Skip to main content

Study Design and Methodologies for Evaluation of Anti-glaucoma Drugs

  • Protocol
  • First Online:
Ocular Pharmacology and Toxicology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

A large number of factors are important in conducting anti-glaucoma drug efficacy studies. It is essential to have an understanding of aqueous humor dynamics and how the tonometer, tonometrist, and animal may affect IOP estimates. Additional critical considerations in the design of an anti-glaucoma drug efficacy studies include the following: (1) selecting the most appropriate species, (2) identifying the rate of nonresponders within the study population, (3) determining whether normotensive or glaucomatous animals should be used, and deciding (4) what secondary endpoints (if any) to include, and (5) whether one eye or both should be dosed. Anti-glaucoma drug efficacy studies have an acclimation phase in which the animal becomes conditioned to the procedures, a predose phase in which baseline data is collected, a dosing phase in which the drug is administered and IOP and possibly other endpoints are monitored, and a recovery phase in which IOP returns to predose values as the drug is washed out before another predose phase is started.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller PE (2013) The glaucomas. In: Maggs DJ, Miller PE, Ofri R (eds) Slatter’s fundamentals of veterinary ophthalmology, 5th edn. Elsevier, St. Louis, MO

    Google Scholar 

  2. Casson RJ, Chidlow G, Wood JP et al (2012) Definition of glaucoma: clinical and experimental concepts. Clin Experiment Ophthalmol 40(4):341–349. doi:10.1111/j.1442-9071.2012.02773.x

    PubMed  Google Scholar 

  3. Nickells RW, Howell GR, Soto I et al (2012) Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 35:153–179. doi:10.1146/annurev.neuro.051508.135728

    PubMed  CAS  Google Scholar 

  4. Klein BE, Klein R, Sponsel WE et al (1992) Prevalence of glaucoma: the Beaver Dam Eye study. Ophthalmology 99(10):1499–1504

    PubMed  CAS  Google Scholar 

  5. Quigley HA, Broman A (2006) The number of persons with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:151–156

    Google Scholar 

  6. Rudnicka AR, Mt-Isa S, Owen CG et al (2006) Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci 47(10):4254–4261

    PubMed  Google Scholar 

  7. Resnikoff S, Pascolini D, Etya’ale D et al (2004) Global data on visual impairment in 2002. Bull World Health Organ 82:844–851

    PubMed  Google Scholar 

  8. Collaborative Normal-Tension Glaucoma Study Group (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 126:487–497

    Google Scholar 

  9. The AGIS Investigators (2000) The advanced glaucoma intervention study (AGIS):7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol 130:429–440

    Google Scholar 

  10. Goel M, Picciani RG, Lee RK et al (2010) Aqueous humor dynamics: a review. Open Ophthalmol J 4:52–59. doi:10.2174/1874364101004010052

    PubMed  CAS  Google Scholar 

  11. Brubaker RF (2004) Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res 78(3):633–637

    PubMed  CAS  Google Scholar 

  12. Johnson TV, Tomarev SI (2010) Rodent models of glaucoma. Brain Res Bull 81(2–3):349–358. doi:10.1016/j.brainresbull.2009.04.004

    PubMed  Google Scholar 

  13. Knollinger AM, La Croix NC, Barrett P et al (2005) An evaluation of a rebound tonometer for measuring intraocular pressure in dogs and horses. J Am Vet Med Assoc 227:244–248

    PubMed  Google Scholar 

  14. Miller PE, Pickett JP, Majors LJ et al (1991) Clinical comparison of the Mackay-Marg and Tono-Pen applanation tonometers in the dog. Prog Vet Comp Ophthalmol 1:171–176

    CAS  Google Scholar 

  15. Stuckey GC (2004) Application of physical principles in the development of tonometry. Clin Experiment Ophthalmol 32(6):633–636

    PubMed  Google Scholar 

  16. McCulloh RJ, Holley GP, Miller PE et al (2008) Pachymetery in New Zealand white rabbits, Beagle dogs, and Cynomologus monkeys. In: Abstracts of the 2008 annual meeting of the association for research in vision and ophthalmology, Fort Lauderdale, Florida, May 2008. Electronic abstract

