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We report re-optimization of a recently proposed long-range corrected (LC) hybrid density func-
tionals [J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008)] to include empirical
atom-atom dispersion corrections. The resulting functional, ωB97X-D yields satisfactory accuracy
for thermochemistry, kinetics, and non-covalent interactions. Tests show that for non-covalent sys-
tems, ωB97X-D shows slight improvement over other empirical dispersion-corrected density func-
tionals, while for covalent systems and kinetics, it performs noticeably better. Relative to our
previous functionals, such as ωB97X, the new functional is significantly superior for non-bonded
interactions, and very similar in performance for bonded interactions.

I. INTRODUCTION

Due to its favorable cost-to-performance ratio, Kohn-
Sham density-functional theory (KS-DFT) [1, 2] has be-
come the most popular electronic structure theory for
large-scale ground-state systems [3–5]. Its extension for
treating excited-state systems [6, 7], time-dependent den-
sity functional theory (TDDFT), has also been developed
to the stage where it is now very widely used.

The essential ingredient of KS-DFT, the exchange-
correlation energy functional Exc, remains unknown and
needs to be approximated. Semi-local gradient-corrected
density functionals, though successful in many applica-
tions, lead to qualitative failures in some circumstances,
where the accurate treatment of non-locality of exchange-
correlation hole becomes crucial. These situations occur
mostly in the asymptotic regions of molecular systems,
such as spurious self-interaction effects upon dissociation
[8, 9] and dramatic failures for long-range charge-transfer
excitations [10–12]. Widely used hybrid density function-
als, like B3LYP [13, 14], do not qualitatively resolve these
problems.

These self-interaction errors can be qualitatively re-
solved using the long-range corrected (LC) hybrid density
functionals [15, 16, 18], which employ 100% Hartree-Fock
(HF) exchange for long-range electron-electron interac-
tions. This is accomplished by a partition of unity, using
erf(ωr)/r for long-range (treated by HF exchange) and
erfc(ωr)/r for short-range (treated by an exchange func-
tional), with the parameter ω controlling the partition-
ing. Over the past five years, the LC hybrid scheme has
been attracting increasing attention [15] since its compu-
tational cost is comparable with standard hybrid func-
tionals [13]. However, LC functionals have tended to be
inferior to the best hybrids for properties such as ther-
mochemistry.
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Recently we have improved the overall accuracy at-
tainable with the LC functionals by using a systematic
optimization procedure [18]. One important conclusion is
that optimizing LC and hybrid functionals with identical
numbers of parameters in their GGA exchange and cor-
relation terms leads to noticeably better results for all
properties using the LC form. The resulting LC func-
tional is called ωB97. Further statistically significant
improvement results from re-optimizing the entire func-
tional with one extra parameter corresponding to an ad-
justable fraction of short-range exact exchange, defining
the ωB97X functional. Independent test sets covering
thermochemistry and non-covalent interactions support
these conclusions. However, problems associated with
the lack of non-locality of the correlation hole, such as
the lack of dispersion interactions (London forces), still
remain, as the semi-local correlation functionals cannot
capture long-range correlation effects [19, 20].

There have been significant efforts to develop a frame-
work that can account for long-range dispersion effects
within DFT. Zaremba and Kohn (ZK) [21] derived an
exact expression for the second-order dispersion energy
in terms of the exact density-density response functions
of the two separate systems. To obtain a tractable non-
local dispersion functional, Dobson and Dinite (DD) [22]
made local density approximations to the ZK response
functions. DD’s non-local correlation functional was ob-
tained independently [23] by modifying the effective den-
sity defined in the earlier work of Rapcewicz and Ashcroft
[24].

Starting from the formally exact expression of KS-
DFT, the adiabatic connection fluctuation-dissipation
theorem (ACFDT), for the ground-state exchange-
correlation energy, Langreth and co-workers [25] devel-
oped a so-called van der Waals density functional (vdW-
DF) by making a series of reasonable approximations to
yield a computationally tractable scheme.

