Skip to main content

Muscle Plasticity and Variations in Myofibrillar Protein Composition of Mammalian Muscle Fibers

  • Chapter
Skeletal Muscle Plasticity in Health and Disease

Part of the book series: Advances in Muscle Research ((ADMR,volume 2))

  • 717 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams GR, Hather BM, Baldwin KM, Dudley GA. (1993) Skeletal muscle myosin heavy chain composition and resistance training. J Appl Physiol 74, 911–915.

    PubMed  CAS  Google Scholar 

  • Andruchov O, Andruchova O, Wang Y, Galler S. (2005) Cross-bridge kinetics in rabbit and rat skeletal muscle fibers depending on myosin light chain isoforms. J Physiol 2006 in press.

    Google Scholar 

  • Alford EK, Roy RR, Hodgson JA, Edgerton VR. (1987) Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hind limb suspension. Exp Neurol 96: 635–649.

    Article  PubMed  CAS  Google Scholar 

  • Amtmann E, Oyama J. (1976) Effect of chronic centrifugation on the structural development of the musculoskeletal system of the rat. Anat Embryol 149: 47–70.

    Article  PubMed  CAS  Google Scholar 

  • Andersen JL, Mohr T, Biering-Sorensen F, Galbo H, Kjaer M. (1996)Myosin heavy chain isoform transformation in single fibers from m. vastus lateralis in spinal cord injured individuals: effects of long-term functional electrical stimulation (FES). Pflügers Arch 431: 513–518.

    PubMed  CAS  Google Scholar 

  • Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. (1991) Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res. 69: 1226–33.

    PubMed  CAS  Google Scholar 

  • Babij P, Booth FW (1988) Clenbuterol prevents or inhibits loss of specific mRNAs in atrophying rat skeletal muscle. Am J Physiol 254: C657-C660.

    PubMed  CAS  Google Scholar 

  • Babu A, Scordilis SP, Sonnenblick EH, Gulati J. (1987) The control of myocardial contraction with skeletal fast muscle troponin C. J Biol Chem 262: 5815–5822.

    PubMed  CAS  Google Scholar 

  • Baldwin KM, Haddad F. (2001) Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 90: 345–57.

    Article  PubMed  CAS  Google Scholar 

  • Ball KL, Johnson MD and Solaro RJ.(1994) Isoform specific interactions of troponin I and troponin C determine sensitivity of myofibrillar Ca2 + activation. Biochemistry 33: 8464–8471.

    Article  PubMed  CAS  Google Scholar 

  • Bamman MM, Ragan RC, Kim JS, Cross JM, Hill VJ, Tuggle SC, Allman RM. (2004) Myogenic protein expression before and after resistance loading in 20-35-64-yr-old men and women. J Appl Physiol 97: 1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Bär A, Simoneau JA, Pette D.(1989) Altered expression of myosin light-chain isoforms in chronically stimulated fast-twitch muscle of the rat. Eur J Biochem 178: 591–594.

    Article  PubMed  Google Scholar 

  • Barton PJ, Buckingham ME. (1985)The myosin alkali light chain proteins and their genes. Biochem J 231: 249–61.

    PubMed  CAS  Google Scholar 

  • Bastide B, Kischel P, Puterflam J, Stevens L, Pette D, Jin J, Mounier Y. (2002) Expression and functional implications of troponin T isoforms in soleus muscle fibers of rat after unloading. Pflugers Arch 444: 345–35.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J. S., B. C. Powell, and R. E. Cheney. (2001). A millennial myosin census. Mol. Biol. Cell 12: 780–794.

    PubMed  CAS  Google Scholar 

  • Berg HE, Dudley GA, Haggmark T, Ohlsen H, Tesch PA. (1991) Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol 70: 1882–5.

    Article  PubMed  CAS  Google Scholar 

  • Blewett C, Elder GC. (1993) Quantitative EMG analysis in soleus and plantaris during hindlimb suspension and recovery. J Appl Physiol 74: 2057–66.

    PubMed  CAS  Google Scholar 

  • Bortolotto SK, Stephenson DG, Stephenson GMM. (1999) Fiber type populations and Ca-activation properties of single fibers in soleus muscles from SHR and WKY rats. Am J Physiol 276: C628–C637.

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C. (1991) Force-velocity relations and myosin heavy chain isoform compositions of skinned fibers from rat skeletal muscle. J Physiol (Lond) 437: 655–672.

    CAS  Google Scholar 

  • Bottinelli R, Betto R, Schiaffino S, Reggiani C. (1994) Unloaded shortening velocity and myosin heavy chain and alkali light chain composition in rat skeletal muscle fibers. J Physiol (Lond) 478: 341–349.

    CAS  Google Scholar 

  • Bottinelli R, Coviello DA, Redwood CS, Pellegrino MA, Maron BJ, Spirito P, Watkins H, Reggiani C. (1998) A mutant tropomyosin that causes hypertrophis cardiomyopathy is expressed in vivo and associated with an increased calcium sensitivity.Circ Res 82: 106–115.

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Reggiani C. (2000) Human skeletal muscle fibers: molecular and functional diversity. Prog Biophys Mol Biol 73: 195–262.

    Article  PubMed  CAS  Google Scholar 

  • Bozzo C, Stevens L, Toniolo L, Mounier Y, Reggiani C. (2003) Increased phosphorylation of myosin light chain associated with slow to fast transition in rat soleus. Am J Physiol 285: C575–C583.

    CAS  Google Scholar 

  • Bozzo C, Stevens L, Bouet V, Montel V, Picquet F, Falempin F, Lacour M, Mounier Y. (2004) Hypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype. J Exp Biol 207: 2793–2802.

    Article  PubMed  Google Scholar 

  • Breitbart RE, Nadal-Ginard B. (1986) Complete nucleotide sequence of the fast skeletal troponin T gene. Alternatively spliced exons exhibit unusual interspecies divergence. J Mol Biol 188: 313–24.

    Article  PubMed  CAS  Google Scholar 

  • Bremel RD, Weber A. (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238: 97–101.

    PubMed  CAS  Google Scholar 

  • Briggs MM, Li JJ, Schachat F (1987) The extent of amino-terminal heterogeneity in rabbit fast skeletal muscle troponin T. J Muscle Res Cell Motil. 8, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Briggs MM, Schachat F. (1996) Physiologically regulated alternative splicing patterns of fast troponin T RNA are conserved in mammals. Am J Physiol. 270, C298–305

    PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM. (1960) Interactions between motoneurones and muscles in respect of the characteristic speed of their responses. J Physiol (Lond) 150: 417–439.

    CAS  Google Scholar 

  • Buonanno A, Rosenthal N. (1996) Transcriptional control of muscle plasticity: differential regulation of troponin i genes by electrical activity. Dev Genet 19: 95–107.

    Article  PubMed  CAS  Google Scholar 

  • Burtnick LD, Kay CM. (1977) The calcium-binding properties of bovine cardiac troponin C. FEBS Lett 75: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Baker M, Herrick RE, Baldwin KM. (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow antigravity muscle. J Appl Physiol 76: 1764–1773.

    Article  PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Haddad F, Baker MJ, Herrick RE, Prietto N, Baldwin KM. (1996) Microgravity-induced transformations of myosin isoforms and contractile properties of skeletal muscle. J Appl Physiol 81: 123–132.

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Baker MJ, McCue SA, Baldwin KM. (1997) Single-fiber and whole muscle analyses of MHC isoform plasticity: interaction between T3 and unloading. Am J Physiol Cell Physiol 273: C944–C952.

    CAS  Google Scholar 

  • Caiozzo VJ, Baker MJ, Baldwin KM. (1998) Novel transitions in MHC isoforms: separate and combined effects of thyroid hormone and mechanical unloading. J Appl Physiol 85: 2237–2248.

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Haddad F, Baker M, McCue S, Baldwin KM. (2000) MHC polymorphism in rodent plantaris muscle: effects of mechanical overload and hypothyroidism. Am J Physiol Cell Physiol 278: C709–C717.

    PubMed  CAS  Google Scholar 

  • Calvo S, Stauffer J, Nakayama M, Buonanno A. (1996) Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. Dev Genet 19: 169–181.

