Skip to main content

Biodiversität — ein Schatz der Ökosysteme

  • Chapter
Allgemeine Geobotanik

Part of the book series: Springer-Lehrbuch

  • 5514 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.8 Literatur

  • Amade P, Leme’e R (1998) Chemical defense of the mediterranean alga Caulerpa saxifolia: variations in caulerpenyne productions. Aquatic Toxicology 43: 287–300

    Article  CAS  ISI  Google Scholar 

  • Amann R (1999) Biodiversität ohne Mikrobiologie? vdbiol 1/99: 5–6, München

    Google Scholar 

  • Andel TH (1994) New views on an old planet. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342: 255–257

    Article  PubMed  CAS  ISI  Google Scholar 

  • Angermeier PL (1994) Does biodiversity include artificial diversity? Conserv Biol 8: 600–602

    Article  Google Scholar 

  • Bailey RG (1996) Ecosystem geography. Springer, Heidelberg New York

    Google Scholar 

  • Bakker JP, Olff H, Willems JH, Zobel M (1996) Why do we need permanent plots in the study of long-term vegetation dynamics. J Veg Sci 7: 147–156

    Google Scholar 

  • Barret PM, Willis KJ (2001) Did dinosaurs invent flowers? Dinosaur-angiosperm coevolution revisited. Biological Reviews of the Cambridge Philosophical Society 76: 411–447

    Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50/4: 317–327

    Google Scholar 

  • Barthlott W, Murke J, Braun G, Kier G (2000) Die ungleiche globale Verteilung pflanzlicher Artenvielfalt — Ursachen und Konsequenzen. Ber d Reinh.-Tüxen-Ges 12: 67–84, Hannover

    Google Scholar 

  • Barthlott W, Winiger M (2001) Biodiversity. A challenge for development research and policy. Springer, Heidelberg

    Google Scholar 

  • Bau M, Beukes NJ, Romer RL (1998) Increase of oxygen in the Earth’s atmosphere and hydrosphere between ∼2.5 and ∼2.4 Ga B.P. Mineral Mag A 62: 127–128

    Google Scholar 

  • Bazzaza FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol System 21: 167–196

    Google Scholar 

  • Beck CB (1988) Origin and evolution of Gymnosperms. Columbia Univ Press, New York

    Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic Era. Nature 410: 352–354

    Article  PubMed  CAS  ISI  Google Scholar 

  • Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (1992) Terrestrial ecosystems through time — Evolutionary paleoecology of terrestrial plants and animals. The University of Chicago Press, Chicago

    Google Scholar 

  • Beierkuhnlein C (2001) Die Vielfalt der Vielfalt — Ein Vorschlag zur konzeptionellen Klärung der Biodiversität. Ber d Reinh-Tüxen-Ges 13: 103–118, Hannover

    Google Scholar 

  • Bekker A, Holland HD, Wang P-L, Rumble III D, Stein HJ, Hannah JL, Goetze LL, Benkes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427: 117–120

    Article  PubMed  CAS  ISI  Google Scholar 

  • Bell PR, Hemsley AR (2000) Green plants — their origin and diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Bengston S (1993) Early Life on Earth. Nobel Symposium 84. Columbia Univ Press New York

    Google Scholar 

  • Bennet KD (1990) Milankovitch cylces and their effects on species in ecological and evolutionary time. Paleobiology 16: 11–21

    Google Scholar 

  • Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426: 630–635

    Article  PubMed  CAS  ISI  Google Scholar 

  • Berger A (2001) The role of CO2-, sea level and vegetation during the Milankovitch-forced glacial interglacial cylces. In: Bengtsson L (ed) Proceedings “Geosphere Biosphere Interactions and Climate”. Pontifica Academy of Sciences 9–13 November 1998, Vatican City

    Google Scholar 

  • Berner RA (2001) The effect of the rise of land plants on atmospheric CO2 during the Paleozoic. In: Gensel P, Edwards D (eds) Plants invade the land: Evolutionary and environmental perspectives. Columbia Univ Press, New York, pp 173–178

    Google Scholar 

  • Berner RA et al (2000) Isotope fractionation and atmospheric oxygen: implications for phanerozoic O2 evolution. Science 287: 1630–1633

    Article  PubMed  CAS  ISI  Google Scholar 

  • Black JM (1995) The Nene Branta sandvicensis recovery initiative: research against extinction. Ibis 137: 153–160

    Google Scholar 

  • Black JM, Marshall AP, Gilburn A, Santos N, Hoshide H, Medeiros J, Mello J, Hodges CN, Katahira L (1997) Survival, movements and breeding of released Hawaiian geese: an assessment of the reintroduction progamme. J Wildl Manage 61(4): 1161–1173

    Google Scholar 

  • Böhle U-R, Hilger HH, Martin WF (1996) Island Colonization and Evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Nat Acad Sci USA 93: 11740–11745

    PubMed  Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, London New York

    Google Scholar 

  • Bowman DMJS (1993) Biodiversity is much more than biological inventory. Biodivers Lett I: 163

    Google Scholar 

  • Braunger M, Fuchs D, Krum W, Mathis P, Mertz P (2001) Die letzten Paradiese — Naturwunder der Erde. Bruckmann, München

    Google Scholar 

  • Bremer H (1999) Die Tropen. Geographische Synthese einer fremden Welt im Umbruch. Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier Science, Amsterdam

    Google Scholar 

  • Brochmann C, Borgen L, Stabetorp OE (2000) Multiple diploid hybrid speciation of the Canary Island endemic Argyranthemum sundingii (Asteraceae). Plant Syst Evol 220: 77–92

    Article  Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography. 2nd edn. Sinauer Associates, Sunderland/MA

    Google Scholar 

  • Burgh J van der, Visscher H, Dilcher DL, Kurschner WM (1993) Paleoatmospheric Signatures in Neogene Fossil Leaves. Science 260: 1788–1790

    Google Scholar 

  • Burrichter E (1977) Vegetationsbereicherung und Vegetationsverarmung unter dem Einfluss des prähistorischen und historischen Menschen. Natur und Heimat 37: 46–51