    Google Scholar 

  17. Liu J, Roberts CJ (2005) Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis. J Cataract Refract Surg 31(1):146–155

    PubMed  Google Scholar 

  18. Hessemer V, Rössler R, Jacobi KW (1989) Tono-Pen, a new tonometer. Int Ophthalmol 13(1–2):51–56

    PubMed  CAS  Google Scholar 

  19. Abrams LS, Vitale S, Jampel HD (1996) Comparison of three tonometers for measuring intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 37(5):940–944

    PubMed  CAS  Google Scholar 

  20. Ahn JT, Jeong MB, Park YW et al (2012) Accuracy of intraocular pressure measurements in dogs using two different tonometers and plano therapeutic soft contact lenses. Vet Ophthalmol 15(Suppl 1):83–88. doi:10.1111/j.1463-5224.2011.00979.x

    PubMed  Google Scholar 

  21. Peterson JA, Kiland JA, Croft MA et al (1996) Intraocular pressure measurement in cynomolgus monkeys. Tono-Pen versus manometry. Invest Ophthalmol Vis Sci 37(6):1197–1199

    PubMed  CAS  Google Scholar 

  22. Gelatt KN, Peiffer RL Jr, Gum GG et al (1977) Evaluation of applanation tonometers for the dog eye. Invest Ophthalmol Vis Sci 16(10):963–968

    PubMed  CAS  Google Scholar 

  23. Bito LZ, Merritt SQ, DeRousseau CJ (1979) Intraocular pressure of rhesus monkey (Macaca mulatta). I. An initial survey of two free-breeding colonies. Invest Ophthalmol Vis Sci 18(8):785–793

    PubMed  CAS  Google Scholar 

  24. Andrade SF, Palozzi RJ, Giuffrida R et al (2012) Comparison of intraocular pressure measurements between the Tono-Pen XL® and Perkins® applanation tonometers in dogs and cats. Vet Ophthalmol 15(Suppl 1):14–20. doi:10.1111/j.1463-5224.2011.00926.x

    PubMed  Google Scholar 

  25. Takenaka J, Mochizuki H, Kunihara E et al (2011) Evaluation of rebound tonometer for measuring intraocular pressure at deviated angle and position. Curr Eye Res 36(5):422–428. doi:10.3109/02713683.2010.534574

    PubMed  Google Scholar 

  26. Acosta AC, Espana EM, Nose I, Orozco M et al (2007) Estimation of intraocular pressure in rabbits with commonly used tonometers. Ophthalmic Surg Lasers Imaging 38(1):43–49

    PubMed  Google Scholar 

  27. Wang WH, Millar JC, Pang IH et al (2005) Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 46(12):4617–4621

    PubMed  Google Scholar 

  28. McGee HT, Fraunfelder FW (2007) Toxicities of topical ophthalmic anesthetics. Expert Opin Drug Saf 6(6):637–640. doi:10.1517/14740338.6.6.637

    PubMed  CAS  Google Scholar 

  29. Elsmo EJ, Kiland JA, Kaufman PL et al (2011) Evaluation of rebound tonometry in non-human primates. Exp Eye Res 92(4):268–273

    PubMed  CAS  Google Scholar 

  30. McLellan GJ, Kemmerling JP, Kiland JA (2012) Validation of the TonoVet(®) rebound tonometer in normal and glaucomatous cats. Vet Ophthalmol 16(2):111–118. doi:10.1111/j.1463-5224.2012.01038.x

    PubMed  Google Scholar 

  31. McLaren JW, Brubaker RF, FitzSimon JS (1996) Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci 37:966–975

    PubMed  CAS  Google Scholar 

  32. Dinslage S, McLaren J, Brubaker R (1998) Intraocular pressure in rabbits by telemetry II: effects of animal handling and drugs. Invest Ophthalmol Vis Sci 39(12):2485–2489

    PubMed  CAS  Google Scholar 

  33. Mansouri K, Weinreb RN (2012) Meeting an unmet need in glaucoma: continuous 24-h monitoring of intraocular pressure. Expert Rev Med Devices 9(3):225–231. doi:10.1586/erd.12.14