    Article  PubMed  CAS  Google Scholar 

  • Campione M, Ausoni S, Guezennec CY, Schiaffino S. (1993) Myosin and troponin changes in rat soleus muscle after hindlimb suspension. J Appl Physiol 74: 1156–1160.

    PubMed  CAS  Google Scholar 

  • Canu MH, M Falempin. Effect of hindlimb unloading on locomotor strategy during treadmill locomotion in the rat. Eur J Appl Physiol Occup Physiol 74: 297–304, 1996.

    Google Scholar 

  • Carraro U, Catani C, Dalla Libera L, Vascon M, Zanella G. (1981) Differential distribution of tropomyosin subunits in fast and slow rat muscles and its changes in long-term denervated hemidiaphgram. FEBS Lett 128: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Carroll TJ, Abernethy PJ, Logan PA, Barber M, McEniery MT. Resistance training frequency: strength and myosin heavy chain responses to two and three bouts per week. Eur J Appl Physiol 78: 270–275, 1998.

    Google Scholar 

  • Castro MJ, Apple DF, Jr, Staron RS, Campos GE, Dudley GA. (1999) Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol 86: 350–358.

    PubMed  CAS  Google Scholar 

  • Chandra M, da Silva EF, Sorenson MM, Ferro JA, Pearlstone JR, Nash BE, Borgford T, Kay CM, Smillie LB. (1994) The effects of N helix deletion and mutant F29W on the Ca2 + binding and functional properties of chicken skeletal muscle troponin. J Biol Chem 269: 14988–14994.

    PubMed  CAS  Google Scholar 

  • Cheng X, Cole RN, Zaia J, Hart GW. (2000) Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta. Biochemistry 39: 11609–20.

    Article  PubMed  CAS  Google Scholar 

  • Chi MM, Manchester JK, and Lowry OH. (1998) Effect of centrifugation at 2G for 14 days on metabolic enzymes of the tibialis anterior and soleus muscles. Aviat Space Environ Med 69(6 Suppl): A9–11.

    PubMed  CAS  Google Scholar 

  • Chong PC, Hodges R.S. (1982) Photochemical cross-linking between rabbit skeletal troponin subunits. Troponin I-troponin T interactions. J Biol Chem 257: 11667–11672.

    PubMed  CAS  Google Scholar 

  • Chopard A, Pons F, Marini J. (2001) Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle. Am J Physiol Regulatory Integrative Comp Physiol 280: 323–330.

    Google Scholar 

  • Cieniewski-Bernard C, Bastide B, Lefebvre T, Lemoine J, Mounier Y, Michalski JC. (2004) Identification of O-linked N-acetylglucosamine proteins in rat skeletal muscle using two-dimensional gel electrophoresis and mass spectrometry. Mol Cell Proteomics 3: 77–85.

    Google Scholar 

  • Cooper TA, Ordahl CP. (1984) A single troponin T gene regulated by different programs in cardiac and skeletal muscle development. Science 226: 979–82.

    Article  PubMed  CAS  Google Scholar 

  • Comer FI, Hart GW. (2000) O-Glycosylation of nuclear and cytosolic proteins. Dynamic interplay between O-GlcNAc and O-phosphate. J Biol Chem 275: 29179–29182.

    CAS  Google Scholar 

  • Cordonnier C, Stevens L, Picquet F, Mounier Y. (1995) Structure function relationship of soleus muscle fibers from the rhesus monkey. Pflügers Arch 430: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Criswell DS, Hodgson VRM, Hardeman EC, Booth FW. (1998) Nerve-responsive troponin I slow promoter does not respond to unloading. J Appl Physiol 84: 1083–1087.

    PubMed  CAS  Google Scholar 

  • Cummins P, Perry SV. (1973) The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J 133: 765–777.

    PubMed  CAS  Google Scholar 

  • D’Amelio F, Wu LC, Fox RA, Daunton NG, Corcoran ML, Polyakov I. (1998) Hypergravity exposure decreases gamma-aminobutyric acid immunoreactivity in axon terminals contacting pyramidal cells in the rat somatosensory cortex: a quantitative immunocytochemical image analysis. J Neurosci Res 53: 135–42.

    Article  PubMed  CAS  Google Scholar 

  • Danieli-Betto D, Betto R, Midrio M. (1990) Calcium sensitivity and myofibrillar protein isoforms of rat skinned skeletal muscle fibers. Pflugers Arch 417: 303–8.

    Article  PubMed  CAS  Google Scholar 

  • Demirel HA, Powers SK, Naito H, Hughes M, and Coombes JS. (1999) Exercise-induced alterations in skeletal muscle myosin heavy chain phenotype: dose-response relationship. J Appl Physiol 86: 1002–1008.

    PubMed  CAS  Google Scholar 

  • Desplanches D, Mayet MH, Sempore B, Flandrois R. (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol 63: 558–63.

    PubMed  CAS  Google Scholar 

  • Diffee GM, McCue S, Larosa A, Herrick RE, Baldwin KM. (1993) Interaction of various mechanical activity models in regulation of myosin heavy chain isoform expression. J Appl Physiol 74: 2517–2522.

    Article  PubMed  CAS  Google Scholar 

  • Dunn SE, Michel RN. (1999) Differential sensitivity of myosin-heavy-chain-typed fibers to distinct aggregates of nerve-mediated activation. Pflugers Arch 437: 432–40.

    Article  PubMed  CAS  Google Scholar 

  • Ebashi S, Nonomura Y. (1973) Proteins of the myofibril. The structure and function of muscle 3: 288.

    Google Scholar 

  • Edwards BF, Romero-Herrera AE. (1983) Tropomyosin from adult human skeletal muscle is partially phosphorylated. Comp Biochem Physiol 76: 373–5.

    Article  CAS  Google Scholar 

  • Eldridge L, Dhoot GK, Mommaerts WF. (1984) Neural influences on the distribution of troponin I isotypes in the cat. Exp Neurol 83: 328–46.

    PubMed  CAS  Google Scholar 

  • Esser KA, Hardemann EC. (1995) Changes in contractile protein mRNA accumulation in response to spaceflight.Am J Physiol 37: 466–471.

    Google Scholar 

  • Falempin M, Fodili S. (1995) Effect of the elimination of neural influences in the rat soleus muscle during unweighting. BAM 5: 155–161.

    Google Scholar 

  • Farah CS, Miyamoto CA, Ramos CH, Da Silva AC, Quaggio RB, Fujimori K, Smillie LB, Reinach FC. (1994) Structural and regulatory functions of the NH2- and COOH-terminal regions of skeletal muscle troponin I. J Biol Chem 269: 5230–5240.

    PubMed  CAS  Google Scholar 

  • Farah CS, Reinach FC. (1995) The troponin complex and regulation of muscle contraction. FASEB J 9: 755–767.

    PubMed  CAS  Google Scholar 

  • Fauteck SP, Kandarian SC. (1995) Sensitive detection of myosin heavy chain composition in skeletal muscle under different loading conditions. Am J Physiol 268: C419-C424.

    PubMed  CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ. (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89: 823–839.

    PubMed  CAS  Google Scholar 

  • Flicker PF, Phillips GN, Cohen C. (1982) Troponin and its interactions with tropomyosin. An electron microscope study. J. Mol Biol 162: 495–501.

    Article  PubMed  CAS  Google Scholar 

  • Gahlmann R, Troutt AB, Wade RP, Gunning P, Kedes L. (1987) Alternative splicing generates variants in important functional domains of human slow skeletal troponin T. J Biol Chem 262: 16122–6.

    PubMed  CAS  Google Scholar 

  • Galler S, Hilber K, Gohlsch B, Pette D. (1997) Two functionally distinct myosin heavy chain isoforms in slow skeletal muscle fibers. FEBS Lett 410: 150–152.

    Article  PubMed  CAS  Google Scholar 

  • Gardetto PR, Schluter JM, Fitts RH. (1989) Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol 66: 2739–2749.

    PubMed  CAS  Google Scholar 

  • Gardiner P, Michel R, Browman C, Noble E. (1986) Increased EMG of rat plantaris during locomotion following surgical removal of its synergists. Brain Res 380: 114–21.