Recently, Becke and Johnson (BJ) developed a series
of post-HF correlation models with a novel treatment for
dispersion interactions based on the exchange-hole dipole
moment [26]. The origin of dispersion claimed in the
BJ models was recently questioned by Alonso, and A.
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Mañanes [27], and Ángyán [28] further showed that the
BJ models effectively contain correlation effects. Never-
theless, the BJ models show promises in computing accu-
rate interatomic and intermolecular C6, C8, and C10 dis-
persion coefficients with only a few empirical parameters.
Furthermore, as a post-HF method, the BJ functional is
intrinsically free of self-interaction errors.

Alternatively, one can add an empirical atom-atom dis-
persion potential to an existing density functional, to ob-
tain a correction that is essentially of zero cost and zero
complexity. Such an approach was used long ago to cor-
rect HF calculations [29], and over the past 8 years has
been incorporated into density functional theory [30–43].
These DFT-D (density functional theory with empirical
dispersion corrections) schemes have shown generally sat-
isfactory performance on a large set of non-covalent sys-
tems [35, 40]. Currently available functionals of this type,
such as B3LYP-D and B97-D appear to yield results for
covalent systems that are at least comparable to their
parent methods (e.g. B3LYP and B97).

Since we have recently demonstrated that fully opti-
mized LC functionals such as ωB97 and ωB97X [18] can
yield better results for covalent systems than traditional
hybrids or LC functionals that are not fully re-optimized,
it seems natural to explore whether further improvements
are possible by incorporating empirical atom-atom dis-
persion corrections. In this work, we therefore introduce
an empirical dispersion correction to the ωB97X, as this
provides the missing pieces of the long-range vdW inter-
actions without additional computational costs. It also
emerges that optimization of the ωB97 functional with
empirical dispersion corrections leads to essentially zero
dispersion correction. Our results are compared with
those by other DFT-D functionals as well as our previous
LC hybrid functionals.

II. THE DFT-D SCHEME

Following the general form of the DFT-D scheme [30–
43], our total energy

EDFT-D = EKS-DFT + Edisp (1)

is computed as the sum of a KS-DFT part, using the
ωB97X [18] functional, and an empirical atomic-pairwise
dispersion correction. We choose to use an unscaled dis-
persion correction, given by

Edisp = −

Nat−1∑

i=1

Nat∑

j=i+1

Cij
6

R6
ij

fdamp(Rij) (2)

where Nat is the number of atoms in the system, Cij
6 is

the dispersion coefficient for atom pair ij, and Rij is an
interatomic distance. The conditions of zero dispersion
correction at short interatomic separations and correct
asymptotic pairwise vdW potentials are enforced by in-

FIG. 1: Dispersion energy of the neon dimer with and without
the damping functions. The damping function from Wu and
Yang [31] fWu-Yang

damp (R) = 1/(1 + exp[−d(R/Rr − 1)]) (Rr is
the sum of vdW radii of the two neon atoms), and from the
present work [see Eq. (3)] are compared with the undamped
function.
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troducing a damping function,

fdamp(Rij) =
1

1 + a(Rij/Rr)−12
(3)

which reduces to one at large Rij , while vanishing fast
enough to prevent divergence of the undamped vdW po-
tentials at small Rij . Here, Rr is the sum of vdW radii of
the atomic pair ij [34], and the only nonlinear parame-
ter, a, controls the strength of dispersion corrections. As
shown in Fig. 1, our new damping function correctly fixes
the undesirable divergence of dispersion correction at the
small nuclear distance R of the neon dimer, while the
Wu-Yang damping function [31], widely used by many
DFT-D functionals [34], does not completely remedy this
problem (though this should not be a problem in prac-
tice).

To summarize, except for using our new damping func-
tion and constraining for the correct asymptotic pair-
wise vdW potentials (i.e. no overall scaling), we fol-
low Grimme’s work [34] for computing the empirical dis-
persion corrections, and denote this new functional as
ωB97X-D.