    Google Scholar 

  • Bush MB (1994) Amazonian speciation — a necessarily complex model. J Biogeogr 21: 5–17

    Google Scholar 

  • Byerly GR, Lowe DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491

    Article  CAS  ISI  Google Scholar 

  • Cain ML, Damman H, Muir A (1998) Seed dispersal and the Holocene migration of woodland herbs. Ecol Monogr 68: 325–347

    Google Scholar 

  • Caldeira K, Kasting JF (1992) Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359: 226

    Article  PubMed  CAS  ISI  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: The global transport of non indigenous marine organisms. Science 261: 78–82

    ISI  Google Scholar 

  • Cerling TE (1992) Use of carbon isotopes in paleosols as an indicator of the P(CO2) of the paleoatmosphere. Glob Biogeochem Cycles 6: 307–314

    CAS  Google Scholar 

  • Chaloner WG, McElwain JC (1997) The fossil plant record and global climatic change. Rev Palaeobot Palynol 95: 73–82

    Google Scholar 

  • Chapin FS III, Sala OE, Huber-Sannwald E (2001) Global biodiversity in a changing environment. Scenarios for the 21st century. Springer, Heidelberg

    Google Scholar 

  • Clemmey H, Badham N (1982) Oxygen in the Precambrian atmosphere: An evaluation of the geological evidence. Geology 10: 141–146

    Article  CAS  ISI  Google Scholar 

  • Colinvaux PA, de Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial timescales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19: 141–169

    Article  Google Scholar 

  • Collins SL, Benning TL (1996) Spatial and temporal patterns in functional diversity. In: Gaston KJ (ed) Biodiversity — a biology of numbers and difference. Blackwell Sciences, Oxford, pp 253–280

    Google Scholar 

  • Collinson ME (2000) Cainozoic evolution of modern plant communities and vegetation. In: Culver SJ, Rawson PF (eds) Biotic response to global change. Cambridge University Press, Cambridge, pp 223–243

    Google Scholar 

  • Crane PR, Friis EM, Pedersen KR (1995) The origin and early diversification of angiosperms. Nature 374: 27–33

    Article  CAS  ISI  Google Scholar 

  • Crane PR, Kenrick P (1997) Diverted development of reproductive organs: a source of morphological innovation in land plants. Plant Syst Evol 206: 161–174

    Article  Google Scholar 

  • Crepet WL, Feldmann GD (1991) The earliest remains of grasses in the fossil record. Am J Bot 78: 1010–1014

    Google Scholar 

  • Cronin TM (1999) Principles of paleoclimatology. Columbia Univ Press, New York

    Google Scholar 

  • Crowley TJ, Mengel JG, Short DA (1987) Gondwanaland’s seasonal cylce. Nature 329: 803–807

    Article  ISI  Google Scholar 

  • Curio E (2002) Priorisation of Philippine island avifaunas for conservation: A new combinatorial measure. Biol Conserv 106: 373–380

    Article  Google Scholar 

  • Darwin C (1842) The structure and distribution of coral reefs. J Murray, London

    Google Scholar 

  • Darwin C (1859) The origin of species. Penguin Classics 1985 edn, Penguin Books, London

    Google Scholar 

  • Deil U. (1999) Synvikarianz und Symphylogenie — Zur Evolution von Pflanzengesellschaften. Ber d Reinh-Tüxen-Ges 11: 223–244

    Google Scholar 

  • Delcourt HZ, Delcourt PA (1991) Quarternary ecology. A paleoecological perspective. Chapman & Hall, London

    Google Scholar 

  • Dettmann ME (1992) Structure and floristics of Cretaceous vegetation in southern Gondwana implications for angiosperm biogeography. Palaeobotanist 41: 224–233

    Google Scholar 

  • Dettmann ME, Jarzan DM (1990) The Antarctic Australian rift-valley — Late Cretaceous cradle of northeastern Australasian relicts. Rev Palaeobot Palynol 65: 131–144

    Google Scholar 

  • Disko R (1996) Mehr Intoleranz gegen fremde Arten. Nationalpark Nr. 93(4): 38–42

    Google Scholar 

  • Donnadieu Y, Goddéris Y, Ramstein G, Nédélec A, Meert J (2004) A „Snowball Earth“ climate triggered by continental break-up through changes in run-off. Nature 428: 303–306

    Article  PubMed  CAS  ISI  Google Scholar 

  • Droste v zu Hülshoff B (1997) 25 Jahre Welterbe-Konvention. In: Göbel P (Hrsg) Das Naturerbe der Menschheit. Landschaften und Naturschätze unter dem Schutz der UNESCO. Frederking & Thaler, München

    Google Scholar 

  • Edwards D, Duckett JG, Richardson JB (1995) Hepatic characters in the earliest land plants. Nature 374: 635–636

    Article  CAS  ISI  Google Scholar 

  • Ehrlich PR, Wilson EO (1991) Biodiversity Studies: Science and Policy. Science 253: 758–762

    ISI  PubMed  Google Scholar 

  • Ehrenfeld D (1992) Warum soll man der biologischen Vielfalt einen Wert beimessen? In: Wilson EO (Hrsg) Ende der biologischen Vielfalt? Heidelberg, S 235–239

    Google Scholar 

  • Erwin DH (1994) The Permo-Triassic extinction. Nature 367: 231–235

    Article  ISI  Google Scholar 

  • Eigen M (1992) Stufen zum Leben — Die frühe Evolution im Visier der Molekularbiologie. Serie Pieper 765, Neuausgabe, Pieper, München Zürich

    Google Scholar 

  • Eldredge N (1997) Extinction and the evolutionary process. In: Abe T et al (eds) Biodiversity: an ecological perspective. Springer, New York Heidelberg Berlin, pp 59–73

    Google Scholar 

  • Elliot R (1980) Why preserve species? In: Mannison DS, McRobbie MA, Routley R (eds) Environmental philosophy. Monograph Series, No 2, Department of Philosophy, Australien National University, Canberra, pp 8–29