    Article  PubMed  CAS  Google Scholar 

  • Geiger PC, Cody MJ, Macken RL, Bayrd ME, Sieck GC. (2001) Effect of unilateral denervation on maximum specific force in rat diaphragm muscle fibers. J Appl Physiol 90: 1196–204.

    PubMed  CAS  Google Scholar 

  • Gordon AM., Homsher E, Regnier M. (2000) Regulation of contraction in striated muscle. Physiological Reviews 80: 853–924.

    PubMed  CAS  Google Scholar 

  • Gordon AM, Regnier M, Homsher E. (2001) Skeletal and cardiac muscle contractile activation:tropomyosin ‘‘rocks and rolls’’. News Physiol Sci 16: 49–55.

    PubMed  CAS  Google Scholar 

  • Grabarek Z, Tao T, Gergely J. (1992) Molecular mechanism of troponin C function. J Muscle Res 13: 383–393.

    Article  CAS  Google Scholar 

  • Greaser ML, Gergely J. (1971) Reconstitution of troponin activity from three protein components. J Biol Chem 246: 4226–4233.

    PubMed  CAS  Google Scholar 

  • Greig A, Hirschberg Y, Anderson PA, Hainsworth C, Malouf NN, Oakeley AE, Kay BK (1994) Molecular basis of cardiac troponin T isoform heterogeneity in rabbit heart. Circ Res 74: 41–7.

    PubMed  CAS  Google Scholar 

  • Green HJ, Thomson JA, Houston ME. (1987) Supramaximal exercise after training-induced hypervolemia. II. Blood/muscle substrates and metabolites. J Appl Physiol 62: 1954–61.

    PubMed  CAS  Google Scholar 

  • Griffith LS, Schmitz B. (1999) O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. Eur J Biochem., 262: 824–831.

    Article  PubMed  CAS  Google Scholar 

  • Grossman, EJ, Roy RR, Talmadge RJ, Zhong H, and Edgerton VR. (1998) Effects of inactivity on myosin heavy chain composition and size of rat soleus fibers. Muscle Nerve 21: 375–389.

    Article  PubMed  CAS  Google Scholar 

  • Gulati J, Scordilis S, Babu A. (1998) Effect of troponin C on the cooperativity in Ca2 + activation of cardiac muscle. FEBS Lett 236: 441–444.

    Article  Google Scholar 

  • Gulati J, Sonnenblick E, Babu A. (1991) The role of troponin C in the length dependence of Ca2 +-sensitive force of mammalian skeletal muscle and cardiac muscles. J Physiol 441: 305–324.

    PubMed  CAS  Google Scholar 

  • Guth K, Potter JD. (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2 + affinity of the Ca2 +-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262: 13627–13635.

    PubMed  CAS  Google Scholar 

  • Gutmann E, Melichna J, Syrovy (1972) Contraction properties and ATPase activity in fast and slow muscle of the rat during denervation. Exp Neurol 36: 488–97.

    Article  PubMed  CAS  Google Scholar 

  • Haddad F, Bodell PW, McCue SA, Herrick RE, and Baldwin KM. (1993) Food restriction-induced transformations in cardiac functional and biochemical properties in rats. J Appl Physiol 74: 606–612.

    PubMed  CAS  Google Scholar 

  • Hamalainen N, Pette D. (1997) Expression of an alpha-cardiac like myosin heavy chain in diaphragm, chronically stimulated, and denervated fast-twitch muscles of rabbit. J Muscle Res Cell Motil 18: 401–11.

    Article  PubMed  CAS  Google Scholar 

  • Hammell RL, Hitchcock-DeGregori SE. (1996) Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon. J Biol Chem 271: 4236–4242.

    Article  PubMed  CAS  Google Scholar 

  • Han, I. and Kudlow, J.E. (1997) Reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17: 2550–8.

    PubMed  CAS  Google Scholar 

  • Härtner KT, Pette D. (1990) Fast and slow isoforms of troponin I and troponin C. Distribution in normal rabbit muscles and effects of chronic stimulation. Eur J Biochem 188: 261–267.

    Article  PubMed  Google Scholar 

  • Hartner KT, Kirschbaum BJ, Pette D. (1989) The multiplicity of troponin T isoforms. Distribution in normal rabbit muscles and effects of chronic stimulation. Eur J Biochem 179: 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Hatsell, S., Medina, L., Merola, J., Haltiwanger, R. and Cowin, P. ( 2003) Plakoglobin is O-glycosylated close to the N-terminal destruction box. J Biol Chem 278: 37745–52.

    Article  PubMed  CAS  Google Scholar 

  • Heeley A, Moir AJ, Perry SV. (1982) Phosphorylation of tropomyosin during development in mammalian striated muscle. FEBS Lett 146: 115–8.

    Article  PubMed  CAS  Google Scholar 

  • Heeley DH, Dhoot GK, Frearson N, Perry SV, Vrbova G. (1983) The effect of cross-innervation on the tropomyosin composition of rabbit skeletal muscle. FEBS Lett 152: 282–286.

    Article  PubMed  CAS  Google Scholar 

  • Heeley DH, Dhoot GK, Perry SV. (1985) Factors determining the subunit composition of tropomyosin in mammalian skeletal muscle. Biochem J 226: 461–8.

    PubMed  CAS  Google Scholar 

  • Heeley DH, Watson MH, Mak AS, Dubord P, Smillie LB. (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle alpha alpha-tropomyosin. J Biol Chem 264: 2424–30.

    PubMed  CAS  Google Scholar 

  • Heeley DH. (1994) Investigation of the effects of phosphorylation of rabbit striated muscle alpha alpha-tropomyosin and rabbit skeletal muscle troponin-T. Eur J Biochem 221: 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Herzberg O, Moult J, James MN. (1986) A model for the Ca2 +-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261: 2638–2644.

    CAS  Google Scholar 

  • Hikida RS, Gollnick PD, Dudley GA, Convertino VA, Buchanan P. (1989) Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60: 664–70.

    PubMed  CAS  Google Scholar 

  • Hinkle A, Goranson A, Butters CA, Tobacman LS.(1999) Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. J Biol Chem 274: 7157–7164.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock-DeGregori SE, Song Y, Greenfield NJ. (2002) Functions of tropomyosin’s periodic repeats. Biochemistry 41: 15036–15044.

    Article  PubMed  CAS  Google Scholar 

  • Hoar PE, Potter JD, Kerrick WG. (1988) Skinned ventricular fibers: troponin C extraction is species-dependent ansd its replacement with skeletal troponin C changes Sr2 + activation properties. J Muscles Res Cell Motil 9: 165–173.

    Article  CAS  Google Scholar 

  • Hofmann PA, Fuchs F. (1987) Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 253: C541–C546.

    PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W. (1990) Atomic model of the actin filament. Nature 347: 44–49.

    Article  PubMed  CAS  Google Scholar 

  • Howard G, Steffer JM, Geoghegan TE. (1989) Transcriptional regulation of decreased protein synthesis during skeletal muscle unloading. J Appl Physiol. 66: 1093–8.

    PubMed  CAS  Google Scholar 

  • Holy X, Stevens L, Mounier Y. (1990) Compared effects of a 13 day spaceflight on the contractile protiens of soleus and plantaris rat muscles. Physiologist. 33: S80–81.

    PubMed  CAS  Google Scholar 

  • Holy X, Mounier Y. (1991) Effects of short spaceflights on mechanical characteristics of rat muscles. Muscle Nerve 14: 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Huey KA, Bodine SC. (1998) Changes in myosin mRNA and protein expression in denervated rat soleus and tibialis anterior. Eur J Biochem 256: 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Huey KA, Roy RR, Edgerton VR, Baldwin KM.(2000) In vivo regulation of type I MHC gene expression in the soleus of spinal cord isolated rats. Physiologist 43: 346.

    Google Scholar 

  • Huey KA, Roy RR, Baldwin KM, Edgerton VR. (2001) Temporal effects of inactivty on myosin heavy chain gene expression in rat slow muscle. Muscle Nerve 24: 517–26.

    Article  PubMed  CAS  Google Scholar 

  • Huey KA, Haddad F, Qin AX, Baldwin KM. (2003) Transcriptional regulation of the type I myosin heavy chain gene in denervated rat soleus. Am J Physiol Cell Physiol 284: C738–48.