To achieve an optimized functional for well-balanced
performance across typical applications, we use the same
diverse training set described in Ref. [18], that contains
412 accurate experimental and accurate theoretical re-
sults, including the 18 atomic energies from the H atom
to the Ar atom [44], the atomization energies (AEs)
of the G3/99 set [45–47] (223 molecules), the ioniza-
tion potentials (IPs) of the G2-1 set [48] (40 molecules,
excluding SH2 (2A1) and N2 (2Π) cations due to the
known convergence problems for semilocal density func-
tionals [46]), the electron affinities (EAs) of the G2-1 set
(25 molecules), the proton affinities (PAs) of the G2-1
set (8 molecules), the 76 barrier heights (BHs) of the



3

TABLE I: Optimized parameters for the ωB97X-D.

a 6.0

ω 0.2 Bohr−1

cxσ,0 7.77964E − 01

ccσσ,0 1.00000E + 00

ccαβ,0 1.00000E + 00

cxσ,1 6.61160E − 01

ccσσ,1 −6.90539E + 00

ccαβ,1 1.79413E + 00

cxσ,2 5.74541E − 01

ccσσ,2 3.13343E + 01

ccαβ,2 −1.20477E + 01

cxσ,3 −5.25671E + 00

ccσσ,3 −5.10533E + 01

ccαβ,3 1.40847E + 01

cxσ,4 1.16386E + 01

ccσσ,4 2.64423E + 01

ccαβ,4 −8.50809E + 00

cx 2.22036E − 01

NHTBH38/04 and HTBH38/04 sets [49, 50], and the 22
non-covalent interactions of the S22 set [51]. To pre-
vent the double-counting of total energy from the KS-
DFT and the dispersion corrections, all the parameters
in ωB97X-D, are determined self-consistently by a least-
squares fitting procedure described in Ref. [18]. For the
non-linear parameter optimization, we focus on a range of
possible ω values (0.0, 0.1, 0.2, 0.3, 0.4, and 0.5 Bohr−1),
and optimize the corresponding a values in steps of 0.1
for a ≤ 1, in steps of 1 for 1 < a ≤ 10, in steps of 10 for
10 < a ≤ 60, and in steps of 20 for a > 60. The func-
tional expansions employed in ωB97X-D are truncated at
m = 4 with the uniform electron gas (UEG) limit being
satisfied. The S22 data is weighted ten times more than
the others. The optimized parameters of the ωB97X-D
functional are given in Table I.

In Fig. 2, the root-mean-square errors of the train-
ing set for ωB97X-D optimized at different values of ω
are plotted. At ω = 0.2 Bohr−1, the optimization is
done self-consistently, while at other values of ω, non-self-
consistent orbitals are used for the linear least-squares
fittings to reduce the difficulty. At ω = 0.0 and 0.1
Bohr−1, the corresponding RSHXLDA orbitals [17] are
used, and at ω = 0.3 and 0.4 Bohr−1, the ωB97X and
ωB97 orbitals [18] are used respectively. As previously
demonstrated [18], these results should only change in-
significantly, when using self-consistent orbitals. As the
root-mean-square errors at ω = 0.2 and 0.3 Bohr−1 are
very close to each other, the optimized ω value is finally
chosen to be 0.2 Bohr−1 for the smaller mean absolute
errors.

Some aspects of the optimized parameters are inter-
esting and deserve discussion. First, we observe that the

FIG. 2: The root-mean-square (RMS) errors of the training
set for ωB97X-D optimized at different values of ω. At ω =
0.2 Bohr−1, the optimization is done self-consistently, while
at other values of ω, non-self-consistent orbitals are used for
the linear least-squares fittings (see text).
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optimized value of ω is reduced from ω = 0.3 Bohr−1

in ωB97X to ω = 0.2 Bohr−1 in ωB97X-D. At the same
time, the fraction of short-range exact exchange increases
by about 40% (from about 0.16 to about 0.22). Ev-
idently the inclusion of long-range dispersion increases
the optimal length scale on which we have 100% exact
exchange, while at short distances we have increased the
fraction of exact exchange. This increase of the fraction
of short-range exact exchange in ωB97X-D is expected to
compensate the reduction of the exact exchange using a
smaller value of ω. The net effect is that ωB97X-D may
have somewhat higher self-interaction errors. Second, re-
garding a possible ωB97-D functional, we find that the
optimized value of ω occurs at 0.3 Bohr−1 with a rather
large a value (a=80). This implies that only very small
dispersion corrections will be obtained, and thus making
ωB97-D functional may not be very helpful for applica-
tions to a variety of non-covalent systems.

