Skip to main content

Cytoskeletal Motor Proteins in Plant Cell Division

  • Chapter
  • First Online:
Cell Division Control in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 9))

Abstract

Plant cell division involves anastral spindles with incompletely focused poles and the phragmoplastwith antiparallel microtubules. The organization of the spindle microtubule array and the phragmoplastarray is thought to be dependent on microtubule-based motor kinesins. Among the more than 50 kinesinsencoded by a single plant genome, a number of them are either proven or predicted to beessential for cell division. Members of the Kinesin-14 subfamily play a critical role in organizingspindle poles. Some kinesins yet to be identified could be required for facilitating nuclear envelopebreakdown at the end of prophase, and others for mediating the interaction between chromosomes andmicrotubules for spindle assembly. During anaphase, the disassembly of kinetochore fibers and theaccompanying sister chromatid movement would definitely be assisted by kinesins. Similarly to fungiand animals, plants likely use Kinesin-5 for microtubule sliding, leading to spindle elongation. Duringcytokinesis, Kinesin-12 is required for establishing the antiparallel fashion of the phragmoplastmicrotubule array. Microtubule turnover in this highly dynamic array also depends on plant-specifickinesins acting on an MAP kinase cascade. More than one kinesin is predicted to deliver vesiclesfor cell plate assembly. Lastly, recent data also suggest that kinesins play a critical rolein spatial regulation of cytokinesis. Very little has been learned about the potential roles of myosinsin plant cell division. Whether myosins are also involved in vesicle transport in the phragmoplastawaits further examination. We can conclude that splendid cytoskeletal motors play splendid rolesin plant cell division.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambrose JC, Li W, Marcus A, Ma H, Cyr R (2005) A minus-end-directed kinesin with plus-end tracking protein activity is involved in spindle morphogenesis. Mol Biol Cell 16:1584–1592

    PubMed  PubMed Central  CAS  Google Scholar 

  • Asada T, Kuriyama R, Shibaoka H (1997) TKRP125, a kinesin-related protein involved in the centrosome-independent organization of the cytokinetic apparatus in tobacco BY-2 cells. J Cell Sci 110:179–189

    PubMed  CAS  Google Scholar 

  • Asada T, Shibaoka H (1994) Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells. J Cell Sci 107:2249–57

    PubMed  CAS  Google Scholar 

  • Asada T, Sonobe S, Shibaoka H (1991) Microtubule translocation in the cytokinetic apparatus of cultured tobacco cells. Nature 350:238–241

    CAS  Google Scholar 

  • Austin JR, Segui-Simarro JM, Staehelin LA (2005) Quantitative analysis of changes in spatial distribution and plus-end geometry of microtubules involved in plant-cell cytokinesis. J Cell Sci 118:3895–3903

    PubMed  CAS  Google Scholar 

  • Barroso C, Chan J, Allan V, Doonan J, Hussey P, Lloyd C (2000) Two kinesin-related proteins associated with the cold-stable cytoskeleton of carrot cells: characterization of a novel kinesin, DcKRP120-2. Plant J 24:859–868

    PubMed  CAS  Google Scholar 

  • Bednarek SY, Falbel TG (2002) Membrane trafficking during plant cytokinesis. Traffic 3:621–629

    PubMed  CAS  Google Scholar 

  • Berg J, Powell B, Cheney R (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bisgrove S, Hable W, Kropf D (2004) +TIPs and microtubule regulation. The beginning of the plus end in plants. Plant Physiol 136:3855–3863

    PubMed  PubMed Central  CAS  Google Scholar 

  • Blangy A, Lane HA, Dherin P, Harper M, Kress M, Nigg EA (1995) Phosphorylation by p34(cdc2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83:1159–1169

    PubMed  CAS  Google Scholar 

  • Bogre L, Calderini O, Binarova P, Mattauch M, Till S, Kiegerl S, Jonak C, Pollaschek C, Barker P, Huskisson NS et al. (1999) A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11:101–113

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bowser J, Reddy ASN (1997) Localization of a kinesin-like calmodulin-binding protein in dividing cells of Arabidopsis and tobacco. Plant J 12:1429–1437

    PubMed  CAS  Google Scholar 

  • Chan J, Calder G, Fox S, Lloyd C (2005) Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17:1737–1748

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Marcus A, Li W, Hu Y, Calzada J, Grossniklaus U, Cyr R, Ma H (2002) The Arabidopsis ATK1 gene is required for spindle morphogenesis in male meiosis. Development 129:2401–2409