    PubMed  CAS  Google Scholar 

  • Ilyina-Kakueva EI, Portugalov VV, Krivenkova NP. (1976) Space flight effects on the skeletal muscles of rats. Aviat Space Environ Med 47: 700–3.

    PubMed  CAS  Google Scholar 

  • Jagatheesan G, Rajan S, Petrashevskaya N, Schwartz A, Boivin G, Vahebi S, Detombe P, Labitzke E, Hilliard G, Wieczorek DF. (2003) Functional importance of the carboxyl-terminal region of striated muscle tropomyosin. J Biol Chem 278: 23204–23211.

    Article  PubMed  CAS  Google Scholar 

  • Jakubiec-Puka A, Catani C, Carraro U. (1992) Myosin heavy-chain composition in striated muscle after tenotomy. Biochem J 282: 237–42.

    PubMed  CAS  Google Scholar 

  • Jakubiec-Puka A, Ciechomska I, Morga J, Matusiak A. (1999) Contents of myosin heavy chains in denervated slow and fast rat leg muscles. Comp Biochem Physiol 122: 355–362.

    CAS  Google Scholar 

  • Jin JP, Chen A, Huang QQ. (1998) Three alternatively spliced mouse slow skeletal muscle troponin T isoforms: conserved primary structure and regulated expression during postnatal development. Gene 214: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Jin JP, Chen A, Ogut O, Huang QQ.(2000) Conformational modulation of slow skeletal muscle troponin T by an NH(2)-terminal metal-binding extension. Am J Physiol Cell Physiol 279: C1067–77.

    PubMed  CAS  Google Scholar 

  • Jockusch H. (1990) Muscle fiber transformations in myotonic mouse mutants.The Dynamic State of Muscle Fibers: 429–443.

    Google Scholar 

  • Kaasik P, Alev K, Pehme A, Seene T. (1998) Composition of tropomyosin subunits in different types of skeletal muscle and effect of compensatory hypertrophy. J Muscle Res Cell Motil19: 296.

    Google Scholar 

  • Kerrick WG, Malencik DA, Hoar PE, Potter JD, Coby RL, Pocinwong S, Fischer EH. (1980) Ca2 + and Sr2 + activation: comparison of cardiac and skeletal muscle contraction models. Pflugers Arch 386: 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Kischel P, Stevens L, Mounier Y. (1999) Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles. Brit J Pharmacol 128: 767–773.

    Article  CAS  Google Scholar 

  • Kischel P, Bastide B, Potter JD, Mounier Y. (2000) The role of Ca2 + regulatory sites of skeletal troponin C in modulating muscle fiber reactivity to the Ca2 + sensitizer bepridil. British Journal of Pharmacology 131: 1496–1502.

    Article  PubMed  CAS  Google Scholar 

  • Kischel P, Stevens L, Montel V, Picquet F, Mounier Y. (2001a) Plasticity of monkey triceps muscle fibers in microgravity conditions. J Appl Physiol 90: 1825–1832.

    CAS  Google Scholar 

  • Kischel P, Bastide B, Stevens L, Mounier Y. (2001b) Expression and functional behavior of troponin C in soleus muscle fibers of rat after hindlimb unloading. J Appl Physiol 90: 1095–1101.

    CAS  Google Scholar 

  • Koenders A, Lamey TM, Medler S, West JM, Mykles DL. (2004) Two fast-type fibers in claw closer and abdominal deep muscles of the Australian Freshwater crustacaen, Cherax destructor, differ in Ca2 + sensitivity and troponin-I isoforms. J Exp Zoolog A Comp Exp Biol 301: 588–598.

    Article  PubMed  CAS  Google Scholar 

  • Larsson L, Moss RL. (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibers from human skeletal muscles. J Physiol (Lond) 472: 595–614.

    CAS  Google Scholar 

  • Lawler, J.M., Song, W. and Demaree, S.R. (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med, 35: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Leavis PC, Kraft EL. (1978) Calcium binding to cardiac troponin C. Arch.Biochem.Biophys. 186: 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Lees-Miller JP, Helfman DM. (1991) The molecular basis for tropomyosin isoform diversity. Bioessays 13: 429–437.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre T, Ferreira S, Dupont-Wallois L, Bussiere T, Dupire M.J, Delacourte A, Michalski JC, Caillet-Boudin ML. (2003) Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins–a role in nuclear localization. Biochim Biophys Acta 1619: 167–176.

    PubMed  CAS  Google Scholar 

  • Lehman W, Craig R, Vibert P. (1994) Ca(2+)-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368: 65–67.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS. (1994) The regulatory switch of the muscle thin filament: Ca2 + or myosin heads? J Muscle Res Cell Motil 15: 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Lehrer SS, Morris EP. (1982) Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J Biol Chem 257: 8073–8080.

    PubMed  CAS  Google Scholar 

  • Leeuw T, Pette D. (1993) Coordinate changes in the expression of troponin subunit and myosin heavy-chain isoforms during fast-to-slow transition of low-frequency-stimulated rabbit muscle. Eur J Biochem 213: 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  • Leeuw T, Kapp M, Pette D. (1994) Role of innervation for development and maintenance of troponin subunit isoform patterns in fast- and slow-twitch muscles of the rabbit. Differentiation 55: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Leterme D, Falempin M. (1998) EMG activity of three rat hindlimb muscles during microgravity and hypergravity phase of parabolic flight. Aviat Space Environ. Med 69: 1065–1070.

    PubMed  CAS  Google Scholar 

  • Lewitt LK, O’Mahoney JV, Brennan KJ, Joya J, Zhu L, Wade R, Hardeman EC. (1995) The human troponin I solw promoter directs slow fiber-specific expression in transgenic mice. DNA Cell Biol 14: 599–607.

    Google Scholar 

  • Li HC, Fajer PG. (1998) Structural coupling of troponin C and actomyosin in muscle fibers. Biochemistry 37: 6628–6635.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mui S, Brown JH, Strand J, Reshetnikova L, Tobacman LS, Cohen C. (2002) The crystal structure of the C-terminal fragment of striated-muscle alpha-tropomyosin reveals a key troponin T recognition site. Proc Natl Acad Sci USA 99: 7378–7383.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Gergely J, Tao T. (2001) Proximity relationships between residue 117 of rabbit skeletal troponin- I and residues in troponin-C and actin. Biophys J 81: 321–333.

    PubMed  CAS  Google Scholar 

  • Lompre AM, Anger M, Levitsky D. (1994) Sarco(endo)plasmic reticulum calcium pumps in the cardiovascular system: function and gene expression. J Mol Cell Cardiol 26: 1109–21.

    Article  PubMed  CAS  Google Scholar 

  • Loughna PT, Izumo S, Goldspink G, Nadal-Ginard B. (1990) Disuse and passive stretch cause rapid alterations in expression of developmental and adult contractile protein genes in skeletal muscle. Development 109: 217–23.

    PubMed  CAS  Google Scholar 

  • Luo Y, Leszyk J, Li B, Gergely J, Tao T. (2000) Proximity relationships between residue 6 of troponin I and residues in troponin C: further evidence for extended conformation of troponin C in the troponin complex. Biochemistry 39: 15306–15315.

    Article  PubMed  CAS  Google Scholar 

  • Lutz GJ, Lieber RL. (2000) Myosin isoforms in anuran skeletal muscle: their influence on contractile properties and in vivo muscle function. Microsc Res Tech 50: 443–57.

    Article  PubMed  CAS  Google Scholar 

  • Lutz GJ, Bremner SN, Bade MJ, Lieber RL. (2001) Identification of myosin light chains in Rana pipiens skeletal muscle and their expression patterns along single fibers. J Exp Biol 204: 4237–4248.

    PubMed  CAS  Google Scholar 

  • Mac Lachlan D, Stewart M. (1976) The 14-fold periodicity in α-tropomyosin and the interaction with actin. J Mol Biol 103: 271–298.

    Article  Google Scholar 

  • Mac Lachlan LK, Reid DG, Mitchell RC, Salter CJ, Smith SJ. (1990) Binding of calcium sensitizer, bepridil, to cardiac troponin C. A fluorescence stopped-flow kinetic, circular dichroism and proton nuclear magnetic resonnance study. J Biol Chem 265: 9764–9770.