The limiting case where ω = 0 for ωB97X-D is also very
interesting, as it reduces to the existing B97 functional
[52] with dispersion corrections. For comparisons within
the training set, we denote this re-optimized functional
as B97-D*. It should be noted that B97-D* contains
a fraction of HF exchange, unlike Grimme’s B97-D func-
tional [34]. The overall performance of our new ωB97X-D
will be compared with other DFT-D functionals, B97-D*,
B97-D [34], B3LYP-D [34], and BLYP-D [34], as well as
our previous LC hybrid functionals, ωB97 and ωB97X
[18].
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III. RESULTS AND DISCUSSION

A. The Training Set

All calculations are performed with a development ver-
sion of Q-Chem 3.0 [53]. Spin-restricted theory is used for
singlet states and spin-unrestricted theory for others. For
the binding energies of the weakly bound systems, the
counterpoise correction [54] is employed to reduce basis
set superposition error (BSSE).

Results for the training set are computed using the
6-311++G(3df,3pd) basis set with the SG-1 grid [55].
The error for each entry is defined as (error = theoretical
value - reference value). The notation used for charac-
terizing statistical errors is as follows: mean signed er-
rors (MSEs), mean absolute errors (MAEs), root-mean-
square (rms) errors, maximum negative errors (Max(-)),
and maximum positive errors (Max(+)).

In Table II, the first comparison (ωB97X-D vs B97-
D*) is quite significant because it indicates how much
improvement is possible with the addition of a single
extra parameter that makes long-range exchange exact
and thus self-interaction free. Inspection of the training
results shows significant improvement for both covalent
and non-covalent interactions. ωB97X-D shows a notice-
able overall improvement (about 0.7 kcal/mol) relative to
B97-D*, which we may infer is an indirect consequence
of its asymptotically correct exchange potential.

A second significant comparison is between ωB97X-D
and ωB97X, to assess how significant the empirical dis-
persion corrections are. We observe generally very mod-
est changes in relative energies associated with covalent
interactions, but a significant improvement in the results
for non-covalent interactions (the S22 data). This indi-
cates the limited scope of chemical improvement that is
attainable with the fixed functionality of atom-atom dis-
persion interactions. Nevertheless, this essentially zero
cost correction does correct one clear physical limitation
of ωB97X.

B. The Test Sets

To test the performance of ωB97X-D outside its train-
ing set, we also evaluate its performance on various test
sets involving the additional 48 atomization energies in
the G3/05 test set [56] (other than the 223 atomiza-
tion energies in the G3/99 test set [45–47]), 30 chemi-
cal reaction energies taken from the NHTBH38/04 and
HTBH38/04 databases [49, 50], 29 non-covalent interac-
tions [51, 57], 166 optimized geometry properties of co-
valent systems [58], 12 intermolecular bond lengths [51]
and one long-range charge transfer excitation curve of
two well-separated molecules. There are a total of 286
pieces of data in the test sets. The detailed information
of the test sets as well as the basis sets, and numerical
grids used is given in Ref. [18].

The results for the test sets are summarized in Table
II and III. As can be seen in Table II, ωB97X-D per-
forms the best with an overall accuracy of 2 kcal/mol.
The ωB97X, ωB97, and B3LYP-D functionals also per-
form reasonably well, with overall accuracies of about
2.5 kcal/mol. The semi-local DFT-D functionals, B97-D
and BLYP-D, produce enormously large mean absolute
errors for the atomization energies, which shows the im-
portant role played by mixing of the exact HF exchange
for reducing self-interaction errors.

