9 9 10-7 7.9 9 10-7 [94]

dsDNA Bacteriophage k 48.5 5.4 9 10-7 5.4 9 10-7 [167, 168]

Herpes simplex virus 152 5.9 9 10-8 5.9 9 10-8 [169, 170]

Bacteriophage T2 169 9.8 9 10-8 9.8 9 10-8 [167, 171]

Human cytomegalovirus 235 2.0 9 10-7 2.0 9 10-7 [20]

a Geometric mean of the individual estimates
b Mutation rates were normalized to s/n/c units as detailed in previous work [1]
c This corresponds to a consensus estimate from several studies, see original publication for details
d Assuming linear replication, see original references for details
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Viruses with smaller genomes tend to mutate faster

A general inverse correlation between genome size and

mutation rate applies to DNA-based microorganisms

including viruses, bacteria and unicellular eukaryotes [28].

According to this rule, the per-genome mutation rate stays

relatively constant at a value of approximately 0.003 per

round of copy. A similar negative relationship seems to

exist in RNA viruses, but their smaller genome size range

of variation makes it more difficult to detect such trend

(Fig. 2b). Supporting this correlation, however, coron-

aviruses have the largest genomes among RNA viruses

(30–33 kb) and have evolved proofreading capacity, as

opposed to all other RNA viruses known [11]. Conversely,

one of the highest mutation rate described for a ribovirus

corresponds to bacteriophage Qb, which has one of the

smallest RNA genomes [29]. Therefore, there appears to be

a general negative correlation between mutation rates and

genome size in microorganisms. However, the underlying

causes remain unclear, both at the mechanistic and evolu-

tionary levels. First, there are no known differences in

intrinsic replication fidelity among the polymerases of

different RNA viruses (excepting coronavirus exonuclease

activity). Second, in DNA viruses, those with higher esti-

mated mutation rates have smaller genomes, but also have

single-strand DNA (Fig. 2). Estimates for small double-

strand DNA viruses would be needed to clarify which of

these two factors contributes more to elevating mutation

rates. The observation that most highly variable and rapidly

evolving DNA viruses have small genomes (including

double-strand viruses) indirectly supports an effect of

genome size [3].

Candidatemechanisms thatmight account formutation rate

differences between large and small DNAvirusesmay involve

virus–DDR interactions. Whereas many viruses appear to

evadeDDR, others seem to use it for their own benefit [25, 26].

Polyomaviruses, papillomaviruses and parvoviruses induce

and depend on DDR signaling pathways for efficient replica-

tion [30–32]. These viruses share the property of having small,

circular DNA genomes which do not encode a polymerase. As

such, they depend directly on the cellular replication machin-

ery, as opposed to larger DNA viruses. It is possible that some

small viruses promote the DDR to prolong the S cell-cycle

phase, which offers a more favorable environment for repli-

cation. By adopting circular genomes, these viruseswould also

avoid the formation of genome concatemers, a typical effect of

DDR in linear viral genomes such as, for instance, aden-

oviruses [33].Whether differences inDDR activation between

small/circular and large/linear DNA viruses translate into

mutation rate differences remains to be tested. The DDR

comprises error-prone DNA polymerases for re-synthesis of

excised strands [34], and involvement of these polymerases in

viral replication may lead to higher mutation rates.

Polymerase fidelity variants

Intrinsic polymerase fidelity (i.e., the ability to incorporate

the correct base and exclude incorrect bases from the active

site during DNA synthesis) is a primary mutation rate

Fig. 2 Mutation rate variation across viruses. a Range of variation of

mutation rates for the seven Baltimore classes of viruses (ss single-

strand, ds double-strand; ?/- genome polarity, RT retroviruses, pRT

para-retroviruses). In the RT group, all mutation rates fall in the non-

hatched arrow region except the HIV-1 mutation rate measured in

cellular DNA, which is orders of magnitude higher than the rate

measured in plasma. This is because many APOBEC-edited viral

genomes fail to produce viable progeny and hence do not reach

plasma (see text for details). b Negative correlation between genome

size and mutation rate in viruses. Baltimore groups are indicated. The

observed correlation can be explained in terms of differences between

RNA and DNA viruses and between ss and ds viruses. In the RT

group, the extremely high mutation rate of HIV-1 in cellular DNA is

indicated with an arrow. In contrast, the HIV-1 mutation rate

measured in plasma falls within the usual RT range
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determinant. Polymerase variants with altered fidelity have

been artificially selected in a number of RNA viruses by

subjecting laboratory populations to mutagenic treatments

[35]. For instance, serial passaging of poliovirus in the

presence of the base analog ribavirin led to the selection of

a polymerase variant (G64S) with threefold increased

fidelity [36]. This same mutation also confers increased

fidelity in the related human enterovirus 71 [37], and other

amino acid replacements such as L123F have also been

shown to modify the replication fidelity of this virus [38].