    CAS  Google Scholar 

  • McLaurin MD, Apple FS, Voss EM, Herzog CA, Sharkey SW. (1997) Cardiac troponin I, cardiac troponin T, and creatine kinase MB in dialysis patients without ischemic heart disease: evidence of cardiac troponin T expression in skeletal muscle. Clin Chem. 43: 976–982

    PubMed  CAS  Google Scholar 

  • Mak A, Smillie LB, Barany M. (1978) Specific phosphorylation at serine-283 of alpha tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle. Proc Natl Acad Sci USA 75: 3588–92.

    Article  PubMed  CAS  Google Scholar 

  • Manning DR, Stull JT. (1982) Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Physiol, 242: C234–C241.

    PubMed  CAS  Google Scholar 

  • Martin WD. (1980) Effects of chronic centrifugation on skeletal muscle fibers in young developing rats. Aviat Space Environ Med, 51: 473–479.

    PubMed  CAS  Google Scholar 

  • Martrette JM, Hartmann N, Vonau S, and Westphal A. (1998) Effects of pre- and perinatal exposure to hypergravity on muscular structure development in rat. J Muscle Res Cell Motil, 19: 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda G. (1983) The light chains of muscle myosin: its structure, function, and evolution.Adv Biophys 16: 185–218.

    Article  PubMed  CAS  Google Scholar 

  • Maytum R, Lehrer SS, Geeves MA. (1999) Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38: 1102–1110.

    Article  PubMed  CAS  Google Scholar 

  • Messner B, Baum H, Fischer P, Quasthoff S, Neumier D. (2000) Expression of messenger RNA of the cardiac isoforms of troponin T and I in myophatic skeletal muscle. Am J Clin Pathol 114: 544–549.

    PubMed  CAS  Google Scholar 

  • Michel RN, Parry DJ, Dunn SE. (1996) Regulation of myosin heavy chain expression in adult rat hindlimb muscles during short-term paralysis: comparison of denervation and tetrodotoxin-induced neural inactivation. FEBS Lett 391: 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Morgan MJ, Loughna PT. (1989) Work overload induced changes in fast and slow skeletal muscle myosin heavy chain gene expression. FEBS Lett 255: 427–30.

    Article  PubMed  CAS  Google Scholar 

  • Morey ER, Sabelman EE, Turner RT, Baylink DJ. (1979) A new rat model simulating some aspects of space flight. Physiologist 22: 23–24.

    Google Scholar 

  • Morey-Holton E, Globus RK, Kaplansky A, Durnova G. (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med 10: 7–40.

    PubMed  Google Scholar 

  • Moss RL, Lauer MR, Giulian GG, Greaser ML. (1986) Altered Ca2 + dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac troponin C. J Biol Chem 261: 6096–6099.

    PubMed  CAS  Google Scholar 

  • Musacchia XJ, Deavers DR, Meininger GA, Davis TP. (1980) A model for hypokinesia: effects on muscle atrophy in the rat. J.Appl.Physiol 48: 479–486.

    PubMed  CAS  Google Scholar 

  • Muthuchamy M, Grupp IL, Grupp G, O’Toole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF. (1995) Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem 270: 30593–30603.

    Article  PubMed  CAS  Google Scholar 

  • Muthuchamy M, Pieples K, Rethinasamy P, Hoit B, Grupp IL, Boivin GP, Wolska B, Evans C, Solaro RJ, Wieczorek DF.(1999) Mouse model of a familial hypertrophic cardiomyopathy mutation in α-tropomyosin manifests cardiac dysfunction. Circ Res 85: 47–56.

    PubMed  CAS  Google Scholar 

  • Ngai SM, Pearlstone JR, Farah CS, Reinach FC, Smillie LB, Hodges RS. (2001) Structural and functional studies on Troponin I and Troponin C interactions. J Cell Biochem. 83: 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Obinata T, Saitoh O, Takano-Ohmura H. (1984) Effect of denervation on the isoform transitions of tropomyosin, troponin T, and myosin isozyme in chiken breast muscle. J Biochem 95: 585–588.

    PubMed  CAS  Google Scholar 

  • Ogut O, Jin JP. (1998) Developmentally regulated, alternative RNA splicing-generated pectoral muscle-specific troponin T isoforms and role of the NH2-terminal hypervariable region in the tolerance to acidosis. J Biol Chem 273: 27858–27866.

    Article  PubMed  CAS  Google Scholar 

  • Ogut O, Jin JP. (2000) Cooperative interaction between developmentally regulated troponin T and tropomyosin isoforms in the absence of F-actin. J Biol Chem 275: 26089–26095.

    Article  PubMed  CAS  Google Scholar 

  • Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, Marini JF, Edgerton VR. (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 73: 51S–57S.

    PubMed  CAS  Google Scholar 

  • Ohira Y. (2000) Neuromuscular adaptation to microgravity environment. Jpn J Physiol 50: 303–14.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki I, Shiraishi F. (2002) Periodic binding of troponin C.I and troponin I to tropomyosin-actin filaments. J Biochem (Tokyo) 131: 739–43.

    CAS  Google Scholar 

  • Palm T, Greefield NJ, Hitchcock-Degregori SE. (2003) Tropomyosin ends determine the stability and functionality of overlab and troponin T complexes. Biophys J 84: 3181–3189.

    PubMed  CAS  Google Scholar 

  • Pan B, Gordon A, Luo Z. (1989) Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem 264: 8495–8498.

    PubMed  CAS  Google Scholar 

  • Parmacek MS, Leiden JM. (1991) Structure, function, and regulation of troponin C. Circulation 84: 991–1003.

    PubMed  CAS  Google Scholar 

  • Pearlstone JR, Borgford T, Chandra M, Oikawa K, Kay CM, Herzberg O, Moult J, Herklotz A, Reinach FC, Smillie LB. (1992) Construction and characterization of a spectral probe mutant of troponin C: application to analyses of mutants with increased Ca2 + affinity. Biochemistry 31: 6545–6553.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino M.A., Canepari M., Rossi R., D’Antona G., Reggiani C., Bottinelli R. (2003) Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J. Physiol 546: 676–689.

    Article  CAS  Google Scholar 

  • Perry SV, Cole HA, Head JF, Wilson FJ. (1972) Localization and mode of action of the inhibitory component of the troponin complex. Cold Spring Harbor Symp Quant Biol 37: 251–262.

    Google Scholar 

  • Perry SV. (1998) Troponin T: genetics, properties and function. J Muscle Res Cell Motil. 19: 575–602.

    Article  PubMed  CAS  Google Scholar 

  • Perry SV. (1999) Troponin I: inhibitor or facilitator. Mol Cell Biochem 190: 9–32.

    Article  PubMed  CAS  Google Scholar 

  • Perrie WT, Smillie LB, Perry SB. (1973) A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J 135: 151–164.

    PubMed  CAS  Google Scholar 

  • Persechini A, Stull JT, Cooke R. (1985) The effect of myosin phosphorylation on the contractile properties of skinned rabbit skeletal muscle fibers. J BiolChem 260: 7951–7954.

    CAS  Google Scholar 

  • Pette D. (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119–1124.

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116: 1–76.

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170: 143–223.

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Staron RS. (2000) Myosin isoforms, muscle fiber types and transitions. Microsc Res Tech 50: 500–509.

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Vrbova G. (1985) Invited review: neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8: 676–689.

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Vrbova G. (1999) What does chronic electrical stimulation teach us about muscle plasticity? Muscle Nerve 22: 666–677.

    Article  PubMed  CAS  Google Scholar 

  • Peuker H, Conjard A, Pette D. (1998) Alpha-cardiac-like myosin heavy chain as an intermediate between MHCIIa and MHCI beta in transforming rabbit muscle. Am J Physiol 274: C595–602.

    PubMed  CAS  Google Scholar 

  • Phillips, G. N., Jr., J. P. Fillers, and C. Cohen. (1986) Tropomyosin crystal structure and muscle regulation. J.Mol.Biol. 192: 111–131.