Satisfactory predictions of molecular geometries of co-
valent and non-covalent systems by density functionals
are necessary for practical use. For covalent systems,
we perform geometry optimizations for each functional
on the Equilibrium Experimental Test Set (EXTS) [58],
while for non-covalent systems, we compute the inter-
molecular bond lengths of 12 weakly bound complexes
taken from the S22 set [51], using 6-311++G(3df,3pd)
basis set with the fine grid, EML(75,302), consisting of
75 Euler-Maclaurin radial grid points [59] and 302 Lebe-
dev angular grid points [60]. For non-covalent systems,
we compare our results with the second-order Møller-
Plesset perturbation theory (MP2) [61]. The Resolution-
of-Identity (RI) approximation [62] is used for the MP2
calculations using the aug-cc-pvqz auxiliary basis set. As
shown in Table III, performance of all of the hybrid func-
tionals in predicting optimized geometries of EXTS is
similar, and clearly better than that of the semi-local
DFT-D functionals, B97-D and BLYP-D. Their perfor-
mance in predicting intermolecular bond lengths is simi-
lar to MP2 theory.

In our previous work [18], we have showed that our LC
hybrid functionals resolve the qualitative failure of semi-
local density functional in describing long-range charge-
transfer (CT) excitations between a donor and an accep-
tor [10–12]. In this work, we perform TDDFT calcula-
tions for the lowest CT excitations on the same system
with the same optimized geometries [63]. The high-level
SAC-CI results, taken from Ref. [16], are used for com-
parison.

As shown in Fig. 3, all of our LC hybrid function-
als, ωB97X-D, ωB97X and ωB97, predict CT excita-
tion curves that are in qualitative agreement with the
high-level SAC-CI results, while B97-D, B3LYP-D and
BLYP-D predict qualitatively incorrect CT excitation
curves. This emphasizes the important role of the LC
hybrid functionals in TDDFT, especially for CT excited
states. Finally we note that the remaining short-range
self-interaction error is somewhat larger for ωB97X-D
than for ωB97X than for ωB97. This reflects their rela-
tive ω values, and suggests that ωB97 will be preferred
for TDDFT applications. We intend to investigate this
question further in a future study.
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FIG. 3: The lowest CT excitation energy of C2H4· · ·C2F4

dimer along the intermolecular distances R (in Å). The results
for the HF, ωB97X, and ωB97 are taken from Ref. [18], while
the results for the SAC-CI are taken from Ref. [16].
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IV. CONCLUSIONS

We have developed a new LC hybrid DFT-D func-
tional based on our previous work [18]. This functional,
called ωB97X-D, includes 100% long-range exact ex-
change, a small fraction (about 22%) of short-range exact
exchange, a modi�ed B97 exchange density functional for
short-range interaction, the B97 correlation density func-
tional [52], and empirical dispersion corrections. When
the constraint of ω=0 is applied, ωB97X-D reduces to the
existing B97 functional form [52] with the same empiri-
cal dispersion corrections. The constrained form ( ω=0),
when re-optimized on the same training set, provides
poorer �ts to training data, indicating that the single

extra degree o� reedom corresponding to long-range ex-
change is physically important. Relative to our previ-
ous functional, ωB97X, ωB97X-D provides signi�cant im-
provement only for non-covalent interactions.

Since ωB97X-D is a parametrized functional, we test
it against three well-established existing DFT-D func-
tionals (B97-D [34], B3LYP-D [34], and BLYP-D [34])
as well as our previous LC hybrid functionals ( ωB97X
and ωB97) on a separate independent test set of data,
which includes further atomization energies, reaction en-
ergies, non-covalent interaction energies, equilibrium ge-
ometries, and a charge-transfer excited state. The re-
sults indicate that this new long-range corrected DFT-D
functional is generally somewhat superior in overall per-
formance. Relative to ωB97X, we recommend ωB97X-D
for applications where non-covalent interactions are ex-
pected to be signi�cant.