Passaging of coxsackievirus B3 (also a member of the

enterovirus genus in the picornavirus family) in the pres-

ence of ribavirin or 5-azacytidine selected for another

fidelity variant in the viral polymerase (A372V) [39].

Outside picornaviruses, fidelity variants have been more

recently obtained by serial mutagen treatment in chikun-

gunya virus [40], influenza A virus [41], and West Nile

virus [42]. Several antivirals and notably many antiretro-

viral drugs are base analogs. Resistance to these treatments

is well documented in the HIV-1 RT and some of these

variants modify replication fidelity, as determined in vitro

or in cell cultures [13]. Intrinsic fidelity can be determined

by residues located inside or outside the catalytic domain

[43, 44]. For instance, reorientation of the triphosphate

moiety of the incoming nucleotide is a fidelity checkpoint

in poliovirus polymerase [45]. Interestingly, recent work

has shown that replication fidelity can also be determined

by proteins of the replication complex other than the viral

polymerase. Serial passages of chikungunya virus in the

presence of nucleoside analogs favored the appearance of

substitution G641D in the RNA helicase nsP2 [40]. This

variant increased replication fidelity through mechanisms

linked to reduced helicase activity, increased replication

kinetics, and resistance to low nucleotide concentrations

[46]. Fidelity variants demonstrate the ability of RNA

viruses to evolutionarily adjust mutation rates in response

to selection acting on mutation rate or other traits.

DNA virus mutation rates also respond to selection, as

shown in earlier work with bacteriophage T4 in which a

series of polymerase variants were identified following

chemical mutagenesis [47]. T4 polymerase variants

showing strongly increased fidelity have been described (as

opposed to more modest effects in RNA viruses) and tend

to map to the central palm and the carboxyl-terminal thumb

subdomain of the viral polymerase. Mutator phenotypes

have also been described in T4. This phenotype can be

conferred by changes in replication factors such as single

stranded DNA-binding proteins or helicase proteins [48].

However, the strongest mutator phenotypes (up to 400-fold

increase in mutation rate) often result from 30 exonuclease
inactivation in T4 [47]. Similar results were obtained with

herpes simplex virus type 1 (HSV-1), for which mutations

in the conserved regions of the polymerase domain were

found to modify replication fidelity. A HSV-1 polymerase

mutant containing Y577H/D581A substitutions was

exonuclease-deficient and exhibited a mutator phenotype.

However, this variant rapidly evolved a compensatory

substitution (L774F) that restored DNA replication fidelity

in this genetic background [49, 50]. Since RNA virus

polymerases typically lack this activity, no such mutators

can be produced, except for coronaviruses [51]. Further-

more, the genetic diversity of RNA viruses is probably

closer to an upper tolerability limit beyond which the

population genetic load increases to levels incompatible

with virus survival [3, 52]. Therefore, both biochemical

and population-genetic factors limit the appearance of

strong mutators in RNA viruses.

Host-encoded mutation rate modifiers in RNA
and reverse-transcribing viruses

Whereas post-replicative repair probably plays a role in

determining DNA virus mutation rates (as discussed

above), RNA virus mutation rates are strongly influenced

by other host-encoded factors. Apolipoprotein B mRNA-

editing catalytic polypeptide-like enzymes (APOBEC) are

a family of cellular cytidine deaminases that function as an

innate cellular defense against retroviruses [53]. This

family has expanded and diverged throughout vertebrate

evolution and includes five APOBECs [54]. APOBEC3G

was first shown to massively convert cytidines to uracils in

the complementary HIV-1 DNA during or following

reverse transcription [55–57]. APOBEC activity is antag-

onized by the viral protein Vif, which binds to and

promotes the proteasomal degradation of APOBEC [58].