    Google Scholar 

  • El Tabakh M, Grey K, Pirajno F, Schreiber BC (1999) Pseudomorphs after evaporitic minerals interbedded with 2.2 Ga stromatolites of the Yerriba basin, Western Australia: Origin and significance. Geology 27: 871–874

    Google Scholar 

  • Emmett A (2000) Biocomplexity: A new science for survival? The Scientist 14, 19: 1

    Google Scholar 

  • Endress PK (1987) The early evolution of the angiosperm flower. Tree 2: 300–304

    Google Scholar 

  • England GL, Rasmussen B, Krapez B, Groves DI (2002) Paleoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archean Witwatersrand Basin: Oxygen-deficient atmosphere or hydrothermal alteration? Sedimentology 49: 1133–1156

    Article  CAS  ISI  Google Scholar 

  • Eriksson PG, Cheney ES (1992) Evidence for the transition to an oxygen-rich atmosphere during the evolution of red beds in the lower Proterozoic sequences of southern Africa. Precambrian Research 54: 257–269

    Article  CAS  ISI  Google Scholar 

  • Erwin DH (1990) The end-Permian mass extinction. Annu Rev Ecol Syst 21: 69–91

    Article  Google Scholar 

  • Eser U, Potthast Th (1997) Bewertungsproblem und Normbegriff in Ökologie und Naturschutz aus wissenschaftlicher Perspektive. Z Ökol Nat schutz 6: 163–171

    Google Scholar 

  • Evans KJ, Weber HE (2003) Rubus anglocandicans (Rosaceae) is the most widespread taxa of European blackberry in Australia. CSIRO Publ, Aust Syst Bot 16: 527–537

    Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cylce. Science 289: 756–758

    Article  PubMed  CAS  ISI  Google Scholar 

  • Frenzel B (2000) History of flora and vegetation during the Quarternary. Progr Bot/Fortschr Bot 61: 303–334

    Google Scholar 

  • Frenzel B, Pésci M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the Northern Hemisphere. Late Pleistocene-Holocene. Geogr Res Inst Budapest, G Fischer, Stuttgart

    Google Scholar 

  • Friedman WE, Cook ME (2000) The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data. Philos Trans R. Soc Lond B 355: 857–868

    CAS  Google Scholar 

  • Friis EM, Chaloner WG, Crane PR (eds, 1987) The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge

    Google Scholar 

  • Frey W, Lösch R (2004) Lehrbuch der Geobotanik. Elsevier, München

    Google Scholar 

  • Futuyma DJ (1998) Evolutionary biology. 3rd edn. Sinauer Associates Sunderland/MA

    Google Scholar 

  • Gardner DE, Hodges CS (1990) Diseases of Myrica faya (firetree, Myricaceae) in the Azores, Madeira and the Canary Islands. Plant Pathology 39,2: 326–330

    ISI  Google Scholar 

  • Gaston KJ (1996) What is biodiversity? In: Gaston KJ (ed) Biodiversity — A Biology of Numbers and Difference. Blackwell, Oxford, pp 1–9

    Google Scholar 

  • Gaston K (2000) Global patterns in biodiversity. Nature 405: 220–227

    Article  PubMed  CAS  ISI  Google Scholar 

  • Gause GF (1934) The struggle for existence. Williams & Wilkins, Baltimore

    Google Scholar 

  • Gensel PG, Edwards D (eds, 2001) Plants invade the land — Evolutionary and environmental perspectives. Columbia University Press, New York

    Google Scholar 

  • George U (1997) Inseln in der Zeit. Venezuela-Expeditionen zu den letzten weißen Flecken der Erde. Geo, Gruner & Jahr AG, Hamburg

    Google Scholar 

  • Gigon A, Bolzern H (1988) Was ist das biologische Gleichgewicht? Überlegungen zur Erfassung eines Phänomens, das es strenggenommen gar nicht gibt. In: Fischer P, Kunze C (Hrsg) Das Gleichgewicht der Natur. Aus Forschung und Medizin 3(1): 18–28

    Google Scholar 

  • Göbel P (1997) Das Naturerbe der Menschheit: Landschaften und Naturschätze unter dem Schutz der Unesco. Frederking & Thaler, München

    Google Scholar 

  • Goodman D (1975) The theory of diversity-stability relationships in ecology. Quart Rev Biol 50(3): 237

    Article  Google Scholar 

  • Gowdy J (1997) The Value of Biodiversity. Land Economics 73(1): 25–41

    ISI  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2000) Hochgebirge als “Hot Spots” der Biodiversität — dargestellt am Beispiel der Phytodiversität. Ber d Reinh-Tüxen-Ges 12: 101–112

    Google Scholar 

  • Graham LE (1993) Origin of land plants. J Wiley, New York

    Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Gries B (1985) Der Erdglobus — Evolution der Organismen: Urzeugung — ja oder nein? Westfälisches Museum für Naturkunde, Münster

    Google Scholar 

  • Groves AT, Rackham O (2001) The nature of Mediterranean Europe: an ecological history. Yale University Press, New Haven

    Google Scholar 

  • Gunn AS (1980) Why should we care about rare species? Environmental Ethis 2: 17–37

    Google Scholar 

  • Haber W (1999) Conservation of biodiversity — scientific standards and practical realization. In: Kratochwil A (ed) Biodiversity in ecosystems: principles and case studies of different complexity levels. Kluwer, Dordrecht, pp 175–184

    Google Scholar 

  • Haeupler H (2000) Biodiversität in Zeit und Raum — Dynamik oder Konstanz? Ber d Reinh-Tüxen-Ges 12: 113–129

    Google Scholar 

  • Hajek A (2004) Natural enemics — an introduction to biological control. Cambridge University Press, Cambridge

    Google Scholar 

  • Hamann A, Barbon EB, Curio E, Madulid DA (1999) A forest inventory of a submontane tropical rainforest on Negros Island, Philippines. Biodivers Conser 8: 1017–1031