    PubMed  CAS  Google Scholar 

  34. Antonio Z, Miller PE, Taschwer M et al (2009) Telemetry of intraocular pressure in New Zealand White Rabbits. In: Abstracts of the 2009 annual meeting of the association for research in vision and ophthalmology, Fort Lauderdale, Florida, May 2009. Electronic abstract

    Google Scholar 

  35. Downs JC, Burgoyne CF, Seigfreid WP et al (2011) 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci 52(10):7365–7375

    PubMed  Google Scholar 

  36. Chitnis G, Maleki T, Samuels B et al (2012) A minimally invasive implantable wireless pressure sensor for continuous IOP monitoring. IEEE Trans Biomed Eng 60(1):250–256

    PubMed  Google Scholar 

  37. Faschinger C, Mossböck G (2010) Kontinuierliche 24-h-Aufzeichnung von Augendruckschwankungen mittels drahtlosem Kontaktlinsensensor Triggerfish™. Ophthalmologe 107(10):918–922

    PubMed  CAS  Google Scholar 

  38. Dziezyc J, Millichamp NJ, Smith WB (1992) Comparison of applanation tonometers in dogs and horses. J Am Vet Med Assoc 201(3):430–433

    PubMed  CAS  Google Scholar 

  39. Moses RA, Marg E, Oechsli R (1962) Evaluation of the basic validity and clinical usefulness of the Mackay-Marg tonometer. Invest Ophthalmol 1:78–85

    PubMed  CAS  Google Scholar 

  40. Klein HE, Krohne SG, Moore GE et al (2011) Effect of eyelid manipulation and manual jugular compression on intraocular pressure measurement in dogs. J Am Vet Med Assoc 238(10):1292–1295

    PubMed  Google Scholar 

  41. Brody S, Erb C, Veit R et al (1999) Intraocular pressure changes: the influence of psychological stress and the Valsalva maneuver. Biol Psychol 51(1):43–57

    PubMed  CAS  Google Scholar 

  42. Mok KH, Wong CS, Lee VW (1999) Tono-Pen tonometer and corneal thickness. Eye (Lond) 13(Pt 1):35–37

    Google Scholar 

  43. Taylor NR, Zele AJ, Vingrys AJ et al (2007) Variation in intraocular pressure following application of tropicamide in three different dog breeds. Vet Ophthalmol 10(Suppl 1):8–11

    PubMed  CAS  Google Scholar 

  44. Stadtbäumer K, Frommlet F, Nell B (2006) Effects of mydriatics on intraocular pressure and pupil size in the normal feline eye. Vet Ophthalmol 9(4):233–237

    PubMed  Google Scholar 

  45. Gomes FE, Bentley E, Lin TL et al (2011) Effects of unilateral topical administration of 0.5% tropicamide on anterior segment morphology and intraocular pressure in normal cats and cats with primary congenital glaucoma. Vet Ophthalmol 14(Suppl 1):75–83. doi:10.1111/j.1463-5224.2011.00927.x

    PubMed  Google Scholar 

  46. Kim JM, Park KH, Han SY et al (2012) Changes in intraocular pressure after pharmacologic pupil dilation. BMC Ophthalmol 12:53. doi:10.1186/1471-2415-12-53

    PubMed  Google Scholar 

  47. Tsai IL, Tsai CY, Kuo LL et al (2012) Transient changes of intraocular pressure and anterior segment configuration after diagnostic mydriasis with 1% tropicamide in children. Clin Exp Optom 95(2):166–172. doi:10.1111/j.1444-0938.2011.00677.x

    PubMed  Google Scholar 

  48. Hamor RE, Roberts SM, Severin GA et al (2000) Evaluation of results for Schirmer tear tests conducted with and without application of a topical anesthetic in clinically normal dogs of 5 breeds. Am J Vet Res 61(11):1422–1425

    PubMed  CAS  Google Scholar 

  49. Herse P, Siu A (1992) Short-term effects of proparacaine on human corneal thickness. Acta Ophthalmol (Copenh) 70(6):740–744

    CAS  Google Scholar 

  50. McGee HT, Fraunfelder FW (2007) Toxicities of topical ophthalmic anesthetics. Expert Opin Drug Saf 6(6):637–640

    PubMed  CAS  Google Scholar 

  51. Sarchahi AA, Bozorgi H (2012) Effect of tetracaine on intraocular pressure in normal and hypertensive rabbit eyes. J Ophthalmic Vis Res 7(1):29–33