There are seven APOBEC3 paralogs in the human genome

(A–D and F–H) which have been shown to also edit

retroelements and other viruses, including hepatitis B virus

[59], papillomaviruses [60], and herpesviruses [61]. Edit-

ing is strongly dependent on sequence-context. The major

determinant of editing for human APOBECs is the -1

base, thus defining typical dinucleotide targets (the edited

base and the -1 base). APOBEC3G prefers CC dinu-

cleotides whereas the other APOBEC forms prefer TC

dinucleotides. DNA editing hotspots have been identified

and depend both on sequence context and DNA secondary

structure [62]. In HIV-1, editing of the complementary

DNA strand produces GG-to-AG or GA-to-AA mutations

in the genomic RNA. In recent work, we have estimated

the relative contributions of host APOBECs and the viral

RT to the total HIV-1 mutation rate in vivo [63]. We found

that the vast majority of mutations (98 %) are produced by

APOBECs and that this elevates the HIV-1 mutation rate by

[40-fold above the RT error rate, making HIV-1 the

fastest mutating virus described so far. In many cases,
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hyper-mutation leads to loss of infectivity and hence

effectively exerts its antiviral action. However, APOBECs

can also produce moderately mutated, viable viruses, thus

raising the question whether these deaminases may con-

tribute to viral diversity and evolution, immune escape, and

drug resistance [64–66].

Double-strand RNA-dependent adenosine deaminases

(ADARs) are another type of host enzymes that edit viral

genomes by deaminating adenosines in long double-stran-

ded RNA and converting them to inosines. The latter base-

pair with guanosines, resulting in A-to-G base substitutions

[67]. ADARs also exhibit sequence context preferences,

although less marked than in the case of APOBECs [68].

ADAR-driven hyper-mutation was first demonstrated in

measles virus [69] and has since been suggested for a

variety of RNA viruses including human parainfluenza

virus [70], respiratory syncytial virus [71], lymphocytic

choriomeningitis virus [72], Rift Valley fever virus [73],

and noroviruses [74].

Lastly, other cellular proteins such as uracil DNA gly-

cosylases (UNG) can modulate viral mutation rates. Uracil

can be found in DNA abnormally due to spontaneous or

enzymatically induced cytidine deamination, leading to

G-to-A mutations. To avoid the deleterious effects of uracil

in DNA, UNG recognizes and excises uracil residues pre-

sent in DNA. The HIV-1 protein Vpr interacts with UNG

and mediates its incorporation into HIV-1 virions. Failure

to incorporate UNG produces a fourfold increase of the

HIV-1 mutation rate in actively dividing cells, and of

18-fold in macrophages [75, 76]. Variations in the con-

centration and balance of dNTPs among cell types may

also influence viral mutation rates [77]. Although analysis

of HIV-1 mutations in various cell lines revealed no

obvious mutation rate differences, it nevertheless showed

differences in the type of mutations produced [78].

Mutation accumulation is determined
by replication mode

In contrast to cells, viruses can adopt a variety of replica-

tion modes. Replication is said to follow a ‘‘stamping

machine’’ model if a single template is used to produce all

progeny strands within a given cell (Fig. 3a). Under this

theoretical model, there is only one round of copying per

cell. In practice, this means that each infecting genome is

used to synthesize a single reverse-complementary inter-

mediate which in turn is used as template for synthesizing

all progeny genomes. This contrasts with semi-conserva-

tive replication, in which each strand is copied once to

produce progeny molecules that are, in turn, used as tem-

plates in the next round of copying. Since under semi-

conservative replication the number of strands doubles in

each cycle, the virus necessarily has to undergo multiple

replication cycles within each cell to produce enough

progeny. Under stamping machine replication the mutation

frequency observed after one cell infection equals the

mutation rate, but under semi-conservative replication this

frequency is also determined by the number of replication

cycles, as mutants become amplified. This means that a

given viral polymerase will produce more mutations per

cell if replication is semi-conservative than if replication is

stamping machine-like. These two models are indeed two

extremes of a continuum of possible replication modes. For

instance, a virus can produce multiple progeny molecules

per round of copying which then undergo a second repli-

cation cycle in the same cell to end up producing hundreds

or thousands of progeny molecules.