    Google Scholar 

  • Hayes JM (1996) The earliest memories of life on earth. Nature 384: 21–22

    Article  PubMed  CAS  ISI  Google Scholar 

  • Herman AB (2002) Late early-late cretaceous floras of the North Pacific region: florogenesis and early angiosperm invasion. Rev Palaeobot Palynol 122: 1–11

    Google Scholar 

  • Heywood VH (ed, 1995) Global biodiversity assessment. UNEP, Cambridge Univ Press, Cambridge

    Google Scholar 

  • Hill RS, Scriven LJ (1995) The angiosperm-dominated woody vegetation of Antarctica: a review. Rev Palaeobot Palynol 86: 175–189

    Google Scholar 

  • Hirt H, Shinozaki K (2003) Plant responses to abiotic stress. Springer, Heidelberg

    Google Scholar 

  • Hobohm C (2000) Biodiversität. UTB Quelle & Meyer, Heidelberg

    Google Scholar 

  • Hoffmann HC, Keller D, Thomas K (1998) Unser Weltkulturerbe. DuMont, Köln

    Google Scholar 

  • Hoffmann PE, Schrag DP (2002) The Snowball Earth Hypothesis: testing the limits of global change. Terra Nova 14: 129–155

    Google Scholar 

  • Holland HD (1984) Earth’s earliest biosphere — its origin and evolution. American Scientist 72: 391–392

    ISI  Google Scholar 

  • Holland HD (1994) Early Proterozoic atmospheric change. In: Bengston S (ed) Early Life on Earth. Columbia University Press, New York, pp 237–244

    Google Scholar 

  • Hooghiemstra H (1995) Environmental and paleoclimatic evolution in Late Pliocene-Quaternary Columbia. In: Vrba ES, Denton GH, Partridge TC (eds) Paleoclimate and evolution, with emphasis on human origins. Yale University Press, Yale, pp 249–261

    Google Scholar 

  • Hsu KJ, Montadert L, Bernoulli D, Cita MB, Erikson A, Garrison RE, Kidd RB et al (1977) History of Mediterranean salinity crisis. Nature 267: 399–403

    ISI  Google Scholar 

  • Humphries CJ (1976) Evolution and endemism in Argyranthemum Webb ex Schulz Bip. (Compositae: Anthemidae). Bot Macaronesica 1: 25–50

    Google Scholar 

  • Humphries CJ (1979) Endemism and Evolution in Macaronesia. In: Bramwell D (ed) Plants and Islands. Academic Press, London, pp 171–199

    Google Scholar 

  • Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic “Snowball Earth” simulations with coupled climate/ice-sheet modell. Nature 405: 425–429

    Article  PubMed  CAS  ISI  Google Scholar 

  • Imbrie J, Imbrie KP (1979) Ice ages: solving the mystery. Macmillan, London

    Google Scholar 

  • Ingrouille M (1992) Diversity and evolution of land plants. Chapman & Hall, London

    Google Scholar 

  • Iwasa Y (2000) Dynamic optimization of plant growth. Evol Ecol Res 2: 437–455

    Google Scholar 

  • Iwasa Y, Michor F, Nowak M (2004) Evolutionary dynamics of invasion and escape. Journal of Theoretical Biology 226: 205–214

    Article  PubMed  ISI  Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass dominated ecosystems. Ann Mo Bot Gard 86: 590–644

    Google Scholar 

  • Jedicke E (2001) Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur — ein konzeptioneller Diskussionsbeitrag. Nat schutz Landsch plan 33(2/3): 59–68

    Google Scholar 

  • Jørgensen PM, León-Yánez S (eds, 1999) Catalogue of the Vascular Plants of Ecuador. Monogr Syst Bot Missouri Bot Gard 75, St. Louis

    Google Scholar 

  • Jürgens N (2001) Biodiversity — The Living Resource: Challenges and Research Strategies. A science plan for the german research on the global change of biodiversity. German National Committee on Global Change Research, pp 23–45

    Google Scholar 

  • Junghanss B (1986) Tropenwald: Laboratorium der Evolution. Kosmos Nr 10: 16–24

    Google Scholar 

  • Juvik SP, Juvik JO (1998) Atlas of Hawai’i. 3rd edn. Univ of Hawai’i Press, Honolulu

    Google Scholar 

  • Kadereit JW (2004) Flowering plants. Dicotyledons. Vol VII, Springer, Heidelberg

    Google Scholar 

  • Kaiser J (2000) Rift over biodiversity divides ecologists. Science 289: 1282–1283

    PubMed  CAS  ISI  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294: 2351–2353

    Article  PubMed  CAS  ISI  Google Scholar 

  • Kellman M, Tackaberry R (1997) The history of tropical environments. In: Kellman M, Tackaberry R (eds) Tropical environments: the functioning and management of tropical ecosystems. Routledge, London, pp 7–26

    Google Scholar 

  • Kennedy WJ, Cobban WA (1977) The role of ammonites in biostratigraphy. In: Kauffman EG, Hazel JE (eds) Concepts and methods of biostratigraphy. Dowden, Hutchinson & Ross, Stroudsburg, pp 309–320

    Google Scholar 

  • Kenrick P (1994) Alternation of generations in land plants: new phylogenetic and palaeobotanical evidence. Biol Rev 69: 293–330

    Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389: 33–39

    Article  CAS  ISI  Google Scholar 

  • Kenrick P, Friis EM (1995) Paleobotany of land plants. Progr Bot 56: 372–395

    Google Scholar 

  • Kidston R, Lang WH (1921) On old Red Sandstone plants. Trans R Soc Edinb 52: 831–854

    Google Scholar 

  • Kirschvink JL, Gaidos E, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger R (2000) The Paleoproterozoic Snowball Earth: Deposition of the Kalahari Manganese Field and the Evolution of Eukaryotes. Proceedings of the North American Academy of Sciences 97: 1400–1405

    CAS  Google Scholar 

  • Kowarik I (2003) Biologische Invasionen: Neophyten und Neozoen in Mitteleuropa. Ulmer, Stuttgart