    PubMed  CAS  Google Scholar 

  • Dagenbach EM, Endow SA (2004) A new kinesin tree. J Cell Sci 117:3–7

    PubMed  CAS  Google Scholar 

  • Deavours BE, Reddy ASN, Walker RA (1998) Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. Cell Motil Cytoskel 40:408–416

    CAS  Google Scholar 

  • Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule-destabilizing enzymes. Cell 96:69–78

    PubMed  CAS  Google Scholar 

  • Dixit R, Chang E, Cyr R (2006) Establishment of polarity during organization of the acentrosomal plant cortical microtubule array. Mol Biol Cell 17:1298–1305

    PubMed  PubMed Central  CAS  Google Scholar 

  • Endow SA (1999) Determinants of molecular motor directionality. Nat Cell Biol 1:E163–E167

    PubMed  CAS  Google Scholar 

  • Enos AP, Morris NR (1990) Mutation of a gene that encodes a kinesin-like protein blocks nuclear division in A. nidulans. Cell 60:1019–1027

    PubMed  CAS  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686

    PubMed  PubMed Central  CAS  Google Scholar 

  • Goshima G, Nedelec F, Vale RD (2005) Mechanisms for focusing mitotic spindle poles by minus end-directed motor proteins. J Cell Biol 171:229–240

    PubMed  PubMed Central  CAS  Google Scholar 

  • Graham LE, Cook ME, Busse JS (2000) The origin of plants: Body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540

    PubMed  PubMed Central  CAS  Google Scholar 

  • Granger CL, Cyr JL (2000) Microtubule reorganization in tobacco BY-2 cells stably expressing GFP-MBD. Planta 210:502–509

    PubMed  CAS  Google Scholar 

  • Heald R (2000) Motor function in the mitotic spindle. Cell 102:399–402

    PubMed  CAS  Google Scholar 

  • Heald R (2001) Chromosome movement: dynein-out at the kinetochore. Curr Biol 11:R128–R131

    PubMed  Google Scholar 

  • Henningsen U, Schliwa M (1997) Reversal in the direction of movement of a molecular motor. Nature 389:93–96

    PubMed  CAS  Google Scholar 

  • Hodge T, Cope M (2000) A myosin family tree. J Cell Sci 113:3353–3354

    PubMed  CAS  Google Scholar 

  • Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. Proc Natl Acad Sci USA 101:10488–10493

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyt MA, He L, Totis L, Saunders WS (1993) Loss of function of Saccharomyces cerevisiae kinesin-related Cin8 and Kip1 is suppressed by Kar3 motor domain mutations. Genetics 135:35–44

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hülskamp M, Parekh N, Grini P, Schneitz K, Zimmermann I, Lolle S, Pruitt R (1997) The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Dev Biol 187:114–124

    PubMed  Google Scholar 

  • Jürgens G (2005) Cytokinesis in higher plants. Annu Rev Plant Biol 56:281–299

    PubMed  Google Scholar 

  • Karabay A, Walker RA (1999) Identification of microtubule binding sites in the Ncd tail domain. Biochemistry 38:1838–1849

    PubMed  CAS  Google Scholar 

  • Kashina AS, Baskin RJ, Cole DG, Wedaman KP, Saxton WM, Scholey JM (1996) A bipolar kinesin. Nature 379:270–272

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kreis T, Vale R (1999) Guidebook to the Cytoskeletal and Motor Proteins. Oxford University Press, Oxford

    Google Scholar 

  • Krysan PJ, Jester PJ, Gottwald JR, Sussman MR (2002) An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14:1109–1120

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kumagai F, Yoneda A, Tomida T, Sano T, Nagata T, Hasezawa S (2001) Fate of nascent microtubules organized at the M/G1 interface, as visualized by synchronized tobacco BY-2 cells stably expressing GFP-tubulin: time-sequence observations of the reorganization of cortical microtubules in living plant cells. Plant Cell Physiol 42:723–732

    PubMed  CAS  Google Scholar 

  • Lawrence C, Morris N, Meagher R, Dawe R (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    PubMed  CAS  Google Scholar 

  • Lawrence CJ, Dawe RK, Christie KR, Cleveland DW, Dawson SC, Endow SA, Goldstein LSB, Goodson HV, Hirokawa N, Howard J et al. (2004) A standarized kinesin nomenclature. J Cell Biol 167:19–22

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee Y-RJ, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lee YRJ, Liu B (2000) Identification of a phragmoplast-associated kinesin-related protein in higher plants. Curr Biol 10:797–800

    PubMed  CAS  Google Scholar 

  • Lee YRJ, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein, KatAp, in the cells of arabidopsis and other plants. Plant Cell 8:119–132

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Lee YRJ (2001) Kinesin-related proteins in plant cytokinesis. J Plant Growth Regul 20:141–150

    CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A g-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104:1217–1228

    PubMed  CAS  Google Scholar 

  • Liu B, Palevitz BA (1991) Kinetochore fiber formation in dividing generative cells of Tradescantia kinetochore reorientation associated with the transition between lateral microtubule interactions and end-on kinetochore fibers. J Cell Sci 98:475–482

    Google Scholar 

  • Liu B, Palevitz BA (1992) Organization of cortical microfilaments in dividing root cells. Cell Motil Cytoskel 23:252–264

    Google Scholar 

  • Liu B, Palevitz BA (1996) Localization of a kinesin-like protein in generative cells of tobacco. Protoplasma 195:78–89

    CAS  Google Scholar 

  • Lloyd C, Chan J (2006) Not so divided: the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 7:147–152

    PubMed  CAS  Google Scholar 

  • Lu L, Lee Y-RJ, Pan R, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma Y-Z, Yen L-F (1989) Actin and myosin in pea tendrils. Plant Physiol 89:586–589

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mao G, Chan J, Calder G, Doonan JH, Lloyd CW (2005a) Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J 43:469–478

    PubMed  CAS  Google Scholar 

  • Mao T, Jin L, Li H, Liu B, Yuan M (2005b) Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138:654–662

    PubMed  PubMed Central  CAS  Google Scholar 

  • Marcus A, Ambrose J, Blickley L, Hancock W, Cyr R (2002) Arabidopsis thaliana protein, ATK1, is a minus-end directed kinesin that exhibits non-processive movement. Cell Motil Cytoskel 52:144–150

    CAS  Google Scholar 

  • Marcus AI, Li W, Ma H, Cyr RJ (2003) A kinesin mutant with an atypical bipolar spindle undergoes normal mitosis. Mol Biol Cell 14:1717–1726

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matthies H, McDonald H, Goldstein L, Theurkauf W (1996) Anastral meiotic spindle morphogenesis: role of the non-claret disjunctional kinesin-like protein. J Cell Biol 134:455–464

    PubMed  CAS  Google Scholar 

  • Miki H, Okada Y, Hirokawa N (2005) Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol 15:467–476

    PubMed  CAS  Google Scholar 

  • Mitsui H, Hasezawa S, Nagata T, Takahashi H (1996) Cell cycle-dependent accumulation of a kinesin-like protein, KatB/C in synchronized tobacco BY-2 cells. Plant Mol Biol 30:177–81

    PubMed  CAS  Google Scholar 

  • Mitsui H, Nakatani K, Yamaguchishinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1994) Sequencing and characterization of the kinesin-related genes KatB and KatC of Arabidopsis thaliana. Plant Mol Biol 25:865–876

    PubMed  CAS  Google Scholar 

  • Molchan T, Valster A, Hepler P (2002) Actomyosin promotes cell plate alignment and late lateral expansion in Tradescantia stamen hair cells. Planta (Berlin) 214:683–693

    CAS  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey P, Hauser M (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mulvihill D, Edwards S, Hyams J (2006) A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe. Cell Motil Cytoskeleton 63:149–161

    PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Kao YL, Reddy ASN (1997) Interaction of Arabidopsis kinesin-like calmodulin binding protein with tubulin subunits: modulation by Ca2+-calmodulin. Plant J 12:1139–1149

    PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Reddy ASN (1998) Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10:957–965

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishihama R, Ishikawa M, Araki S, Soyano T, Asada T, Machida Y (2001) The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Develop 15:352–363

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nishihama R, Machida Y (2001) Expansion of the phragmoplast during plant cytokinesis: A MAPK pathway may MAP it out. Curr Opin Plant Biol 4:507–512

    PubMed  CAS  Google Scholar 

  • Nishihama R, Soyano T, Ishikawa M, Araki S, Tanaka H, Asada T, Irie K, Ito M, Terada M, Banno H, et al. (2002) Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109:87–99