It has been suggested that the stamping machine model

has been selectively favored in RNA viruses because it

compensates for the extremely high error rate of their

polymerases [79–81]. Some RNA viruses such as bacte-

riophage /6 [82], bacteriophage Qb [83] and turnip mosaic

virus [84] tend to replicate via the stamping machine

model. However, empirically-informed modeling of the

poliovirus replication cycle indicated multiple rounds of

copying per cell [85]. Similarly, single-cell analysis of the

genetic diversity produced by vesicular stomatitis virus

revealed that some mutations are amplified within cells,

implying that multiple rounds of copying take place per

cell [86]. However, it remains unknown whether a given

virus can modify its replication mode in response to

specific selective pressures in order to promote or down-

regulate mutational output. To a large extent, the replica-

tion mode of most viruses should be dictated by the

molecular mechanisms of replication and, hence, should be

subjected to strong functional constraints. For instance,

bacteriophage /X174 replicates via the stamping machine

mode because it uses rolling circle replication [87, 88]. In

contrast, semi-conservative replication is probably the only

mechanistically feasible replication model for viruses with

large DNA genomes.

Lysis time as a regulator of mutational output

Changes in lysis time can be thought of as another mech-

anism for regulating the production of mutations in viral

populations. Lysis is a tightly regulated process and, in

theory, viral fitness is maximized for some intermediate

lysis time [89–91]. If lysis occurs before this optimum, the

infected cell will release a small amount viral progeny and

hence few cells will be infected in the next infection cycle,

retarding population growth. Yet if lysis occurs after the

optimum, a large amount of progeny will be produced per

cell but cell-to-cell transmission will be delayed. The
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optimal lysis time depends on the time required to start

producing progeny virions (lag/eclipse time), the capacity

of infected cells to produce virions (yield) and virus/host

population densities (multiplicity of infection). However,

the optimum can also vary according to mutation rate.

Bacteriophage /X174 experimental populations treated

with the nucleoside analog 5-fluorouracil showed increased

mutation frequency and reduced growth [92]. As opposed

to other viruses, polymerase fidelity variants cannot evolve

in response to this type of treatment because bacteriophage

/X174, as well as other small DNA viruses, does not code

for a polymerase. Interestingly, 5-fluorouracil selected for

an amino acid replacement in the N-terminal region of the

phage lysis protein (V2A). This change conferred partial

resistance to the drug, but also delayed lysis [93]. In turn,

delayed lysis was concomitant with an increase in the viral

yield per cell, since progeny virions had more time to

accumulate intracellularly. Therefore, at the population

level, growth of the V2A variant occurred through longer

infection cycles with increased per-cell productivity.

However, because the virus replicates following a stamping

machine model, each infection cycle should involve only

one round of copying regardless of lysis time. As a result,

population growth required fewer total rounds of copying

in the delayed lysis variants than in the wild-type, meaning

that mutations had fewer opportunities to accumulate

(Fig. 3b). Therefore, delayed lysis increased the ability of

the phage to tolerate mutagenesis.

Template-dependent effects on mutation rate

The fidelity of a given polymerase varies according to

certain template properties. It is well known that

misalignments at homopolymeric runs can cause frameshift

mutations and base substitutions [94]. Sequence context

may influence the fidelity of HIV-1 RT by modulating

enzyme binding and dissociation [95]. Also, RNA sec-

ondary structures have been shown to promote template

switching, a process that does not lead to new mutations

but produces recombinant viruses [96–98]. In recent work,

we found that RNA structure can also modulate the fidelity

of HIV-1 RT [99]. Shuttle vectors are systems in which

most or all sequences except essential cis-acting elements

(such as the Rev-responsive element or long terminal

repeats) have been removed from the viral genome. Shuttle

vectors allow propagating HIV-1 in the absence of selec-

tion because all required functions are provided in trans by

helper plasmids that are freshly provided in each infection

cycle [100] (Fig. 4a). The shuttle vector simply carries

forward sequences of interest, which can be reporter genes

for selecting and visualizing transduced cells, or transgenes

for engineering purposes. However, the vector also accepts

HIV-1 sequences. These will have no role in the infection

cycle, as they are not expressed. Because selection is

absent, such HIV-1 sequences cloned in a shuttle vector

can be used for interrogating the viral mutation rate in

cognate templates, which is helpful for testing the effects

of sequence context or RNA structure on mutation rate.