    Google Scholar 

  • Kratochwil A (1999) Biodiversity in ecosystems — some principles. In: Kratochwil A (ed) Biodiversity in ecosystems: principles and case studies of different complexity levels. Tasks of Vegetation Science 23, Kluwer Academic Publishers, Dordrecht, Boston, London, pp 5–38

    Google Scholar 

  • Kremer P, Andel J v (1995) Evolutionary aspects of life forms in angiosperm families. Acta Bot Neerl 44: 469–479

    Google Scholar 

  • Kroon H de, van Groenendael J (eds, 1997) The ecology and evolution of clonal plants. Backhuys, Leiden

    Google Scholar 

  • Krutzsch W (1989) Paleogeography and historical phytogeography (paleochorology) in the Neophyticum. Pl Syst Evol 162: 5–61

    Article  Google Scholar 

  • Kubitzki K, Bayer C (2003) Flowering plants. Dicotyledons. Vol V. Springer, Heidelberg

    Google Scholar 

  • Lange RT (1982) Australian Tertiary vegetation. In: Smith JMB (ed) A history of Australian vegetation. McGraw-Hill, Sydney, pp 44–89

    Google Scholar 

  • Larson RL (1991) Geological consequences of superplumes. Geology 19: 963–966

    ISI  Google Scholar 

  • Lazcano A, Miller SL (1996) The origin and early evolution of life: prebiotic chemistry, the pre-RNA-world and time. Cell 85: 793–798

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lemon ER (1983) CO2 and plants. Westview Press, Boulder, Colorado

    Google Scholar 

  • Lems K, Holzapfel CM (1968) Evolution in the Canary Islands. I. Phylogenetic relations in the genus Echium (Boraginaceae) as shown by trichome development. Bot Gaz 129(2): 95–107

    Article  Google Scholar 

  • Leakey R, Lewin R (1996) Die sechste Auslöschung. Lebensvielfalt und die Zukkunft der Menschheit. S Fischer, Frankfurt

    Google Scholar 

  • Leser H, Nagel P (1998) Landscape diversity — a holistic approach. In: Barthlott W, Wininger M (eds) Biodiversity — A challenge for development research and policy. Berlin, pp 129–143

    Google Scholar 

  • Levin DA (2000) The Origin, Expansion and Demise of Plant species. Oxford Univ Press, Oxford

    Google Scholar 

  • Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23: 399–418

    ISI  Google Scholar 

  • Linsenmair KE (1992) Tropische Biodiversität — Unser wichtigstes natürliches Erbe: weitgehend unverstanden und hochbedroht. In: Lexikon der Biologie Bd 10, Herder, Freiburg Basel Berlin, S 409–416

    Google Scholar 

  • Linsenmair KE (2000) Funktionale Aspekte der Biodiversität. Ber d Reinh-Tüxen-Ges 12: 85–100

    Google Scholar 

  • Lovejoy TE (1980) Changes in biological diversity. In: The Global 2000 Report to the President. Vol 2 (The Technical Report), Harmandsworth, Penguin Books

    Google Scholar 

  • Lovelock JE (2000) The Ages of Gaia: A Biography of our Living Earth. Oxford Univ Press, Oxford

    Google Scholar 

  • Lovelock JE, Whitfield M (1982) Life span of the biosphere. Nature 296: 561–563

    CAS  ISI  Google Scholar 

  • Luo Z (1999) A refugium for relicts. Nature 400: 24–25

    Article  Google Scholar 

  • Lutzow-Felling CJ, Gardener DE, Markin GP, Smith CW (1995) Myrica faya: Review of the biology, ecology, distribution and control including an annotated bibliography. Coop Park Studies Unit (Dept Botany/Univ Hawai’i). Technical Report 94, Honolulu, pp 1–120

    Google Scholar 

  • Maarel E van der (1997) Biodiversity: From Babel to Biosphere Managements. Opulus Press, Uppsala

    Google Scholar 

  • Manchester SR (1999): Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden 86: 472–523

    ISI  Google Scholar 

  • Markin GP, Silva L, Aguiar AMF (1995) The insect fauna associated with the tree Myrica faya (Myricaceae) in the Macaronesian Islands and on mainland Portugal. Boletin do Museo Principal do Funchal 4: 411–420

    Google Scholar 

  • Markl H (1983) Untergang oder Übergang — Natur als Kulturaufgabe. Mannheimer Forum 82/83: 61–98

    Google Scholar 

  • Martin M (1997) Durstige Invasion am Kap der Guten Hoffnung. Nationalpark — Umwelt — Natur, Nr 96,3, Grafenau, S 50–51

    Google Scholar 

  • Matthews RO (1998) Die Großen Naturwunder — Ein Atlas der Naturphänomene unserer Erde. 8. Aufl, Frederking & Thaler, München

    Google Scholar 

  • May RM (1992) How many species inhabit the earth? Scientific American 267: 18–24

    Article  Google Scholar 

  • May RM, Lawton J (1995) Extinction rates. Oxford University Press, Oxford

    Google Scholar 

  • Mayr E (1984) Die Entwicklung der biologischen Gedankenwelt. Vielfalt, Evolution und Vererbung. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • McArthur RH, Wilson EO (1967) The theory of island biography. Princeton Univ Press, Princeton/NJ

    Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285: 1386–1390

    Article  PubMed  CAS  ISI  Google Scholar 

  • McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 49: 271–300

    Article  Google Scholar 

  • McNeely JA (1966) Costs and benefits of alien species. In: Sandlund OT, Schei PJ, Viken A (eds) Proceedings Norway UN-Conference on Alien Species. Directorate for Nature Management, Trondheim, pp 176–181

    Google Scholar 

  • Meyen SV (1987) Fundamentals of palaeobotany. Chapman & Hall, New York

    Google Scholar 

  • Miki S (1941) On the change of flora in Eastern Asia since Tertiary period. I The clay or lignite beds flora in Japan with special reference to the Pinus trifolia beds in Central Hondo. Japan J Botan 11: 237–303