    PubMed  CAS  Google Scholar 

  52. Holec-Iwasko S, Shin DH, Parrow KA et al (1990) The influence of residual methylcellulose solution on Tono-Pen readings. Am J Ophthalmol 109(5):602–603

    PubMed  CAS  Google Scholar 

  53. Liu JHK, Shieh BE, Alston CS (1994) Short-wavelength light reduces circadian elevation of intraocular pressure in rabbits. Neurosci Lett 180:96–100

    PubMed  CAS  Google Scholar 

  54. Del Sole MJ, Sande PH, Bernades JM et al (2007) Circadian rhythm of intraocular pressure in cats. Vet Ophthalmol 10:155–161

    PubMed  Google Scholar 

  55. Nickla DL, Wildsoet C, Wallman J (1998) The circadian rhythm in intraocular pressure, axial length, and choroidal thickness in a primate model eye growth, the common marmoset. Invest Ophthalmol Vis Sci 43:2519–2528

    Google Scholar 

  56. Anjou CIN (1961) Influence of light on the 24-hour variation in aqueous flare density and intra-ocular pressure in normal rabbits’ eyes. Acta Ophthalmol 39:852–873

    CAS  Google Scholar 

  57. Gelatt KN, Gum GG, Barrie KP et al (1981) Diurnal variations in intraocular pressure in normotensive and glaucomatous Beagles. Glaucoma 3:21–24

    Google Scholar 

  58. Giannetto C, Piccione G, Giudice E (2009) Daytime profile of the intraocular pressure and tear production in normal dog. Vet Ophthalmol 12(5):302–305

    PubMed  Google Scholar 

  59. Akaishi T, Ishida N, Shimazaki A et al (2005) Continuous monitoring of circadian variations in intraocular pressure by telemetry system throughout a 12-week treatment with timolol maleate in rabbits. J Ocul Pharmacol Ther 21(6):436–444

    PubMed  CAS  Google Scholar 

  60. Zhao M, Hejkal JJ, Camras CB et al (2010) Aqueous humor dynamics during the day and night in juvenile and adult rabbits. Invest Ophthalmol Vis Sci 51(6):3145–3151. doi:10.1167/iovs.09-4415

    PubMed  Google Scholar 

  61. Bar-Ilan A (1984) Diurnal and seasonal variations in intraocular pressure in the rabbit. Exp Eye Res 39(2):175–181

    PubMed  CAS  Google Scholar 

  62. Percicot CL, Schnell CR, Debon C et al (1996) Continuous intraocular pressure measurement by telemetry in alpha-chymotrypsin-induced glaucoma model in the rabbit: effects of timolol, dorzolamide and epinephrine. J Pharmacol Toxicol Methods 36:223–228

    PubMed  CAS  Google Scholar 

  63. Collins CC (1962) Evoked pressure response in the rabbit eye. Science 155:106–108

    Google Scholar 

  64. Park YW, Jeong MB, Kim TH et al (2011) Effect of central corneal thickness on intraocular pressure with the rebound tonometer and the applanation tonometer in normal dogs. Vet Ophthalmol 14(3):169–173. doi:10.1111/j.1463-5224.2010.00859.x

    PubMed  Google Scholar 

  65. Studer ME, Martin CL, Stiles J (2000) Effects of 0.005% latanoprost solution on intraocular pressure in healthy dogs and cats. Am J Vet Res 61(10):1220–1224

    PubMed  CAS  Google Scholar 

  66. Stjernschantz JW (2001) From PGF(2alpha)-isopropyl ester to latanoprost: a review of the development of xalatan: the Proctor Lecture. Invest Ophthalmol Vis Sci 42(6):1134–1145

    PubMed  CAS  Google Scholar 

  67. Smith LN, Miller PE, Felchle LM (2010) Effects of topical administration of latanoprost, timolol, or a combination of latanoprost and timolol on intraocular pressure, pupil size, and heart rate in clinically normal dogs. Am J Vet Res 71(9):1055–1061. doi:10.2460/ajvr.71.9.1055