Using this system, we recently characterized the distri-

bution of mutations along the HIV-1 envelope, integrase,

vif, and vpr genes [99]. We found that a 1 kb region

encompassing the V1–V5 loops of the gp120 envelope

protein accumulated approximately three times fewer

mutations than other regions of the HIV-1 genome. This

Fig. 3 Viral replication modes and mutation accumulation. a Stamp-

ing machine versus semi-conservative replication. As opposed to

cells, which use only semi-conservative replication, viruses can adopt

a variety of replication modes. In the stamping machine model, a

single template strand is used to synthesize all progeny genomes

within a given cell. However, this is not possible in practice because

replication requires synthesis of complementary strands or ‘‘anti-

genomes’’ (blue). Under this model, the mutation frequency after one

cell infection cycle will equal the mutation rate except if mutations

occur during the first round of copying (from genome to anti-

genome), in which case they will be present in all of the viral

progeny. Under semi-conservative replication, multiple rounds of

copying are required to produce enough progeny, thus allowing for

the intra-cellular accumulation of mutations. b Relationship between

lysis time and mutation accumulation. Longer cell infection cycles

(late burst) can allow for the production of more progeny viruses.

Under semi-conservative replication, this will require more rounds of

copying but, if replication follows the stamping machine model, the

number of rounds of copying will not change (more progeny genomes

will be produced from the same template). Hence under this model, a

late-burst virus variant will undergo fewer total rounds of copying at

the population scale than early-burst variants and will tend to

accumulate fewer mutations

4440 R. Sanjuán, P. Domingo-Calap

123



coldspot mapped to the outermost domains of gp120,

which are preferred targets of circulating antibodies and

show extensive glycosylation. Examination of this region

revealed two differential properties. First, it contained

fewer-than-expected GG and GA dinucleotides, which are

the preferred sequence contexts of APOBEC3, as previ-

ously discussed [101, 102]. As a result, APOBEC-driven

G-to-A mutations were less frequent in V1–V5 than in

other genome regions. Second, using the RNA structure

morel previously determined by selective 20-hydroxyl
acylation analyzed by primer extension (SHAPE), we

found that this 1 kb region exhibited significantly fewer

RNA base-pairs than other regions of the envelope gene

[103]. To more directly test the effect of RNA structure on

HIV-1 RT fidelity, we used in vitro polymerization assays

with two different templates: a random sequence and RNA

from potato spindle tuber viroid, which shows a marked,

stem-like secondary structure [104]. We found an increased

RT error rate in the viroid RNA compared to the random

sequence, suggesting that RT fidelity decreases in highly

structured RNA.

Using a conceptually similar approach, we recently

characterized the accumulation of mutations along the

HCV genome under weak or no selection using a bicis-

tronic replicon by cloning HCV sequences at a site

commonly used for inserting reporter genes (Fig. 4b). This

revealed extreme mutation rate variations across individual

nucleotide sites of the viral genome, with differences of

orders of magnitude even between adjacent sites [105]. In

that system, we found little or no effect of RNA structure

on mutation rate, but a more significant effect of base

identity, such that A and U bases were more prone to

mutation than G and C.

