skip to main content
10.1145/2562059.2562123acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Parameter synthesis for polynomial biological models

Authors Info & Claims
Published:15 April 2014Publication History

ABSTRACT

Parameter determination is an important task in the development of biological models. In this paper we consider parametric polynomial dynamical systems and address the following parameter synthesis problem: find a set of parameter values so that the resulting system satisfies a desired property. Our synthesis technique exploits the Bernstein polynomial representation to solve the synthesis problem using linear programming. We apply our framework to two case studies involving epidemic models.

References

  1. Special Issue on the Use of Bernstein Polynomials in Reliable Computing: A Centennial Anniversary, volume 17. Reliable Computing, December 2012.Google ScholarGoogle Scholar
  2. M. Althoff. Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In HSCC'13, pages 173--182. ACM, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. B. Amos. A computationally efficient algorithm for testing the identifiability of polynomial systems with applications to biological systems. Ind. Eng. Chem. Res., 49(13):6125--6134, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  4. E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of temporal properties. In Proc. of the Second Int. Conf. on Runtime verification, RV'11, pages 147--160. Springer-Verlag, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, and J. G. Blom. Systems biology: parameter estimation for biochemical models. FEBS Journal, 276(4):886--902, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  6. J. Barnat, L. Brim, A. Krejci, A. Streck, D. Safranek, M. Vejnar, and T. Vejpustek. On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(3):693--705, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. E. Bartocci, L. Bortolussi, and L. Nenzi. On the robustness of temporal properties for stochastic models. In Hybrid Systems and Biology HSB, volume 125 of EPTCS, 2013.Google ScholarGoogle Scholar
  8. A. Casagrande, T. Dreossi, and C. Piazza. Hybrid automata and epsilon-analysis on a neural oscillator. In Hybrid Systems and Biology HSB, volume 92 of EPTCS, pages 58--72, 2012.Google ScholarGoogle Scholar
  9. X. Chen, E. Ábrahám, and S. Sankaranarayanan. Taylor model flowpipe construction for non-linear hybrid systems. In Proc. RTSS'12. IEEE, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Clauss and I. Chupaeva. Application of symbolic approach to the Bernstein expansion for program analysis and optimization. Program. Comput. Softw., 30(3):164--172, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. T. Dang and R. Testylier. Reachability analysis for polynomial dynamical systems using the Bernstein expansion. Reliable Computing, 17(2):128--152, 2012.Google ScholarGoogle Scholar
  12. A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In CAV, pages 167--170, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. A. Donzé, G. Clermont, and C. J. Langmead. Parameter synthesis in nonlinear dynamical systems: Application to systems biology. Journal of Computational Biology, 17(3):325--336, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  14. T. Dreossi and T. Dang. Falsifying oscillation properties of parametric biological models. In Int. Workshop on Hybrid Systems and Biology HSB, volume 125 of EPTCS, pages 53--67, 2013.Google ScholarGoogle Scholar
  15. J. Garloff and A. Smith. A comparison of methods for the computation of affine lower bound functions for polynomials. In Global Optimization and Constraint Satisfaction, LNCS, pages 71--85. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. J. Garloff and A. Smith. Rigorous affine lower bound functions for multivariate polynomials and their use in global optimisation. In Proc. of the 1st Int. Conf. on Applied Operational Research, volume 1 of Lecture Notes in Management Science, pages 199--211, 2008.Google ScholarGoogle Scholar
  17. A. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, V. Driessche, D. Gabrielson, C. Bowman, M. Alexander, S. Ardal, et al. Modelling strategies for controlling sars outbreaks. Proc. of the Royal Society of London. Series B: Biological Sciences, 271(1554):2223--2232, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  18. S. K. Jha and C. J. Langmead. Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement. Theor. Comput. Sci., 412(21):2162--2187, May 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. W. Kermack and A. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society Of London: Series A, Physical and Mathematical Sciences, 115:700--721, 1927.Google ScholarGoogle ScholarCross RefCross Ref
  20. G. Lillacci and M. Khammash. Parameter estimation and model selection in computational biology. PLoS Computational Biology, 6(3), 2010.Google ScholarGoogle Scholar
  21. A. Platzer and E. Clarke. The image computation problem in hybrid systems model checking. In HSCC'07, volume 4416 of LNCS, pages 473--486. Springer, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. S. Prajna and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates. In HSCC'04, volume 2993 of LNCS, pages 477--492. Springer, 2004.Google ScholarGoogle Scholar
  23. S. Ray and P. Nataraj. A matrix method for efficient computation of bernstein coefficients. Reliable Computing, 17(1):40--71, 2012.Google ScholarGoogle Scholar
  24. E. Rodríguez-Carbonell and A. Tiwari. Generating polynomial invariants for hybrid systems. In HSCC'05, volume 3414 of LNCS, pages 590--605. Springer, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. M. Sassi, R. Testylier, T. Dang, and A. Girard. Reachability analysis of polynomial systems using linear programming relaxations. In ATVA 2012, volume 7561 of LNCS, pages 137--151. Springer, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. P. Smith. Enclosure Methods for Systems of Polynomial. Equations and Inequalities. PhD thesis, Universität Konstanz, Germany, 2012.Google ScholarGoogle Scholar
  27. R. Testylier and T. Dang. Analysis of parametric biological models with non-linear dynamics. In Int. Workshop on Hybrid Systems and Biology HSB, volume 92 of EPTCS, pages 16--29, 2012.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Parameter synthesis for polynomial biological models

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Conferences
      HSCC '14: Proceedings of the 17th international conference on Hybrid systems: computation and control
      April 2014
      328 pages
      ISBN:9781450327329
      DOI:10.1145/2562059

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 15 April 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      HSCC '14 Paper Acceptance Rate29of69submissions,42%Overall Acceptance Rate153of373submissions,41%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader