Skip to main content

Myosin Motor Proteins in the Cell Biology of Axons and Other Neuronal Compartments

  • Chapter
  • First Online:
Cell Biology of the Axon

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 48))

Abstract

Most neurons of both the central and peripheral nervous systems express multiple members of the myosin superfamily that include nonmuscle myosin II, and a number of classes of unconventional myosins. Several classes of unconventional myosins found in neurons have been shown to play important roles in transport processes. A general picture of the myosin-dependent transport processes in neurons is beginning to emerge, although much more work still needs to be done to fully define these roles and establish the importance of myosin for axonal transport. Myosins appear to contribute to three types of transport processes in neurons; recycling of receptors or other membrane components, dynamic tethering of vesicular components, and transport or tethering of protein translational machinery including mRNA. Defects in one or more of these functions have potential to contribute to disease processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, Mohiddin SA, Fananapazir L, Caruso RC, Husnain T, Khan SN, Griffith AJ, Friedman TB, Wilcox ER (2003) Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72:1315–1322

    PubMed  CAS  Google Scholar 

  • Ali MY, Krementsova EB, Kennedy GG, Mahaffy R, Pollard TD, Trybus KM, Warshaw DM (2007) Myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci USA 104:4332–4336

    PubMed  CAS  Google Scholar 

  • Ali MY, Lu H, Bookwalter CS, Warshaw DM, Trybus KM (2008) Myosin V and Kinesin act as tethers to enhance each others' processivity. Proc Natl Acad Sci USA 105:4691–4696

    PubMed  CAS  Google Scholar 

  • Almenar-Queralt A, Goldstein LS (2001) Linkers, packages and pathways: new concepts in axonal transport. Curr Opin Neurobiol 11:550–557

    PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375

    PubMed  CAS  Google Scholar 

  • Bahler M, Kroschewski R, Stoffler HE, Behrmann T (1994) Rat myr 4 defines a novel subclass of myosin I: identification, distribution, localization, and mapping of calmodulin-binding sites with differential calcium sensitivity. J Cell Biol 126:375–389

    PubMed  CAS  Google Scholar 

  • Bearer EL, Reese TS (1999) Association of actin filaments with axonal microtubule tracts. J Neurocytol 28:85–98

    PubMed  CAS  Google Scholar 

  • Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246–250

    PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    PubMed  CAS  Google Scholar 

  • Bittins CM, Eichler TW, Gerdes HH (2009) Expression of the dominant-negative tail of myosin Va enhances exocytosis of large dense core vesicles in neurons. Cell Mol Neurobiol

    Google Scholar 

  • Bray D, Bunge MB (1981) Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol 10:589–605

    PubMed  CAS  Google Scholar 

  • Bridgman PC (1999) Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol 146:1045–1060

    PubMed  CAS  Google Scholar 

  • Bridgman PC (2002) Growth cones contain myosin II bipolar filament arrays. Cell Motil Cytoskeleton 52:91–96

    PubMed  CAS  Google Scholar 

  • Bridgman PC (2004) Myosin-dependent transport in neurons. J Neurobiol 58:164–174

    PubMed  CAS  Google Scholar 

  • Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169

    PubMed  CAS  Google Scholar 

  • Brown A (2003) Axonal transport of membranous and nonmembranous cargoes: a unified perspective. J Cell Biol 160:817–821

    PubMed  CAS  Google Scholar 

  • Brown ME, Bridgman PC (2003) Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. J Cell Sci 116:1087–1094

    PubMed  CAS  Google Scholar 

  • Brown ME, Bridgman PC (2004) Myosin function in nervous and sensory systems. J Neurobiol 58:118–130

    PubMed  CAS  Google Scholar 

  • Brown JA, Wysolmerski RB, Bridgman PC (2009) Dorsal root ganglion neurons react to Semaphorin 3A application through a biphasic response that requires multiple myosin II isoforms. Mol Biol Cell 20:1167–1179

    PubMed  CAS  Google Scholar 

  • Brown JR, Stafford P, Langford GM (2004) Short-range axonal/dendritic transport by myosin-V: a model for vesicle delivery to the synapse. J Neurobiol 58:175–188