    Google Scholar 

  • Milankovitch M (1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie I (A). Borntraeger, Berlin, pp 1–176

    Google Scholar 

  • Möhring C (1995) Galápagos — bedrohte Schatzkammer der Natur. FAZ, Nr 201, S N 3, Frankfurt

    Google Scholar 

  • Mooney HA, Cushman JH, Medina E, Sala OE, Schulze ED (eds, 1996) Functional Roles of Biodiversity — A Global Perspective. Wiley & Sons, Chichester

    Google Scholar 

  • Moore BD (2004) Favoured aliens for the future. Nature 427: 594

    PubMed  CAS  ISI  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. John Wiley & Sons, Chichester

    Google Scholar 

  • Mosbrugger V (2003): Die Erde im Wandel — die Rolle der Biosphäre. Naturwiss Rundschau 56(7): 357–365

    Google Scholar 

  • Mueller-Dombois D (1999) Biodiversity and environmental gradients across the tropical Pacific islands: A new strategy for research and conservation. — Naturwiss 86: 253–261

    Article  CAS  ISI  Google Scholar 

  • National Geographic (2003): Philippinen — Schatzkammer der Natur. Maiheft 2003

    Google Scholar 

  • Neal D (2003) Introduction to population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Newton A (1977) A review of Rubus sectio Discolores, P. J. Muell. in Britain. Watsonia 11: 237–246

    Google Scholar 

  • Niklas KJ (1997) The Evolutionary Biology of Plants. Oxford Univ Press, Oxford

    Google Scholar 

  • Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification. Nature 303: 614–616

    Article  ISI  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habit and nature of early life. Nature 409: 1083–1091

    Article  PubMed  CAS  ISI  Google Scholar 

  • Nisbet EG, Cann JR, Dover CL (1995) Origins of photosynthesis. Nature 373: 479–480

    Article  CAS  ISI  Google Scholar 

  • Pack A, Gutzmer J, Beukes NJ, Van Niekerk HS, Hoernes S (2000) Supergene ferromanganese wad deposits from Permian Karoo strata along the Late Cretaceous — Early Tertiary African land surface, Ryedale, South Africa. Economic Geology 95: 203–220

    CAS  ISI  Google Scholar 

  • Parrish JT (1993) Climate of the supercontinent pangea. Journal of Geology 101: 215–233

    Article  ISI  Google Scholar 

  • Pavlov AA, Kasting JE (2002) Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2: 27–41

    Article  PubMed  CAS  ISI  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI et al (1999) Climate and atmospheric history of the past 42,000 years from the Vostok ice core, Antarctica. Nature 399: 429–435

    Article  CAS  ISI  Google Scholar 

  • Pianka ER (2000) Evolutionary ecology. Addison Wesley, Longman

    Google Scholar 

  • Picket S, White P (1985) The ecology of natural disturbance and patch dynamics. Academic Press, San Diego

    Google Scholar 

  • Pickett STA, Parker VT, Fiedler PL (1992) The new paradigm in ecology: implications for conservation biology above the species level. In: Fiedler PL, Jain SK (eds) Conservation biology. The theory and practice of conservation, preservation and management. Chapman & Hall, New York, pp 65–88

    Google Scholar 

  • Piechocki R (2001) Biodiversität. Naturwiss. Rundschau 54(6): 337–338

    Google Scholar 

  • Pierrehumbert RT (2004) High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429: 646–648

    Article  PubMed  CAS  ISI  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brocks TM (1995) The future of biodiversity. Science 269: 347–350

    CAS  ISI  PubMed  Google Scholar 

  • Pott R (1995) Farbatlas Nordseeküste und Nordseeinseln. Ulmer, Stuttgart

    Google Scholar 

  • Pott R (1999) Diversity of pasture-woodlands of north-west Germany. In: Kratochwil A (ed) Biodiversity in ecosystems: principles and case studies of different complexity levels. Kluwer, Dordrecht, pp 107–132

    Google Scholar 

  • Pott R, Freund H, Petersen J, Walther GR (2003) Aktuelle Aspekte der Vegetationskunde. Tuexenia 23: 11–39

    Google Scholar 

  • Pott R, Hüppe J, Wildpret W (2003) Die Kanarischen Inseln, Natur-und Kulturlandschaften. Ulmer, Stuttgart

    Google Scholar 

  • Potthast Th (1999) Die Evolution und der Naturschutz: zum Verhältnis von Evolutionsbiologie, Ökologie und Naturethik. Campus, Frankfurt/Main New York

    Google Scholar 

  • Powell JR, Gibbs JP (1995) A report from Galápagos. Trends in Ecology and Evolution 10: 351–354

    Article  Google Scholar 

  • Price PW (2002) Macroevolutionary theory on macroecological patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Qiu Y-L, Palmer D (1999) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4: 26–30

    Article  PubMed  Google Scholar 

  • Qiu Y-L, Cho Y, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394: 671–674

    PubMed  CAS  ISI  Google Scholar 

  • Rampino MR, Stothers RB (1984) Terrestrial mass extinctions, cometary impacts and the sun’s motions perpendicular to the galactic plane. Nature 308: 709–712

    Article  ISI  Google Scholar 

  • Ramussen R (2000) Filamentous microfossils in a 3,235 million-year-old volcanogenic massive sulphide deposit. Nature 405: 676–679

    Google Scholar 

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697–1699

    CAS  ISI  PubMed  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants. 5th edn. Worth Publishers, New York

    Google Scholar 

  • Raymond A (1985) Floral diversity, phytogeography, and climatic amelioration during the Early Caroniferous (Dinantian). Paleobiology 11: 293–309

    ISI  Google Scholar 

  • Rees PM, Ziegler AM, Valdes PJ (2000) Jurassic phytogeography and climates: new data and model comparisons. In: Hueber FM, Macleod KG, Wing SL (eds) Warm climates in Earth history. Cambridge University Press, Cambridge, pp 297–318