    PubMed  CAS  Google Scholar 

  68. Gelatt KN, Larocca RD, Gelatt JK et al (1995) Evaluation of multiple doses of 4 and 6% timolol, and timolol combined with 2% pilocarpine in clinically normal beagles and beagles with glaucoma. Am J Vet Res 56(10):1325–1331

    PubMed  CAS  Google Scholar 

  69. Kaufman PL (2008) Enhancing trabecular outflow by disrupting the actin cytoskeleton, increasing uveoscleral outflow with prostaglandins, and understanding the pathophysiology of presbyopia interrogating Mother Nature: asking why, asking how, recognizing the signs, following the trail. Exp Eye Res 86(1):3–17

    PubMed  CAS  Google Scholar 

  70. Tokushige H, Inatani M, Nemoto S et al (2007) Effects of topical administration of y-39983, a selective rho-associated protein kinase inhibitor, on ocular tissues in rabbits and monkeys. Invest Ophthalmol Vis Sci 48(7):3216–3222

    PubMed  Google Scholar 

  71. Sugrue MF (1996) The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor. J Ocul Pharmacol Ther 12(3):363–376

    PubMed  CAS  Google Scholar 

  72. Woodward DF, Phelps RL, Krauss AH et al (2004) Bimatoprost: a novel antiglaucoma agent. Cardiovasc Drug Rev 22(2):103–120

    PubMed  CAS  Google Scholar 

  73. Sharif NA, Xu SX, Crider JY et al (2001) Levobetaxolol (Betaxon) and other beta-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J Ocul Pharmacol Ther 17(4):305–317

    PubMed  CAS  Google Scholar 

  74. Kutuzova GD, Gabelt BT, Kiland JA et al (2012) 1α,25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), suppress intraocular pressure in non-human primates. Arch Biochem Biophys 518(1):53–60. doi:10.1016/j.abb.2011.10.022

    PubMed  CAS  Google Scholar 

  75. Sharif NA (2010) Serotonin-2 receptor agonists as novel ocular hypotensive agents and their cellular and molecular mechanisms of action. Curr Drug Targets 11(8):978–993

    PubMed  CAS  Google Scholar 

  76. Wang RF, Serle JB, Gagliuso DJ et al (2000) Comparison of the ocular hypotensive effect of brimonidine, dorzolamide, latanoprost, or artificial tears added to timolol in glaucomatous monkey eyes. J Glaucoma 9(6):458–462

    PubMed  CAS  Google Scholar 

  77. Serle JB, Wang RF, Peterson WM et al (2004) Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma 13(5):385–388

    PubMed  Google Scholar 

  78. Bunch TJ, Tian B, Seeman JL et al (2008) Effect of daily prolonged ketamine anesthesia on intraocular pressure in monkeys. Curr Eye Res 33(11):946–953. doi:10.1080/02713680802447121

    PubMed  CAS  Google Scholar 

  79. Chien FY, Wang RF, Mittag TW et al (2003) Effect of WIN 55212-2, a cannabinoid receptor agonist, on aqueous humor dynamics in monkeys. Arch Ophthalmol 121(1):87–90

    PubMed  CAS  Google Scholar 

  80. Nilsson SF, Drecoll E, Lütjen-Drecoll E et al (2006) The prostanoid EP2 receptor agonist butaprost increases uveoscleral outflow in the cynomolgus monkey. Invest Ophthalmol Vis Sci 47(9):4042–4049

    PubMed  Google Scholar 

  81. Wang YL, Toris CB, Zhan G et al (1999) Effects of topical epinephrine on aqueous humor dynamics in the cat. Exp Eye Res 68(4):439–445

    PubMed  CAS  Google Scholar 

  82. Wilkie DA, Latimer CA (1991) Effects of topical administration of 2.0% pilocarpine on intraocular pressure and pupil size in cats. Am J Vet Res 52(3):441–444

    PubMed  CAS  Google Scholar 

  83. Rankin AJ, Crumley WR, Allbaugh RA (2012) Effects of ocular administration of ophthalmic 2% dorzolamide hydrochloride solution on aqueous humor flow rate and intraocular pressure in clinically normal cats. Am J Vet Res 73(7):1074–1078. doi:10.2460/ajvr.73.7.1074