    PubMed  CAS  Google Scholar 

  • Burnette DT, Ji L, Schaefer AW, Medeiros NA, Danuser G, Forscher P (2008) Myosin II activity facilitates microtubule bundling in the neuronal growth cone neck. Dev Cell 15:163–169

    PubMed  CAS  Google Scholar 

  • Buss F, Arden SD, Lindsay M, Luzio JP, Kendrick-Jones J (2001) Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J 20:3676–3684

    PubMed  CAS  Google Scholar 

  • Cao TT, Chang W, Masters SE, Mooseker MS (2004) Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 15:151–161

    PubMed  CAS  Google Scholar 

  • Cheney RE, O'Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23

    PubMed  CAS  Google Scholar 

  • Chevalier-Larsen E, Holzbaur EL (2006) Axonal transport and neurodegenerative disease. Biochim Biophys Acta 1762:1094–1108

    PubMed  CAS  Google Scholar 

  • Correia SS, Bassani S, Brown TC, Lise MF, Backos DS, El-Husseini A, Passafaro M, Esteban JA (2008) Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11:457–466

    PubMed  CAS  Google Scholar 

  • De Vos KJ, Grierson AJ, Ackerley S, Miller CC (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173

    PubMed  CAS  Google Scholar 

  • DeGiorgis JA, Reese TS, Bearer EL (2002) Association of a nonmuscle myosin II with axoplasmic organelles. Mol Biol Cell 13:1046–1057

    PubMed  CAS  Google Scholar 

  • Desnos C, Huet S, Fanget I, Chapuis C, Bottiger C, Racine V, Sibarita JB, Henry JP, Darchen F (2007) Myosin va mediates docking of secretory granules at the plasma membrane. J Neurosci 27:10636–10645

    PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207–1217

    PubMed  CAS  Google Scholar 

  • Doreian BW, Fulop TG, Smith CB (2008) Myosin II activation and actin reorganization regulate the mode of quantal exocytosis in mouse adrenal chromaffin cells. J Neurosci 28:4470–4478

    PubMed  CAS  Google Scholar 

  • Francis F, Roy S, Brady ST, Black MM (2005) Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 79:442–450

    PubMed  CAS  Google Scholar 

  • Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413–3423

    PubMed  CAS  Google Scholar 

  • Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu Rev Neurosci 23:39–71

    PubMed  CAS  Google Scholar 

  • Golomb E, Ma X, Jana SS, Preston YA, Kawamoto S, Shoham NG, Goldin E, Conti MA, Sellers JR, Adelstein RS (2004) Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 279:2800–2808

    PubMed  CAS  Google Scholar 

  • Hales CM, Vaerman JP, Goldenring JR (2002) Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J Biol Chem 277:50415–50421

    PubMed  CAS  Google Scholar 

  • Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661–665

    PubMed  CAS  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    PubMed  CAS  Google Scholar 

  • Hirokawa N (2006) mRNA transport in dendrites: RNA granules, motors, and tracks. J Neurosci 26:7139–7142

    PubMed  CAS  Google Scholar 

  • Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270

    PubMed  CAS  Google Scholar 

  • Jung C, Chylinski TM, Pimenta A, Ortiz D, Shea TB (2004) Neurofilament transport is dependent on actin and myosin. J Neurosci 24:9486–9496

    PubMed  CAS  Google Scholar 

  • Kawamoto S, Adelstein RS (1991) Chicken nonmuscle myosin heavy chains: differential expression of two mRNAs and evidence for two different polypeptides. J Cell Biol 112:915–924

    PubMed  CAS  Google Scholar 

  • Kellerman KA, Miller KG (1992) An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol 119:823–834

    PubMed  CAS  Google Scholar 

  • Koenig (2009) Results and problems in cell differentiation. doi:

    Google Scholar 

  • Kollins KM, Hu J, Bridgman PC, Huang YQ, Gallo G (2009) Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol 69:279–298

    PubMed  CAS  Google Scholar 

  • Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650

    PubMed  CAS  Google Scholar 

  • Kubo T, Endo M, Hata K, Taniguchi J, Kitajo K, Tomura S, Yamaguchi A, Mueller BK, Yamashita T (2008) Myosin IIA is required for neurite outgrowth inhibition produced by repulsive guidance molecule. J Neurochem 105:113–126

    PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356:722–725

    PubMed  CAS  Google Scholar 

  • Langford GM (1999) ER transport on actin filaments in squid giant axon: implications for signal transduction at synapse. FASEB J 13(Suppl 2):S248–S250

    Google Scholar 

  • Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865

    PubMed  CAS  Google Scholar 

  • Lapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance DW Jr, Mercer JA, Bahler M, Goldenring JR (2001) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12:1843–1857

    PubMed  CAS  Google Scholar 

  • Lewis AK, Bridgman PC (1996) Mammalian myosin I alpha is concentrated near the plasma membrane in nerve growth cones. Cell Motil Cytoskeleton 33:130–150

    PubMed  CAS  Google Scholar 

  • Lise MF, Wong TP, Trinh A, Hines RM, Liu L, Kang R, Hines DJ, Lu J, Goldenring JR, Wang YT, El-Husseini A (2006) Involvement of myosin Vb in glutamate receptor trafficking. J Biol Chem 281:3669–3678

    PubMed  CAS  Google Scholar 

  • Ma X, Kawamoto S, Hara Y, Adelstein RS (2004) A point mutation in the motor domain of nonmuscle myosin II-B impairs migration of distinct groups of neurons. Mol Biol Cell 15:2568–2579

    PubMed  CAS  Google Scholar 

  • Massone S, Argellati F, Passalacqua M, Armirotti A, Melone L, d'Abramo C, Marinari UM, Domenicotti C, Pronzato MA, Ricciarelli R (2007) Downregulation of myosin II-B by siRNA alters the subcellular localization of the amyloid precursor protein and increases amyloid-beta deposition in N2a cells. Biochem Biophys Res Commun 362:633–638

    PubMed  CAS  Google Scholar 

  • Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226

    PubMed  CAS  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    PubMed  CAS  Google Scholar 

  • Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones ML, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham KB, Gasparini P (2001) MYO6, the human homologue of the gene responsible for deafness in Snell's waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet 69:635–640

    PubMed  CAS  Google Scholar 

  • Menasche G, Ho CH, Sanal O, Feldmann J, Tezcan I, Ersoy F, Houdusse A, Fischer A, de Saint Basile G (2003) Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1). J Clin Invest 112:450–456

    PubMed  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713

    PubMed  CAS  Google Scholar 

  • Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244

    PubMed  CAS  Google Scholar 

  • Moussavi RS, Kelley CA, Adelstein RS (1993) Phosphorylation of vertebrate nonmuscle and smooth muscle myosin heavy chains and light chains. Mol Cell Biochem 127–128:219–227

    PubMed  Google Scholar 

  • Muslimov IA, Titmus M, Koenig E, Tiedge H (2002) Transport of neuronal BC1 RNA in Mauthner axons. J Neurosci 22:4293–4301

    PubMed  CAS  Google Scholar 

  • Nagy S, Ricca BL, Norstrom MF, Courson DS, Brawley CM, Smithback PA, Rock RS (2008) A myosin motor that selects bundled actin for motility. Proc Natl Acad Sci USA 105:9616–9620

    PubMed  CAS  Google Scholar 

  • Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20:4524–4534

    PubMed  CAS  Google Scholar 

  • Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168:329–338

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Sans N, Worley PF, Hammer JA III, Wenthold RJ (2001) Glutamate receptor targeting in the postsynaptic spine involves mechanisms that are independent of myosin Va. Eur J Neurosci 13:1722–1732

    PubMed  CAS  Google Scholar 

  • Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137:1589–1601

    PubMed  CAS  Google Scholar 

  • Provance DW Jr, Addison EJ, Wood PR, Chen DZ, Silan CM, Mercer JA (2008) Myosin-Vb functions as a dynamic tether for peripheral endocytic compartments during transferrin trafficking. BMC Cell Biol 9:44

    PubMed  Google Scholar 

  • Rochlin MW, Itoh K, Adelstein RS, Bridgman PC (1995) Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 108(Pt 12):3661–3670

    PubMed  CAS  Google Scholar 

  • Roder IV, Petersen Y, Choi KR, Witzemann V, Hammer JA, III, Rudolf R (2008) Role of Myosin Va in the plasticity of the vertebrate neuromuscular junction in vivo. PLoS One 3:e3871

    PubMed  Google Scholar 

  • Rodriguez OC, Cheney RE (2002) Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115:991–1004

    PubMed  CAS  Google Scholar 

  • Roy S, Winton MJ, Black MM, Trojanowski JQ, Lee VM (2008) Cytoskeletal requirements in axonal transport of slow component-b. J Neurosci 28:5248–5256

    PubMed  CAS  Google Scholar 

  • Ruppert C, Kroschewski R, Bahler M (1993) Identification, characterization and cloning of myr 1, a mammalian myosin-I. J Cell Biol 120:1393–1403

    PubMed  CAS  Google Scholar 

  • Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182

    PubMed  CAS  Google Scholar 

  • Schaefer AW, Schoonderwoert VT, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146–162

    PubMed  CAS  Google Scholar 

  • Schnapp BJ, Reese TS (1982) Cytoplasmic structure in rapid-frozen axons. J Cell Biol 94:667–669

    PubMed  CAS  Google Scholar 

  • Schnapp BJ, Vale RD, Sheetz MP, Reese TS (1986) Microtubules and the mechanism of directed organelle movement. Ann N Y Acad Sci 466:909–918

    PubMed  CAS  Google Scholar 

  • Schnell E, Nicoll RA (2001) Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J Neurophysiol 85:1498–1501

    PubMed  CAS  Google Scholar 

  • Sellers JR, Veigel C (2006) Walking with myosin V. Curr Opin Cell Biol 18:68–73

    PubMed  CAS  Google Scholar 

  • Semenova I, Burakov A, Berardone N, Zaliapin I, Slepchenko B, Svitkina T, Kashina A, Rodionov V (2008) Actin dynamics is essential for myosin-based transport of membrane organelles. Curr Biol 18:1581–1586

    PubMed  CAS  Google Scholar 

  • Sherr EH, Joyce MP, Greene LA (1993) Mammalian myosin I alpha, I beta, and I gamma: new widely expressed genes of the myosin I family. J Cell Biol 120:1405–1416

    PubMed  CAS  Google Scholar 

  • Shohet RV, Conti MA, Kawamoto S, Preston YA, Brill DA, Adelstein RS (1989) Cloning of the cDNA encoding the myosin heavy chain of a vertebrate cellular myosin. Proc Natl Acad Sci USA 86:7726–7730

    PubMed  CAS  Google Scholar 

  • Sokac AM, Schietroma C, Gundersen CB, Bement WM (2006) Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev Cell 11:629–640

    PubMed  CAS  Google Scholar 

  • Sotelo-Silveira JR, Calliari A, Cardenas M, Koenig E, Sotelo JR (2004) Myosin Va and kinesin II motor proteins are concentrated in ribosomal domains (periaxoplasmic ribosomal plaques) of myelinated axons. J Neurobiol 60:187–196

    PubMed  CAS  Google Scholar 

  • Sousa AD, Berg JS, Robertson BW, Meeker RB, Cheney RE (2006) Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci 119:184–194

    PubMed  CAS  Google Scholar 

  • Spudich G, Chibalina MV, Au JS, Arden SD, Buss F, Kendrick-Jones J (2007) Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat Cell Biol 9:176–183

    PubMed  CAS  Google Scholar 

  • Srinivasan G, Kim JH, von Gersdorff H (2008) The pool of fast releasing vesicles is augmented by myosin light chain kinase inhibition at the calyx of Held synapse. J Neurophysiol 99:1810–1824

    PubMed  Google Scholar 

  • Stoffler HE, Ruppert C, Reinhard J, Bahler M (1995) A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts. J Cell Biol 129:819–830

    PubMed  CAS  Google Scholar 

  • Suter DM, Espindola FS, Lin CH, Forscher P, Mooseker MS (2000) Localization of unconventional myosins V and VI in neuronal growth cones. J Neurobiol 42:370–382