ωB97X-D does have some limitations that are appro-
priate to summarize as we conclude. Like other LC func-
tions, it is free o� ong-range self-interaction, but still suf-
fers from some self-interaction at short-range. The opti-
mized parameters we have obtained are such that this
e�ect is slightly larger for ωB97X-D than for ωB97X,
which in turn was slightly larger than for ωB97. We also
note that long-range correlation e�ects are solely treated
by the empirical dispersion corrections in ωB97X-D, and
therefore the KS orbitals themselves are not directly in-
�uenced by dispersion e�ects.
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TABLE II: Statistical errors (in kcal/mol) of the training set
and the test sets. The B97-D* functional is defined in the
text. The results for the ωB97X and ωB97 are taken from
Ref. [18].

System Error ωB97X-D B97-D* B97-D B3LYP-D BLYP-D ωB97X ωB97

Training

G3/99 (223)
MSE −0.10 0.31 −1.71 −1.01 −0.83 −0.09 −0.20

MAE 1.93 2.69 4.99 3.39 7.03 2.09 2.56

IP (40)
MSE 0.19 1.59 −0.88 2.16 −1.52 −0.15 −0.48

MAE 2.74 3.35 3.58 3.68 4.43 2.69 2.65

EA (25)
MSE 0.10 1.02 −0.15 1.72 0.38 −0.43 −1.45

MAE 1.92 2.33 2.08 2.41 2.58 2.05 2.67

PA (8)
MSE 1.49 0.35 2.27 −0.42 −1.07 0.60 0.68

MAE 1.54 0.87 2.27 1.02 1.56 1.22 1.45

NHTBH (38)
MSE −0.42 −2.29 −6.22 −5.13 −9.32 0.56 1.32

MAE 1.51 2.66 6.46 5.24 9.34 1.75 2.31

HTBH (38)
MSE −2.52 −3.20 −7.33 −5.39 −8.89 −1.51 −0.34

MAE 2.64 3.20 7.41 5.39 8.89 2.24 2.24

S22 (22)
MSE −0.08 −0.11 0.44 −0.28 0.22 0.53 0.16

MAE 0.22 0.44 0.50 0.48 0.33 0.87 0.60

All (394)
MSE −0.29 −0.13 −2.30 −1.28 −2.37 −0.15 −0.14

MAE 1.94 2.62 4.73 3.52 6.40 2.05 2.39

Test

G3/05 (48)
MSE 0.24 1.76 −2.62 1.88 0.76 1.28

MAE 3.01 7.39 4.53 9.65 3.60 4.25

RE (30)
MSE −0.21 −0.01 −0.29 0.73 −0.07 0.09

MAE 1.66 2.70 1.92 3.01 1.74 1.97

Noncovalent(29)
MSE −0.14 0.49 0.19 0.61 0.51 0.36

MAE 0.43 0.77 0.73 0.90 0.73 0.65

All (107)
MSE 0.01 0.92 −1.21 1.21 0.46 0.69

MAE 1.93 4.28 2.77 5.42 2.30 2.64

[63] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126
(2006).
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TABLE III: Statistical errors (in Å) of EXTS [58] and bond
lengths of 12 weakly bound complexes from the S22 set [51].
The EXTS results for the ωB97X and ωB97 are taken from
Ref. [18].

System Error MP2 ωB97X-D B97-D B3LYP-D BLYP-D ωB97X ωB97

EXTS (166)

MSE −0.002 0.014 0.004 0.019 −0.003 −0.002

MAE 0.009 0.015 0.009 0.020 0.009 0.010

rms 0.013 0.021 0.013 0.025 0.014 0.015

Max(−) −0.078 −0.062 −0.078 −0.064 −0.084 −0.085

Max(+) 0.055 0.107 0.065 0.103 0.055 0.059

Weak (12)

MSE −0.087 −0.044 −0.021 −0.100 −0.076 −0.031 −0.092

MAE 0.093 0.064 0.058 0.107 0.090 0.072 0.111

rms 0.121 0.085 0.071 0.136 0.111 0.100 0.145

Max(−) −0.231 −0.198 −0.114 −0.267 −0.200 −0.231 −0.362

Max(+) 0.024 0.056 0.125 0.043 0.079 0.177 0.077