Targeted hyper-mutation in viruses

The finding that HIV-1 has a reduced mutation rate in the

genome region encoding the outermost domains of the

gp120 envelope protein reveals an uncoupling between

mutation rate and genetic diversity, as these domains are

the most variable regions of the HIV-1 genome, mainly as

a consequence of immune pressure [106]. This indicates

that HIV-1 has not evolved the ability to target mutation to

regions wherein they are more likely to be needed for

adaptation. A possible evolutionary explanation for the

gp120 V1–V5 coldspot is that some APOBEC-driven

mutations favored by immune pressure during HIV-1

evolutionary history resulted in loss of APOBEC targets,

leading to a subsequent reduction in mutation rate. Simi-

larly, strong selection at the protein level may have favored

amino acid replacements within this region even at the cost

of disrupting pre-existing RNA secondary structures and,

as a consequence, these RNA structural changes would

have modified replication fidelity [99]. In HCV, we found

no significant differences in mutation rate across genes

[105], as opposed to genetic variation, which concentrates

in specific genomes regions including external domains of

Fig. 4 Cell culture systems for the accumulation of mutations in the

absence of selection. a HIV-1 shuttle vector. The vector contains only

cis-acting HIV-1 sequences such as the Rev-responsive element

(RRE), the encapsidation signal (W), and the long terminal repeats

(LTR). A resistance gene (RES, red) is inserted to allow for the

selection of cells containing the vector. Any (short) sequence of

interest (SEQ, blue), including HIV sequences, can be cloned in the

shuttle vector and propagated in the absence of selection. The shuttle

vector DNA is co-transfected with helper plasmids encoding the Gag

(capsid) and Pol (RT, integrase) proteins as well as a viral

glycoprotein suited for transducing a given cell line (here vesicular

stomatitis G protein, VSV-G, which has a broad tropism). Pseudo-

typed viruses are produced, used for transduction, and cells carrying

the retroviral shuttle vector are selected with the appropriate

antibiotic. The infection cycle can be restarted at any time by

transfecting the two helper plasmids. The SEQ DNA is then extracted,

PCR-amplified, and sequenced to score mutations. b HCV replicon.

Two cistrons are separated by an internal ribosome entry site (IRES).

The right cistron encodes HCV non-structural (NS) proteins required

for replication, but lacks the envelope proteins and hence does not

support viral budding. The left replicon carries a resistance gene to

select cells carrying the replicon. Reporters such as luciferase can be

also cloned in this cistron. Since these play no function, they can be

replaced with any short sequence of interest (SEQ), including HCV

sequences. Replicon RNA is obtained by in vitro transcription and

transfected into Huh7 hepatoma cells. Cells are selected using the

appropriate antibiotic and passaged before confluence to allow

vigorous replication of the viral RNA. The SEQ RNA is reverse-

transcribed, PCR-amplified, and sequenced to score mutations
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the E2 envelope protein [107]. This again supports the view

that RNA viruses cannot target mutations to specific gen-

omes regions to improve their adaptability.

This contrasts with bacteria and DNA viruses, in which

mechanisms of error-prone replication have evolved at

specific loci involved in host-pathogen interactions

[108–110]. A well-characterized system of mutation tar-

geting, called diversity-generating retro-elements (DGRs),

is found in large DNA bacteriophages [110]. DGRs are

typically located in genes involved in host attachment, a

step of the infection cycle that is subject to rapid changes

depending on host species availability. DGRs were first

identified in the Bordetella BPP-1 bacteriophage [111], and

always contain two sequence repeats called variable repeat

(VR) and template repeat (TR). The BPP-1 VR is located

in the 30 end of the mtd gene (major tropism determinant),

which encodes a tail fiber protein. The TR is located

downstream of the VR and has a highly conserved

sequence, in contrast to the VR. An RT is also encoded by

the DGR and synthesizes a cDNA from the TR transcript, a

process during which extensive mutagenesis of adenines

takes place by a key unknown mechanism. The cDNA is

then transferred to the VR, producing a large number of

variants of the mtd gene capable of interacting with new

host ligands [112]. Some hypervariable genes in DNA

viruses from the human lower gastrointestinal tract show

homology with the BPP-1 DGR, and most of these loci are

linked to RT genes, suggesting the presence of DGRs

[113]. DGRs have also been described in plasmids, bac-

terial and archaeal chromosomes, and archaeal viruses

[114–116]. It therefore appears that at least some

prokaryotic DNA viruses have evolved the ability to target

mutations to specific regions, as opposed to RNA viruses.

Interplays between mutation and recombination

Diversity-generating retro-elements have not been descri-

bed in eukaryotic viruses, but these viruses can use other

mechanisms of mutational targeting that involve recombi-

nation. The inverted terminal repeats of vaccinia virus

contain 10–100 base repeated sequence motifs known to

experience frequent unequal crossover events and rapid

changes in copy number [117, 118]. Recombination has

been shown to promote the rapid production of genetic

diversity in other genome regions of the vaccinia virus

involved in immune escape and the colonization of novel

hosts. Protein kinase R (PKR) is a central effector of innate

antiviral immunity that induces translational shutoff,

modifies protein phosphorylation status, alters mRNA sta-

bility, and induces apoptosis [119]. Poxvirus proteins K3L

and E3L block PKR and have evolved as antagonists of

innate immune responses in a host-specific manner

[120, 121]. Experimental deletion of E3L renders vaccinia

virus more susceptible to host antiviral responses, imposing

a strong selection pressure in the other PKR suppressor

K3L to increase its function [108]. Serial transfers of E3L-

deleted vaccinia virus led to an elevated K3L copy number,

a recombination-driven process that allowed the virus to

overexpress this gene. This gain-of-function mutation had a

direct fitness benefit, but also increased the number of

available targets for the appearance of subsequent selec-

tively advantageous point mutations in K3L. Remarkably,

upon selection of these mutants K3L copy numbers were

again reduced. Hence, recombination led to an evolution-

ary process characterized by expansion and contraction of a

specific genome region. These so-called genomic accor-

dions have been posited to mediate adaptive duplications in

other poxviruses such as myxoma virus [122].