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2007) What can myosin VI do in cells? Curr Opin Cell Biol 19:57–66

    PubMed  CAS  Google Scholar 

  • Takagishi Y, Oda S, Hayasaka S, Dekker-Ohno K, Shikata T, Inouye M, Yamamura H (1996) The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215:169–172

    PubMed  CAS  Google Scholar 

  • Takagishi Y, Futaki S, Itoh K, Espreafico EM, Murakami N, Murata Y, Mochida S (2005) Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol 569:195–208

    PubMed  CAS  Google Scholar 

  • Thirumurugan K, Sakamoto T, Hammer JA, III, Sellers JR, Knight PJ (2006) The cargo-binding domain regulates structure and activity of myosin 5. Nature 442:212–215

    PubMed  CAS  Google Scholar 

  • Tokuoka H, Goda Y (2006) Myosin light chain kinase is not a regulator of synaptic vesicle trafficking during repetitive exocytosis in cultured hippocampal neurons. J Neurosci 26:11606–11614

    PubMed  CAS  Google Scholar 

  • Trybus KM (2008) Myosin V from head to tail. Cell Mol Life Sci 65:1378–1389

    PubMed  CAS  Google Scholar 

  • Turney SG, Bridgman PC (2005) Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci 8:717–719

    PubMed  CAS  Google Scholar 

  • Wagner MC, Barylko B, Albanesi JP (1992) Tissue distribution and subcellular localization of mammalian myosin I. J Cell Biol 119:163–170

    PubMed  CAS  Google Scholar 

  • Wagner W, Fodor E, Ginsburg A, Hammer JA III (2006) The binding of DYNLL2 to myosin Va requires alternatively spliced exon B and stabilizes a portion of the myosin's coiled-coil domain. Biochemistry 45:11564–11577

    PubMed  CAS  Google Scholar 

  • Wang Z, Edwards JG, Riley N, Provance DW, Jr, Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers MD (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135:535–548

    PubMed  CAS  Google Scholar 

  • Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K, Ushiki T, Sato O, Ikebe M, Igarashi M (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16:4519–4530

    PubMed  CAS  Google Scholar 

  • Watanabe S, Mabuchi K, Ikebe R, Ikebe M (2006) Mechanoenzymatic characterization of human myosin Vb. Biochemistry 45:2729–2738

    PubMed  CAS  Google Scholar 

  • Watanabe S, Watanabe TM, Sato O, Awata J, Homma K, Umeki N, Higuchi H, Ikebe R, Ikebe M (2008) Human myosin Vc is a low duty ratio nonprocessive motor. J Biol Chem 283:10581–10592

    PubMed  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508

    PubMed  CAS  Google Scholar 

  • Wu H, Nash JE, Zamorano P, Garner CC (2002a) Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem 277:30928–30934

    CAS  Google Scholar 

  • Wu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer JAIII (2002b) Identification of an organelle receptor for myosin-Va. Nat Cell Biol 4:271–278

    CAS  Google Scholar 

  • Wylie SR, Chantler PD (2001) Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth. Nat Cell Biol 3:88–92

    PubMed  CAS  Google Scholar 

  • Wylie SR, Chantler PD (2003) Myosin IIA drives neurite retraction. Mol Biol Cell 14:4654–4666

    PubMed  CAS  Google Scholar 

  • Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV (2006) BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9:1009–1018

    PubMed  CAS  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    PubMed  CAS  Google Scholar 

  • Yildiz A, Tomishige M, Vale RD, Selvin PR (2004) Kinesin walks hand-over-hand. Science 303:676–678

    PubMed  CAS  Google Scholar 

  • Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16:2345–2351

    PubMed  CAS  Google Scholar 

  • Zhu XJ, Wang CZ, Dai PG, Xie Y, Song NN, Liu Y, Du QS, Mei L, Ding YQ, Xiong WC (2007) Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 9:184–192

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C Bridgman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bridgman, P. (2009). Myosin Motor Proteins in the Cell Biology of Axons and Other Neuronal Compartments. In: Koenig, E. (eds) Cell Biology of the Axon. Results and Problems in Cell Differentiation, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_10

Download citation

Publish with us

Policies and ethics