    Article  PubMed  CAS  Google Scholar 

  • Picquet F, Stevens L, Butler-Browne GS, Mounier Y. (1998) Differential effects of a six-day immobilization on newborn rat soleus muscles at two developmental stages. J Muscle Res Cell Motil 19: 743–55.

    Article  PubMed  CAS  Google Scholar 

  • Picquet F, Bouet V, Canu MH, Stevens L, Mounier Y, Lacour M, Falempin M. (2002) Contractile properties and myosin expression in rats born and reared in hypergravity. Am J Physiol 282: R1687–R1695.

    CAS  Google Scholar 

  • Picquet F, Falempin M. (2003) Compared effects of hindlimb unloading versus terrestrial deafferentation on muscular properties of the rat soleus. Exp Neurol 182: 186–94.

    Article  PubMed  Google Scholar 

  • Pieples K, Arteaga G, Solaro RJ, Grupp I, Lorenz JN, Boivin GP, Jagatheesan G, Labitzke E, DeTombe PP, Konhilas JP, Irving TC, Wieczorek DF. (2002) Tropomyosin 3 expression leads to hypercontractility and attenuates myofilament length-dependent Ca2 + activation. Am J Physiol Heart Circ Physiol 283: H1344–H1353.

    PubMed  CAS  Google Scholar 

  • Potter JD, Gergely J. (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J.Biol.Chem. 250: 4628–4633.

    PubMed  CAS  Google Scholar 

  • Potter JD, Sheng Z, Pan BS, Zhao J. (1995)A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270: 2557–2562.

    Article  PubMed  CAS  Google Scholar 

  • Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND. (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Putkey JA, Sweeney HL, Campbell ST. (1989) Site-directed mutation of the trigger calcium-binding sites in cardiac troponin C. J Biol Chem 264: 12370–12378.

    PubMed  CAS  Google Scholar 

  • Regnier M, Martyn DA, Chase PB. (1996) Calmidazolium alters Ca2 + regulation of tension redevelopment rate in skinned skeletal muscle. Biophys J 71: 2786–2794.

    PubMed  CAS  Google Scholar 

  • Regnier M, Rivera AJ, Chase PB, Smillie LB, Sorenson MM. (1999) Regulation of skeletal muscle tension redevelopment by troponin C constructs with different Ca2 + affinities. Biophys J 76: 2664–2672.

    PubMed  CAS  Google Scholar 

  • Regnier M, Rivera AJ, Wang CK, Bates MA, Chase PB, Gordon AM. (2002) Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force- Ca2 + relations. J Physiol 540: 485–497.

    Article  PubMed  CAS  Google Scholar 

  • Reinach FC, Farah CS, Monteiro PB, Malnic B. (1997) Structural interactions responsible for the assembly of the troponin complex on the muscle thin filament. Cell Structure and Function 22: 219–223.

    PubMed  CAS  Google Scholar 

  • Riley DA, Slocum GR, Bain JL, Sedlak FR, Sowa TE, Mellender JW. (1990) Rat hindlimb unloading: soleus histochemistry, ultrastructure, and electromyography. J Appl Physiol 69: 58–66.

    PubMed  CAS  Google Scholar 

  • Riley DA., Bain JLW, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, Trappe TA, Costill DL. (1998) Disproportionate loss of thin filaments in human soleus muscle after 17-day bed rest. Muscle Nerve 21: 1280–1289.

    Article  PubMed  CAS  Google Scholar 

  • Riley DA., Bain JLW, Thompson JL, Fitts RH, Widrick JJ, Trappe SW, Trappe TA, Costill DL. (2002) Thin filament diversity and physiological properties of fast and slow fiber types in astronaut leg muscle. J Appl Physiol 92: 817–825.

    PubMed  Google Scholar 

  • Robinson JM, Wang Y, Kerrick WGL, Kawai R, Cheung HC. (2002) Activation of striated muscle:nearest-neighbour regulatory-unit and cross-bridge influence on myofilament kinetics. J Mol Biol 322: 1065–1088.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblatt JD, Parry DJ. (1993) Adaptation of rat extensor digitorum longus muscle to gamma irradiation and overload. Pflugers Arch 423: 255–64.

    Article  PubMed  CAS  Google Scholar 

  • Rosser BW, Dean MS, Bandman E. Myonuclear domain size varies along the lengths of maturing skeletal muscle fibers. Int J Dev Biol 46: 747–54, 2002.

    Google Scholar 

  • Roy RR, Hodgson JA, Lauretz SD, Pierotti DJ, Gayek RJ, Edgerton VR. (1992) Chronic spinal cord-injured cats: surgical procedures and management. Lab Anim Sci 42: 335–343.

    PubMed  CAS  Google Scholar 

  • Roy RR, Roy ME, Talmadge RJ, Mendoza R, Grindeland RE, and Vasques M. (1996) Size and myosin heavy chain profiles of rat hindlimb extensor muscle fibers after 2 weeks at 2G. Aviat Space Environ Med. 67: 854–858.

    PubMed  CAS  Google Scholar 

  • Sabry MA, Dhoot GK. (1991a) Identification and pattern of transitions of some developmental and adult isoforms of fast troponin T in some human and rat skeletal muscles. J Muscle Res Cell Motil 12: 447–54.

    Article  CAS  Google Scholar 

  • Sabry MA, Dhoot GK. (1991b) Identification of and pattern of transitions of cardiac, adult slow and slow skeletal muscle-like embryonic isoforms of troponin T in developing rat and human skeletal muscles. J Muscle Res Cell Motil 12: 262–70.

    Article  CAS  Google Scholar 

  • Saggin L, Gorza L, Ausoni S, Schiaffino S (1990) Cardiac troponin T in developing, regenerating and denervated rat skeletal muscle.Development. 110: 547–54.

    PubMed  CAS  Google Scholar 

  • Salviati G, Betto R, Danieli-Betto D. (1982) Polymorphism of myofibrillar proteins of rabbit skeletal muscle muscle fibers. An electrophoretic study of single fibers. Biochem J 207: 261–272.

    PubMed  CAS  Google Scholar 

  • Salviati G, Betto R, Danieli-Betto D, Zeviani M. (1983) Myofibrillar-protein isoforms and sarcoplasmic-reticulum Ca2 +-transport activity of single human muscle fibers. Biochem J 224: 215–225.

    Google Scholar 

  • Sano K, Maeda K, Oda T, Maeda Y. (2000) The effect of single residue substitutions of serine-283 on the strength of head-to-tail interaction and actin binding properties of rabbit skeletal muscle alpha-tropomyosin. J Biochem (Tokyo)., 127: 1095–102.

    CAS  Google Scholar 

  • Schachat FH, Bronson DD, McDonald OB. (1985) Heterogeneity of contractile proteins. A continuum of troponin-tropomyosin expression in mammalian skeletal muscle. J Biol Chem 260: 1108–13.

    PubMed  CAS  Google Scholar 

  • Schachat FH, Diamond MS, Brandt PW. (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198: 551–554.

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Reggiani C. (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76: 371–423.

    PubMed  CAS  Google Scholar 

  • Schiaffino S, Ausoni S, Gorza L, Saggin L, Gundersen K, Lomo T. (1988) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibers. Acta Physiol Scand 134: 575–6.

    PubMed  CAS  Google Scholar 

  • Seedorf K, Seedorf U, Pette D. (1983) Coordinate expression of alkali and DTNB myosin light chains during transformation of rabbit fast muscle by chronic stimulation. FEBS Lett 158: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Sheng, Z., B. S. Pan, T. E. Miller, and J. D. Potter. (1992) Isolation, expression, and mutation of a rabbit skeletal muscle cDNA clone for troponin I. The role of the NH2 terminus of fast skeletal muscle troponin I in its biological activity. J.Biol.Chem. 267: 25407–25413.

    PubMed  CAS  Google Scholar 

  • Sia SK, Li MX, Spyracopoulos L, Gagne SM, Liu W, Putkey JA, Sykes BD. (1997) Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain. J.Biol.Chem. 272: 18216–18221.

    Article  PubMed  CAS  Google Scholar 

  • Sieck GC, Regnier M. (2001) Invited Review: plasticity and energetic demands of contraction in skeletal and cardiac muscle. J Appl Physiol 90: 1158–64.