    PubMed  CAS  Google Scholar 

  84. Wilkie DA, Latimer CA (1991) Effects of topical administration of timolol maleate on intraocular pressure and pupil size in cats. Am J Vet Res 52(3):436–440

    PubMed  CAS  Google Scholar 

  85. Miller PE, Rhaesa SL (1996) Effects of topical administration of 0.5% apraclonidine on intraocular pressure, pupil size, and heart rate in clinically normal cats. Am J Vet Res 57(1):83–86

    PubMed  CAS  Google Scholar 

  86. Fischer KM, Ward DA, Hendrix DV (2013) Effects of a topically applied 2% delta-9-tetrahydrocannabinol ophthalmic solution on intraocular pressure and aqueous humor flow rate in clinically normal dogs. Am J Vet Res 74(2):275–280. doi:10.2460/ajvr.74.2.275

    PubMed  CAS  Google Scholar 

  87. Gwin RM, Gelatt KN, Gum GG et al (1977) The effect of topical pilocarpine on intraocular pressure and pupil size in the normotensive and glaucomatous beagle. Invest Ophthalmol Vis Sci 16(12):1143–1148

    PubMed  CAS  Google Scholar 

  88. Prasanna G, Carreiro S, Anderson S et al (2011) Effect of PF-04217329 a prodrug of a selective prostaglandin EP(2) agonist on intraocular pressure in preclinical models of glaucoma. Exp Eye Res 93(3):256–264. doi:10.1016/j.exer.2011.02.015

    PubMed  CAS  Google Scholar 

  89. Miller PE, Nelson MJ, Rhaesa SL (1996) Effects of topical administration of 0.5% apraclonidine on intraocular pressure, pupil size, and heart rate in clinically normal dogs. Am J Vet Res 57(1):79–82

    PubMed  CAS  Google Scholar 

  90. Gwin RM, Gelatt KN, Gum GG et al (1978) Effects of topical 1-epinephrine and dipivalyl epinephrine on intraocular pressure and pupil size in the normotensive and glaucomatous Beagle. Am J Vet Res 39:83–86

    PubMed  CAS  Google Scholar 

  91. Barabino S, Chen W, Dana MR (2004) Tear film and ocular surface tests in animal models of dry eye: uses and limitations. Exp Eye Res 79(5):613–621

    PubMed  CAS  Google Scholar 

  92. Williams DL (2007) Laboratory animal ophthalmology. In: Gelatt KN (ed) Veterinary ophthalmology, 4th edn. Blackwell Publishing, Ames, IA

    Google Scholar 

  93. Gupta SK, Agarwal R, Galpalli ND et al (2007) Comparative efficacy of pilocarpine, timolol and latanoprost in experimental models of glaucoma. Methods Find Exp Clin Pharmacol 29(10):665–671. doi:10.1358/mf.2007.29.10.1147765

    PubMed  CAS  Google Scholar 

  94. Alarma-Estrany P, Guzman-Aranguez A, Huete F et al (2011) Design of novel melatonin analogs for the reduction of intraocular pressure in normotensive rabbits. J Pharmacol Exp Ther 337(3):703–709. doi:10.1124/jpet.110.178319

    PubMed  CAS  Google Scholar 

  95. Naveh N, Weissman C, Muchtar S et al (2000) Submicron emulsion of HU-211, a synthetic cannabinoid, reduces intraocular pressure in rabbits. Graefes Arch Clin Exp Ophthalmol 238(4):334–338

    PubMed  CAS  Google Scholar 

  96. Millar JC, Clark AF, Pang IH (2011) Assessment of aqueous humor dynamics in the mouse by a novel method of constant-flow infusion. Invest Ophthalmol Vis Sci 52(2):685–694. doi:10.1167/iovs.10-6069

    PubMed  Google Scholar 

  97. Pease ME, Cone FE, Gelman S et al (2011) Calibration of the TonoLab tonometer in mice with spontaneous or experimental glaucoma. Invest Ophthalmol Vis Sci 52(2):858–864. doi:10.1167/iovs.10-5556

    PubMed  Google Scholar 

  98. Swindle MM, Makin A, Herron AJ et al (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356. doi:10.1177/0300985811402846

    PubMed  CAS  Google Scholar 

  99. Rosolen SG, Rigaudière F, Le Gargasson JF (2003) Un nouveau modèle d’hyperpression oculaire induite chez le miniporc. J Fr Ophtalmol 26(3):259–267