    PubMed  CAS  Google Scholar 

  • O'Connell MJ, Meluh PB, Rose MD, Morris NR (1993) Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a Gene Encoding a kar3-related kinesin-like protein in Aspergillus nidulans. J Cell Biol 120:153–162

    PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K, Marks MD (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94:6261–6266

    PubMed  PubMed Central  CAS  Google Scholar 

  • Otegui M, Mastronarde D, Kang B, Bednarek S, Staehelin L (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051

    PubMed  PubMed Central  CAS  Google Scholar 

  • Otegui M, Staehelin LA (2000) Cytokinesis in flowering plants: more than one way to divide a cell. Curr Opin Plant Biol 3:493–502

    PubMed  CAS  Google Scholar 

  • Palevitz BA (1980) Comparatice effects of Phalloidin and Cytochalasin B on motility and morphogenesis in Allium. Can J Bot 58:773–785

    CAS  Google Scholar 

  • Palevitz BA (1993) Morphological plasticity of the mitotic apparatus in plants and its developmental consequences. Plant Cell 5:1001–1009

    PubMed  PubMed Central  Google Scholar 

  • Pan R, Lee YRJ, Liu B (2004) Localization of two homologous Arabidopsis kinesin-related proteins in the phragmoplast. Planta 220:156–164

    PubMed  CAS  Google Scholar 

  • Preuss ML, Delmer DP, Liu B (2003) The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers. Plant Physiol 132:154–160

    PubMed  PubMed Central  CAS  Google Scholar 

  • Preuss ML, Kovar DR, Lee Y-RJ, Staiger CJ, Delmer DP, Liu B (2004) A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiol 136:3945–3955

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy A, Day I (2001a) Analysis of the myosins encoded in the recently completed Arabidopsis thaliana genome sequence. Genome Biol 2:7

    Google Scholar 

  • Reddy ASN, Day IS (2001b) Kinesins in the Arabidopsis genome: a comparative analysis among eukaryotes. BMC Genomics 2:2

    PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy ASN, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271:7052–7060

    PubMed  CAS  Google Scholar 

  • Reddy VS, Reddy ASN (1999) A plant calmodulin-binding motor is part kinesin and part myosin. Bioinformatics 15:1055–1057

    PubMed  CAS  Google Scholar 

  • Richardson DN, Simmons MP, Reddy AS (2006) Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 7:18

    PubMed  PubMed Central  Google Scholar 

  • Rogers G, Rogers S, Schwimmer T, Ems-McClung S, Walczak C, Vale R, Scholey J, Sharp D (2004) Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427:364–370

    PubMed  CAS  Google Scholar 

  • Salina D, Bodoor K, Eckley D, Schroer T, Rattner J, Burke B (2002) Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 108:97–107

    PubMed  CAS  Google Scholar 

  • Sasabe M, Soyano T, Takahashi Y, Sonobe S, Igarashi H, Itoh TJ, Hidaka M, Machida Y (2006) Phosphorylation of NtMAP65-1 by a MAP kinase down-regulates its activity of microtubule bundling and stimulates progression of cytokinesis of tobacco cells. Gene Dev 20:1004–1014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sawin K, Mitchison T, Wordeman L (1992) Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. J Cell Sci 101:303–313

    PubMed  CAS  Google Scholar 

  • Sharp DJ, Brown HM, Kwon M, Rogers GC, Holland G, Scholey JM (2000a) Functional coordination of three mitotic motors in Drosophila embryos. Mol Biol Cell 11:241–253

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sharp DJ, Rogers GC, Scholey JM (2000b) Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2:922–930

    PubMed  CAS  Google Scholar 

  • Sharp DJ, Rogers GC, Scholey JM (2000c) Microtubule motors in mitosis. Nature 407:41–47

    PubMed  CAS  Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    PubMed  CAS  Google Scholar 

  • Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang C-J, Sonobe S, Lloyd CW, Hussey PJ (2000) A new class of microtubule-associated proteins in plants. Nat Cell Biol 2:750–753

    PubMed  CAS  Google Scholar 

  • Smirnova EA, Bajer AS (1998) Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm. Cell Motil Cytoskel 40:22–37

    CAS  Google Scholar 

  • Smirnova EA, Reddy ASN, Bowser J, Bajer AS (1998) Minus end-directed kinesin-like motor protein, KCBP, localizes to anaphase spindle poles in Haemanthus endosperm. Cell Motil Cytoskel 41:271–280