Interesting interplays between recombination andmutation

rates have also been recently found inRNAviruses. These two

processes are primarily controlled by the viral polymerase

since, in RNA viruses, recombination takes place when the

viral polymerase switches between different template gen-

omes present in the same cell [123]. The estimated

recombination rates of different riboviruses and retroviruses

correlate positively with estimated mutation rates [124]. High

mutation rates confer viruses the ability to rapidly produce

advantageousmutations, but also inflate thegenetic loadof the

population. In turn, frequent recombination allows beneficial

mutations to unlink from deleterious genetic backgrounds, as

well different beneficial mutations to be combined into the

same genome. As such, recombination is expected to enhance

adaptation when a large number of alleles coexist in the same

population, a scenario that typically takes place at high

mutation rates [125]. Experimental evidence supporting the

joint effects of recombination and mutation rates in viral

adaptability has been recently obtained using poliovirus

polymerase mutants that individually alter replication fidelity

or recombination rate [126]. In another recent work, a low-

fidelity variant of Sindbis virus was found to exhibit increased

recombination [127]. This variant showed low fitness and a

greater tendency to accumulate defective interfering particles

(i.e. mutant viruses with large deletions that depend on and

interfere with the wild-type infection cycle). Therefore, it

appears that high mutation and recombination rates enhance

viral adaptability, but only up to a certain point, beyondwhich

both processes contribute to the accumulation of deleterious

alleles in the population.

Conclusions

Viral mutation rates are determined by multiple processes,

including polymerase intrinsic fidelity, replication mode, 30

exonuclease activity, spontaneous nucleic acid damage,
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access to post-replicative repair, editing by host-encoded

deaminases, imbalances in nucleotide pools, template

sequence context, and template structure, as summarized in

Table 2. Some of these processes underlie large-scale

patterns of variation among viruses, such as differences

between RNA and DNA viruses, between viruses with

small and large genomes, and between single-strand and

double-strand viruses, but important mechanistic aspects

behind these differences still remain uncharacterized.

Furthermore, mutation rates are not static and can evolve in

response to selective pressures, as exemplified by fidelity

variants selected under mutagenic conditions in a variety of

viruses. In addition to polymerase fidelity, other mutation

rate-determinants such as access to DNA repair may have

also changed in response to selective pressures during viral

evolution.

In RNA viruses, both low- and high-fidelity polymerase

variants tend to have a negative impact in viral fitness in

complex environments, suggesting that RNA virus muta-

tion rates have been evolutionarily optimized. Given that

DNA virus mutation rates are substantially lower than

those of RNA viruses this also suggests that DNA viruses

show suboptimal mutation rates for adaptation to rapidly

changing environments, despite RNA and DNA viruses

sharing similar lifestyles. It appears that large DNA viruses

have adopted a different and more elaborate strategy con-

sisting of targeting mutations to specific genome regions

subject to rapidly varying selective pressures, such as genes

encoding attachment proteins or inhibitors of innate

immunity responses. Mutation targeting mechanisms such

as DGRs and recombination-driven gene copy amplifica-

tion are probably not accessible to small DNA viruses with

compact genomes. Furthermore, mutation rate evolution in

small DNA viruses is further constrained by the fact they

do not encode autonomous replication systems. Therefore,

small DNA viruses should rely on repair avoidance and on

use of host-encoded error-prone DNA polymerases to

elevate their mutation rates and achieve faster adaptation.

Elucidating the mutational mechanisms of small DNA

viruses is a current challenge in virus molecular biology

and evolution. Other exciting unresolved questions include

unveiling the interplays between mutation and recombi-

nation, the roles played by viral accessory proteins in

determining mutation rates, the effects of host-encoding

enzymes on viral diversity and evolution, whether mutation

accumulation can be evolutionary adjusted by modifying

viral replication modes, and how template sequences reg-

ulate viral mutation rates.
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123. Pérez-Losada M, Arenas M, Galán JC, Palero F, González-
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