    PubMed  CAS  Google Scholar 

  • Smillie LB. (1979) Structure and functions of tropomyosins from muscle and non-muscle sources. Trends Biochem Sci 4: 151–155.

    Article  CAS  Google Scholar 

  • Solaro RJ., Bousquet P, Johnson D. (1986) Stimulation of cardiac myofilament force, ATPase avtivity and troponin C Ca2 + binding by bepridil. J Pharmacol Exp Ther 238: 502–507.

    PubMed  CAS  Google Scholar 

  • Solaro RJ, Rarick HM (1998) Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments.Circ Res. 783: 471–480.

    Google Scholar 

  • Sorichter S, Mair J, Koller A, Gebert W, Rama D, Calzolari C, Artner-Dworzak E, Puschendorf B. (1997) Skeletal troponin I as a marker of exercise-induced muscle dammage. J Appl Physiol 83: 1076–1082.

    PubMed  CAS  Google Scholar 

  • Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, Solaro RJ, Sykes BD. (1997) Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry 36: 12138–12146.

    Article  PubMed  CAS  Google Scholar 

  • Staron RS, Pette D. (1987) The multiplicity of myosin light and heavy chain combinations in histochemically typed single fibers. Rabbit soleus muscle. Biochem J 243: 687–693.

    CAS  Google Scholar 

  • Staron RS, Kraemer WJ, Hikida RS, Reed DW, Murray JD, Campos GE, Gordon SE. (1998) Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days. Histochem Cell Biol 110: 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Steffen JM, Musacchia XJ. (1986) Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids. Am J Physiol 251: R1059–63.

    PubMed  CAS  Google Scholar 

  • Stephenson GM, Stephenson DG. (1993) Endogenous MLC2 phosphorylation and Ca2 +-activated force in mechanically skinned skeletal fibers of the rat. Pflugers Arch 424: 30–38.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson GM. (2001) Hybrid skeletal muscle fibers: a rare or a common phenomenon? Clin Exp Pharmacol Physiol 28: 692–702.

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Mounier Y, Holy X, Falempin M (1990) Contractile properties of rat soleus muscle after fifteen days of hindlimb suspension. J Appl Physiol 68: 334–340.

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Mounier Y. (1990) Evidences for slow to fast changes in the contractile proteins of rat soleus muscle after hindlimb suspension: studies on skinned fibers. Physiologist 33: S90–1.

    PubMed  CAS  Google Scholar 

  • Stevens L, Mounier Y, Holy X. (1993) Functional adaptation of different rat skeletal muscles to weightlessness. Am J Physiol 264: R770–6.

    PubMed  CAS  Google Scholar 

  • Stevens L, Picquet F, Catinot MP, Mounier Y. (1996) Differential adaptation to weightlessness of functional and structural characteristics of rat hindlimb muscles. J Gravit Physiol 3: 54–57.

    PubMed  CAS  Google Scholar 

  • Stevens L, Gohlsch B, Mounier Y, Pette D. (1999) Changes in myosin heavy chain mRNA and protein isoforms in single fibers of unloaded rat soleus muscle. FEBS Lett 463: 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Sultan KR, Peuker H, Gohlsch B, Mounier Y, Pette D. (2000) Time-dependent changes in myosin heavy chain mRNA and protein isoforms in unloaded soleus muscle of rat. Am J Physiol Cell Physiol 277: C1044–C1049.

    Google Scholar 

  • Stevens L, Bastide B, Kischel P, Pette D, Mounier Y. (2002) Time-dependent changes in expression of troponin subunit isoforms in unloaded rat soleus muscle. Am J Physiol Cell Physiol 282: 1025–1030.

    Google Scholar 

  • Stevens L, Bozzo C, Nemirovskaya T, Montel V, Falempin M, Mounier Y. (2003) Alterations in contractile properties and expression pattern of myofibrillar proteins in rat muscles after hypergravity. J Appl Physiol 94: 2398–405.

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Bastide B, Bozzo C, Mounier Y. (2004) Hybrid fibers under slow-to-fast transformations: expression is of myosin heavy and light chains in rat soleus muscle. Pflugers Arch. 448: 507–14.

    Article  PubMed  CAS  Google Scholar 

  • Suarez MC, Machado CJ, Lima LM, Smillie LB, Pearlstone JR, Silva JL, Sorenson MM, Foguel D. (2003) Role of hydration in the closed-to-open transition involved in Ca2+ binding by troponin C. Biochemistry 42: 5522–5530.

    Article  PubMed  CAS  Google Scholar 

  • Sutoh K. (1982) Identification of myosin-binding sites on the actin sequence. Biochemistry 21: 3654–3661.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Brito RM, Rosevear PR, Putkey JA. (1990) The low-affinity Ca2 +-binding sites in cardiac/slow skeletal muscle troponin C perform distinct functions: site I alone cannot trigger contraction. Proc Natl Acad Sci USA 87: 9538–9542.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Stull JT. (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction. Proc Natl Acad Sci USA 87: 414–418.

    Article  PubMed  CAS  Google Scholar 

  • Syska H, Wilkinson JM, Grand RJ, Perry SV. (1976) The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit. Biochem J 153: 375–387.

    PubMed  CAS  Google Scholar 

  • Szczepanowska J, Borovikov YS, Jakubiec-Puka A. (1998) Effect of denervation and muscle inactivity on the organization of f-actin. Muscle Nerve 21: 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Szczesna D, Zhao J, Jones, M, Zhi G, Stull J, Potter JD. (2002) Phosphorylation of the regulatory light chains of myosin affects Ca2 + sensitivity of skeletal muscle contraction. J Appl Physiol 92: 1661–70.

    PubMed  CAS  Google Scholar 

  • Takeda S, Kobayashi T, Taniguchi H, Hayashi H, Maeda Y. (1997) Structural and functional domains of the troponin complex revealed by limited digestion. Eur J Biochem. 246: 611–617.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, J. A. and R. S. Hodges. (1981) Synthetic studies on the inhibitory region of rabbit skeletal troponin I. Relationship of amino acid sequence to biological activity. J Biol Chem 256: 2798–2802.

    PubMed  CAS  Google Scholar 

  • Talmadge RJ, Roy RR, Edgerton VR. (1995) Prominence of myosin heavy chain hybrid fibers in soleus muscle of spinal cord-transected rats. J Appl Physiol 78: 1256–1265.

    PubMed  CAS  Google Scholar 

  • Talmadge, RJ, Roy RR, and Edgerton VR. (1999) Persistence of hybrid fibers in rat soleus after spinal cord transection. Anat Rec 255: 188–201.

    Article  PubMed  CAS  Google Scholar 

  • Talmadge, RJ. (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23: 661–679.

    Article  PubMed  CAS  Google Scholar 

  • Tao T, Gong BJ, Leavis PC. (1990) Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science 247: 1339–1341.

    Article  PubMed  CAS  Google Scholar 

  • Termin, A, Staron RS, and Pette D. (1989) Changes in myosin heavy chain isoforms during chronic low frequency stimulation of rat fast hindlimb muscles. A single-fiber study. Eur J Biochem 186: 749–754.

    CAS  Google Scholar 

  • Tesch PA, Trieschmann JT, Ekberg A. (2004) Hypertrophy of chronically unloaded muscle subjected to resistance exercise. J Appl Physiol 96: 1451–8.

    Article  PubMed  CAS  Google Scholar 

  • Thierfelder L, Watkins H , MacRae C. (1994) α-tropomyosin and cardiac tropnin T mutations cause familial hypertrophic cardiomyopathy:a disease of the sarcomere. Cell 77: 701–712.

    Article  PubMed  Google Scholar 

  • Thomas L, Smillie L. (1994) Comparison of the interaction and functional properties of dephosphorylated hetero- and homo-dimers of rabbit striated muscle tropomyosins. Biophys J 66: 310–339.

    Google Scholar 

  • Thomason DB, Herrick RE, Surdyka D, Baldwin KM (1987). Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol. 63: 130–137.

    PubMed  CAS  Google Scholar 

  • Thomason DB, Morrison PR, Oganov V, Ilyina-Kakueva E, Booth FW, Baldwin KM. (1992) Altered actin and myosin expression in muscle during exposure to microgravity. J Appl Physiol 73: 90S-93S.