    CAS  Google Scholar 

  • Song H, Golovkin M, Reddy ASN, Endow SA (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94:322–327

    PubMed  PubMed Central  CAS  Google Scholar 

  • Soyano T, Nishihama R, Morikiyo K, Ishikawa M, Machida Y (2003) NQK1/NtMEK1 is a MAPKK that acts in the NPK1 MAPKKK-mediated MAPK cascade and is required for plant cytokinesis. Genes Dev 17:1055–1067

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spielman M, Preuss D, Li F, Browne W, Scott R, Dickinson H (1997) TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development 124:2645–2657

    PubMed  CAS  Google Scholar 

  • Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84:821–824

    PubMed  CAS  Google Scholar 

  • Strompen G, El Kasmi F, Richter S, Lukowitz W, Assaad FF, Jurgens G, Mayer U (2002) The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr Biol 12:153–158

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Soyano T, Sasabe M, Machida Y (2004) A MAP kinase cascade that controls plant cytokinesis. J Biochem 136:127–132

    PubMed  CAS  Google Scholar 

  • Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    PubMed  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    PubMed  CAS  Google Scholar 

  • Van Damme D, Bouget F, Van Poucke K, Inze D, Geelen D (2004) Molecular dissection of plant cytokinesis and phragmoplast structure: a survey of GFP-tagged proteins. Plant J 40:386–398

    PubMed  Google Scholar 

  • Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inze D, Geelen D (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol (Rockville) 136:3956–3967

    Google Scholar 

  • Vanstraelen M, Inze D, Geelen D (2006) Mitosis-specific kinesins in Arabidopsis. Trends Plant Sci 11:167–175

    PubMed  CAS  Google Scholar 

  • Vanstraelen M, Torres Acosta J, De Veylder L, Inze D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vanstraelen M, Van Damme D, De Rycke R, Mylle E, Inze D, Geelen D (2006) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16:308–314

    PubMed  CAS  Google Scholar 

  • Vantard M, Levilliers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci USA 87:8825–8829

    PubMed  PubMed Central  CAS  Google Scholar 

  • Verma DPS (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784

    PubMed  CAS  Google Scholar 

  • Verma DPS, Hong Z (2005) The ins and outs in membrane dynamics: tubulation and vesiculation. Trends Plant Sci 10:159–165

    PubMed  CAS  Google Scholar 

  • Vos JW, Safadi F, Reddy ASN, Hepler PK (2000) The kinesin-like calmodulin binding protein is differentially involved in cell division. Plant Cell 12:979–990

    PubMed  PubMed Central  CAS  Google Scholar 

  • Walczak CE (2003) The Kin I kinesins are microtubule end-stimulated ATPases. Mol Cell 11:286–288

    PubMed  CAS  Google Scholar 

  • Walczak CE, Mitchison TJ, Desai A (1996) XKCM1: A Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 84:37–47

    PubMed  CAS  Google Scholar 

  • Wick SM (1991) Spatial aspects of cytokinesis in plant cells. Curr Opin Cell Biol 3:253–260

    PubMed  CAS  Google Scholar 

  • Wick SM, Duniec J (1983) Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol 97:235–243

    PubMed  CAS  Google Scholar 

  • Wordeman L, Mitchison T (1995) Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 128:95–104

    PubMed  CAS  Google Scholar 

  • Yang C, Spielman M, Coles J, Li Y, Ghelani S, Bourdon V, Brown R, Lemmon B, Scott R, Dickinson H (2003) TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J 34:229–240

    PubMed  CAS  Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1993) Dynamics of microfilaments are similar, but distinct from microtubules during cytokinesis in living, dividing plant cells. Cell Motil Cytoskel 24:151–155

    Google Scholar 

  • Zhang DH, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells – confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87:8820–8824

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong R, Burk DH, Morrison W Herbert III, Ye Z-H (2002) A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 14:3101–3117

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu C, Zhao J, Bibikova M, Leverson J, Bossy-Wetzel E, Fan J, Abraham R, Jiang W (2005) Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol Biol Cell 16:3187–3199

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu .

Editor information

Desh Pal S. Verma Zonglie Hong

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, YR.J., Liu, B. (2007). Cytoskeletal Motor Proteins in Plant Cell Division. In: Verma, D.P.S., Hong, Z. (eds) Cell Division Control in Plants. Plant Cell Monographs, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7089_2007_127

Download citation

Publish with us

Policies and ethics