    Google Scholar 

  • Reichholf JH (1993) Biodiversität, warum gibt es so viele verschiedene Arten? Universitas 48: 830–840

    Google Scholar 

  • Reid GC, McAfee JR, Crutzen PJ (1978) Effects of intense stratospheric ionisation events. Nature 275: 489–492

    Article  CAS  ISI  Google Scholar 

  • Rejmanek M (1989) Invasibility of plant communities. In: Drake JA (ed) Biological invasions: a global perspective, pp 369–388

    Google Scholar 

  • Remy W, Gensel PG, Hass H (1993) The gametophyte generation of some Early Devonian land plants. Int J Plant Sci 154: 35–58

    Article  Google Scholar 

  • Rensch B (1972) Neue Probleme der Abstammungslehre. Eine transspezifische Evolution. 3. Aufl, Enke, Stuttgart

    Google Scholar 

  • Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–155

    Article  PubMed  CAS  ISI  Google Scholar 

  • Rizzotti M (2000) Early Evolution. Birkäuser, Basel

    Google Scholar 

  • Roberts N (1998) The Holocene. An environmental history. Blackwell, Oxford

    Google Scholar 

  • Rogers JJW (1996) A history of continents in the past three billion years. Journal of Geology 104: 91–107

    Article  ISI  Google Scholar 

  • Romero EJ (1986) Paleogene phytography and climatology of South America. Annals of the Missouri Botanical Garden 73: 449–461

    ISI  Google Scholar 

  • Rosendal GK (1999/2000) Biodiversity: Between Diverse International Arenas. Yearbook of International Cooperation on Environment and Development

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Google Scholar 

  • Sandlund OT, Schei PJ, Viken A (1999) Invasive species and biodiversity management. Kluwer, Dordrecht

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schopf JW (1999) Cradle of life — The discovery of Earth’s earliest fossils. Princeton University Press, Princeton /NJ

    Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum, Heidelberg

    Google Scholar 

  • Schuster RM (1976) Plate tectonics and ist bearing on the geographical origin and dispersal of angiosperms. In: Beck CB (ed) Origin and early evolution of angiosperms. Columbia University Press, New York London, pp 48–138

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment and dendroecology. Haupt, Bern Stuttgart Vienna

    Google Scholar 

  • Singh R (2003) The evolution of population biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Skog JE, Dilcher DL (1994) Lower Vascular Plants of the Dakota Formation in Kansas and Nebraska. Rev Pal Pal 80: 1–18

    Google Scholar 

  • Smith M, Bruhn J, Anderson J (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356: 428–431

    ISI  Google Scholar 

  • Sohmer SH, Gustafson R (1987) Plants and flowers of Hawaii. University of Hawaii

    Google Scholar 

  • Sprigg RC (1947) Early Cambrian Jellyfishes from the Flinders Ranges, South Australia. Transactions of the Royal Society of South Australia 71: 212–224

    Google Scholar 

  • Sprigg RC (1949) Early Cambrian “Jellyfishes” of Ediacara, South Australia, and Mt. John, Kimberley District, Western Australia. Transactions of the Royal Society of South Australia 73: 72–99

    Google Scholar 

  • Stanley D (1988) Südsee-Handbuch. Gisela Walther, Bremen

    Google Scholar 

  • Stebbins GL (1981) Coevolution of grasses and herbivores. Annals of the Missouri Botanical Garden 86: 75–86

    Google Scholar 

  • Stemmermann L (1983) Ecological studies of Hawaiian Metrosideros in a successional context. Pac Sci 37: 361–373

    Google Scholar 

  • Stone CP, Loope LL (1987) Effects of introduced animals on native species in Hawai’i: what has been done, what needs doing, and the role of national parks. Environmental Conservation 14: 245–258

    ISI  Google Scholar 

  • Storch V, Welsch U, Wink M (2001) Evolutionsbiologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strauss H (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeography Palaeoclimatology Palaeoecology 132: 97–118

    Article  ISI  Google Scholar 

  • Strauss H, Beukes NJ (1996) Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa. Precambrian Research 79: 57–71

    Article  CAS  ISI  Google Scholar 

  • Takenaka Y, Matsuda H, Iwasa Y (1997) Competition and Evolutionary Stability of Plants in a Spatially Structured Habitats. Researches on Population Ecology 39: 67–75

    ISI  Google Scholar 

  • Tallis JH (1991) Plant community history: long-term changes in plant distribution and diversity. Chapman & Hall, London

    Google Scholar 

  • Tanai T (1972) Tertiary history of vegetation in Japan. In: Graham A (ed) Floristics and paleofloristics of Asia and eastern North America. Elsevier, Amsterdam, pp 235–255

    Google Scholar 

  • Taniguchi Y, Stanley HE, Ludwig H (2002) Biological systems under extreme conditions. Structure and function. Springer, Heidelberg

    Google Scholar 

  • Tarling DH, Runcorn SK (eds, 1973) Continental drift, sea floor spreading and plate tectonics: implications to earth sciences. Academic Press, London

    Google Scholar 

  • Taylor DW, Hickey LJ (1996) Evidence for and implications of an herbaceous origin of angiosperms. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 232–266

    Google Scholar 

  • Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399: 648

    PubMed  CAS  ISI  Google Scholar 

  • Terborgh J (1993) Lebensraum Regenwald, Zentrum biologischer Vielfalt. Spektrum, Heidelberg

    Google Scholar 

  • Thomas BA, Spicer RA (1987) The evolution and palaeobiology of land plants. Croom Helm, London

    Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80: 1455–1474

    ISI  Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405: 208–211

    Article  PubMed  CAS  ISI  Google Scholar 

  • Upchurch GR Jr, Otto-Bliesner BL, Scotese CR (1999) Terrestrial vegetation and its effect on climate during the latest Cretaceous. In: Barren E, Johnson CC (eds) Evolution of the Cretaceous ocean-climate system. Geological Society of America, Boulder, Colorado, pp 406–426