    PubMed  CAS  Google Scholar 

  • Thomason DB, Booth FW. (1990) Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol 68: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Tobacman LS. (1996) Thin filament-mediated regulation of cardiac contraction. Annual Rev Physiol 58: 447–481.

    Article  PubMed  CAS  Google Scholar 

  • Tobacman LS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem. 262: 4059–64.

    PubMed  CAS  Google Scholar 

  • Toursel T, Stevens L, Mounier Y. (1999) Differential response to unloading conditions of contractile and elastic properties of rat soleus. Exp Physiol 84: 93–107.

    PubMed  CAS  Google Scholar 

  • Tripet B, Van Eyk JE, Hodges RS. (1997) Mapping of a second actin-tropomyosin and a second troponin C binding site within the C terminus of troponin I, and their importance in the Ca2 +-dependent regulation of muscle contraction. J Mol Biol 271: 728–750.

    Article  PubMed  CAS  Google Scholar 

  • Trappe S, Godard M, Gallagher P, Carroll C, Rowden G, Porter D. (2001) Resistance training improves single muscle fiber contractile function in older women. Am J Physiol Cell Physiol. 281: C398–406.

    PubMed  CAS  Google Scholar 

  • Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch PT. (2004) Human single muscle fiber function with 84 day bed-rest and resistance exercise. J Physiol. 557: 501–13.

    Article  PubMed  CAS  Google Scholar 

  • Valencia FF, Paulucci AA, Quaggio RB, Da Silva AC, Farah CS, and Reinach FF. (2003) Parallel measurement of Ca2 +-binding and fluorescence emission upon Ca2 + titration of recombinant skeletal muscle troponin C: Measurement of sequential calcium binding to the regulatory sites. J Biol Chem. 278: 11007–14.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, J., G. Bugaisky, and M. Buckingham. (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. A quantitative determination of the two actin isoforms. J.Biol.Chem. 261: 1838–1843.

    PubMed  CAS  Google Scholar 

  • Vandekerckhove J, Weber K. (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit skeletal muscle. Differentation 14: 123–133.

    Article  CAS  Google Scholar 

  • Vandekerckhove J, Weber K. (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. J Mol Biol 179: 391–413.

    Article  PubMed  CAS  Google Scholar 

  • Van Eerd JP, Takahashi K. (1975) The amino acid sequence of bovine cardiac tamponin-C. Comparison with rabbit skeletal troponin-C. Biochem Biophys Res Commun 64: 122–127.

    Google Scholar 

  • Van Eyk JE, Thomas LT, Tripet B, Wiesner RJ, Pearlstone JR, Farah CS, Reinach FC, Hodges RS. (1997) Distinct region of troponin I regulate Ca2 +-dependent activation and Ca2 + sensitivity of the acto-S1-TM ATPase activity of the thin filament. J Biol Chem 272: 10529–10537.

    Article  PubMed  Google Scholar 

  • Vasques MS, Lang CBS, Grindeland RE, Roy R, Daunton N, Bigbee AJ, Wade CE. (1998) Comparison of hyper- and microgravity on rat muscle, organ weights and selected plasma constituents. Aviat Space Environ Med 69: 2–8.

    Google Scholar 

  • Vibert P, Craig R, Lehman W. (1997) Steric-model for activation of muscle thin filaments. Journal of Molecular Biology 266: 8–14.

    Article  PubMed  CAS  Google Scholar 

  • Vikstrom KL, Seiler SH, Sohn RL, Strauss M, Weiss A, Welikson RE, Leinwand LA. (1997) The vertebrate myosin heavy chain: genetics and assembly properties. Cell Struct Funct 22: 123–129.

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Inashima S, Yamada T, Matsunaga S. (2003) Endurance training-induced changes in alkali light chain patterns in type IIB fibers of the rat. J Appl Physiol 94: 923–929.

    PubMed  CAS  Google Scholar 

  • Wahrmann JP, Winand R, Rieu M. (2001) Plasticity of skeletal myosin in endurance-trained rats (I). A quantitative study. Eur J Appl Physiol 84: 367–372.

    Article  CAS  Google Scholar 

  • Wang J, Jin JP. (1998) Conformational modulation of troponin T by configuration of the NH2-terminal variable region and functional effects. Biochemistry 37: 14519–28.

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Kerrick GL. (2002) The off rate of Ca2 + from troponin C is regulated by force-generating cross bridges in skeletal muscle. J Appl Physiol 92: 2409–2418.

    PubMed  CAS  Google Scholar 

  • Watson PA, Stein JP, Booth FW. (1984) Changes in actin synthesis and α-actin-mRNA content in rat muscle during immobilization. Am J Physiol 247: 39–44.

    Google Scholar 

  • Whalen RG, Butler-Browne GS, Gros F. (1976) Protein synthesis and actin heterogeneity in calf muscle cells in culture. Proc Natl Acad Sci USA 73: 2018–2022.

    Article  PubMed  CAS  Google Scholar 

  • Widrick JJ, Knuth ST, Norenberg KM, Romatowski JG, Bain JL, Riley DA, Karhanek M, Trappe SW, Trappe TA, Costill DL, Fitts RH. (1999) Effect of a 17 day spaceflight on contractile properties of human soleus muscle fibers. J Physiol 516: 915–30.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM. (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem 103: 179–188.

    Article  PubMed  CAS  Google Scholar 

  • Wu, YZ, Baker MJ, Crumley RL, and Caiozzo VJ. (2000) Single-fiber myosin heavy-chain isoform composition of rodent laryngeal muscle: modulation by thyroid hormone. Arch Otolaryngol Head Neck Surg 126: 874–880.

    PubMed  CAS  Google Scholar 

  • Xu C, Craig R, Tobacman L, Horowitz R, Lehman W. (1999) Tropomyosin positions in regulated thin filamants revealed by cryoelectron microscopy. Biophysical Journal 77: 985–992.

    Article  PubMed  CAS  Google Scholar 

  • Yki-Järvinen H, Virkamaki A, Daniels MC, McClain D, Gottschalk WR. (1998) Insulin and glucosamine infusions increase O-linked N-acetyl-glucosamine in skeletal muscle proteins in vivo. Metabolism 47: 449–455.

    Article  PubMed  Google Scholar 

  • Yonemura I, Hirabayashi T, Miyazaki J. (2000) Heterogeneity of chicken slow skeletal muscle troponin T mRNA. J Exp Zool 286: 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Yonemura I, Mitani Y, Nakada K,. Akutsu S, Miyazaki J. (2002) Developmental changes of cardiac and slow skeletal muscle troponin T expression in chicken cardiac and skeletal muscles. Zoolog Sci 19: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Zacchara NF, O’Donnell N, Cheung WM, Mercer JJ, Marth JD, Hart GW. (2004) Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J Biol Chem 279: 30133–30142.

    Article  CAS  Google Scholar 

  • Zak R, Martin AF, Prior G, Rabinowitz M. (1977) Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method. J Biol Chem 252: 3430–3435.

    PubMed  CAS  Google Scholar 

  • Zhu L, Lyons GE, Juhasz O, Joya JE, Hardeman EC, Wade R. (1995) Developmental regulation of troponin I isoform genes in striated muscles of transgenic mice. Dev Biol 169: 487–503.

    Article  PubMed  CAS  Google Scholar 

  • Zot AS, Potter JD. (1989) Reciprocal coupling between troponin C and myosin crossbridge attachment. Biochemistry 28: 6751–6756.

    Article  PubMed  CAS  Google Scholar 

  • Zot, H. G. and J. D. Potter. (1982) A structural role for the Ca2 +-Mg2 + sites on troponin C in the regulation of muscle contraction. Preparation and properties of troponin C depleted myofibrils. J Biol Chem 257: 7678-7683.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Stevens, L., Bastide, B., Mounier, Y. (2006). Muscle Plasticity and Variations in Myofibrillar Protein Composition of Mammalian Muscle Fibers. In: Bottinelli, R., Reggiani, C. (eds) Skeletal Muscle Plasticity in Health and Disease. Advances in Muscle Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5177-8_8

Download citation

Publish with us

Policies and ethics