    Google Scholar 

  • Vakhrameev VA (1991) Jurassic and Cretaceous floras and climates of the Earth. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Van der Hammen T (1983) Paleoecology of tropical South America. In: Prance GT (ed) Biological diversification in the Tropics. Columbia University Press, New York, pp 60–66

    Google Scholar 

  • Van Niekerk HS, Beukes NJ, Gutzmer J (2000) Post Gondwana pedogenic ferromanganese deposits, ancient soil profiles, African land surfaces and paleoclimatic change on the Highveld of South Africa. Journal of African Earth Sciences 29: 761–781

    Google Scholar 

  • Vitousek PM, Loope LL, Andersen H (1995) Islands — Biological Diversity and Ecosystem Function. Ecological Studies 115, Springer, Berlin

    Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Watson PA (1987) Biological invasion of Myrica faya alters ecosystem development in Hawai’i. Science 238: 802–804

    ISI  PubMed  Google Scholar 

  • Vuorisalo TO, Mutikainen PK (2001) Life History Evolution in Plants. Kluwer, Dodrecht

    Google Scholar 

  • Wagner WL, Herbst DR, Sohmer SH (1990) Manual of the flowering plants of Hawai’i. Rev ed, Univ of Hawai’i Press, Honolulu, Vol 1, pp 1–988, Vol. 2, pp 989–1918

    Google Scholar 

  • Walker B (1992) Biodiversity and ecological redundancy. Conserv Biol 6: 18–23

    Article  Google Scholar 

  • Walsh JE, Doran PT, Priscu JC, Lyons WB, Fountain AG, McKnight DM, Moorhead DL, Virginia RA, Wall DH, Clow GD, Fritsen CH, McKay CP, Parsons AN (2002) Climate change — Recent temperature trends in the Antarctic. Nature 418: 292

    Article  CAS  ISI  Google Scholar 

  • Wardle DA, Huston MA, Grime JP, Berendse F, Garnier E, Lauenroth WK, Setäla H, Wilson SD (2000) Biodiversity and Ecosystem Function: an Issue in Ecology. Bull Ecol Soc Am 81: 235–239

    Google Scholar 

  • Warren SG, Brandt RE, Grenfell TC, McKay CP (2002) Snowball Earth: ice thickness on the tropical ocean. J Geophys Res C107

    Google Scholar 

  • Weber E (2003) Invasive plant species of the world. Cabi Publishing, Wallingford

    Google Scholar 

  • Wellman CH, Gray J (2000) The microfossil record of early land plants. Philos Trans R Soc Lond B 355: 717–732

    Article  CAS  Google Scholar 

  • Werner R, Hoernle K, van den Bogaard P, Ranero C, von Huene R, Korich D (1999) Drowned 14-m.y.-old Galapagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27(6): 499–502

    Article  CAS  ISI  Google Scholar 

  • Whitmore TC (1993) Tropische Regenwälder, eine Einführung. Spektrum, Heidelberg

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21: 231–251

    Google Scholar 

  • Williams MAJ, Dunkerley DL, De Deckker P, Kershaw AP, Chapell J (1998) Quaternary Environments. 2nd edn. Edward Arnold, London

    Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Willis KJ, Kleczkowski A, Crowhurst SJ (1999) 124 000-year periodicity in terrestrial vegetation change during the late Pliocene epoch. Nature 397: 685–688

    Article  CAS  ISI  Google Scholar 

  • Willis KJ, Whittaker R (2000) The refugal debate. Science 287: 1406–1407

    Article  PubMed  CAS  ISI  Google Scholar 

  • Wilson EO (1994) The diversity of life. 2nd edn., Penguin Press, London

    Google Scholar 

  • Wing SL, Boucher LD (1998) Ecological aspects of the Cretaceous flowering plant radiation. Annual Review of Earth and Planetary Sciences 26: 379–421

    Article  CAS  ISI  Google Scholar 

  • Wolfe JA (1985) Distribution of major vegetation types during the Tertiary. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2: natural variations Archean to present. American Geophysical Union, Washington/DC, pp 357–375

    Google Scholar 

  • Wolfe JA, Upchurch GR jr (1986) Vegetation, climate and floral changes at the Cretaceous-Tertiary boundary. Nature 324: 148–152

    Article  ISI  Google Scholar 

  • Woodward FI (1994) How many species are required for a functional ecosystem? In: Schulze E-D, Mooney HA (eds) Biodiversity and Ecosystem Function. Springer, Berlin, pp 271–291

    Google Scholar 

  • Wright R, Cita MB (1979) Geodynamics and biodynamics effects of the Messinian salinity crisis in the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 29: 215–222

    ISI  Google Scholar 

  • Wuketits FM (2002) Auf dem schmalen Grat des Lebens: Evolution — Zufall und Notwendigkeit. Nova Acta Leopoldina NF 86,324: 129–142

    Google Scholar 

  • Xiong J, Fischer AG, Inoue WM, Nakahara K, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730

    Article  PubMed  CAS  ISI  Google Scholar 

  • Xiwen LI, Walker D (1986) The plant geography of Yunnan Province, southwest China. J Biogeography 13: 367–397

    Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96: 1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Foote D, Jones VP, Tunison JT (2000) A preliminary investigation of the effect of the two-spotted leafhopper Sophonia rufofascia (Kuoh & Kuoh), on fire tree, Myrica faya Aiton, in Hawai’I Volcanoes National Park. Technical Rep, Univ of Hawai’i, Pac Coop Studies Unit 2000, Honolulu

    Google Scholar 

  • Yang W, Holland HD (2002) The redox-sensitive trace elements, Mo, U, and Re in Precambrian carbonaceous shales: Indicators of the Great Oxidation Event. Geol Soc Am Abstr Programs 34: 381

    Google Scholar 

  • Yin-Long Q, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407

    Google Scholar 

  • Zhang YX, Zindler A (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci Lett 117: 331–345

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Biodiversität — ein Schatz der Ökosysteme. In: Allgemeine Geobotanik. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27527-4_4

Download citation

Publish with us

Policies and ethics