    PubMed  CAS  Google Scholar 

  100. Ruiz-Ederra J, García M, Hernández M et al (2005) The pig eye as a novel model of glaucoma. Exp Eye Res 81:561–569

    PubMed  CAS  Google Scholar 

  101. Kurashima H, Asai Y, Aihara M et al (2012) Ocular hypotensive effect of tafluprost in latanoprost low-responder cynomolgus monkeys. J Glaucoma 21(2):123–128. doi:10.1097/IJG.0b013e31820bc9ce

    PubMed  Google Scholar 

  102. Mandić Z, Novak-Laus K, Bojić L et al (2010) Safety and efficacy of monotherapy change to fixed combination (travoprost 0.004%/timolol 0.5%) in 6 months follow up period. Acta Clin Croat 49(4):411–419

    PubMed  Google Scholar 

  103. Wilkie DA, Latimer CA (1991) Effects of topical administration of timolol maleate on intraocular pressure and pupil size in dogs. Am J Vet Res 52(3):432–435

    PubMed  CAS  Google Scholar 

  104. Camras CB, Hedman K, US Latanoprost Study Group (2003) Rate of response to latanoprost or timolol in patients with ocular hypertension or glaucoma. J Glaucoma 12(6):466–469

    PubMed  Google Scholar 

  105. Edward DP, Bouhenni R (2011) Anterior segment alterations and comparative aqueous humor proteomics in the buphthalmic rabbit (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 109:66–114

    PubMed  Google Scholar 

  106. Kolker AE, Moses RA, Constant MA et al (1963) The development of glaucoma in rabbits. Invest Ophthalmol 2:316–321

    PubMed  CAS  Google Scholar 

  107. Hanna BL, Sawin PB, Sheppard LB (1962) Recessive buphthalmos in the rabbit. Genetics 47:519–529

    PubMed  CAS  Google Scholar 

  108. Fox RR, Crary DD, Babino EJ Jr et al (1969) Buphthalmia in the rabbit. Pleiotropic effects of the (bu) gene and a possible explanation of mode of gene action. J Hered 60(4):206–212

    PubMed  CAS  Google Scholar 

  109. Kuchtey J, Olson LM, Rinkoski T et al (2011) Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a canine model of primary open angle Glaucoma. PLoS Genet 7(2):e1001306

    PubMed  CAS  Google Scholar 

  110. Sigle KJ, Camaño-Garcia G, Carriquiry AL et al (2011) The effect of dorzolamide 2% on circadian intraocular pressure in cats with primary congenital glaucoma. Vet Ophthalmol 14(Suppl 1):48–53

    PubMed  CAS  Google Scholar 

  111. Dawson WW, Brooks DE, Hope GM et al (1993) Primary open angle glaucomas in the rhesus monkey. Br J Ophthalmol 77(5):302–310

    PubMed  CAS  Google Scholar 

  112. Senatorov V, Malyukova I, Fariss R et al (2006) Expression of mutated mouse myocilin induces open-angle glaucoma in transgenic mice. J Neurosci 26(46):11903–11914

    PubMed  CAS  Google Scholar 

  113. Zhou Y, Grinchuk O, Tomarev SI (2008) Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci 49(5):1932–1939

    PubMed  Google Scholar 

  114. Mabuchi F, Lindsey JD, Aihara M et al (2004) Optic nerve damage in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 45(6):1841–1845

    PubMed  Google Scholar 

  115. Aihara M, Lindsey JD, Weinreb RN (2003) Ocular hypertension in mice with a targeted type I collagen mutation. Invest Ophthalmol Vis Sci 44(4):1581–1585

    PubMed  Google Scholar 

  116. Heywood R (1975) Glaucoma in the rat. Br Vet J 131(2):213–221

    PubMed  CAS  Google Scholar 

  117. Naskar R, Thanos S (2006) Retinal gene profiling in a hereditary rodent model of elevated intraocular pressure. Mol Vis 12:1199–1210

    PubMed  CAS  Google Scholar 

  118. Gaasterland G, Kupfer C (1974) Experimental glaucoma in the rhesus monkey. Invest Ophthalmol 13(6):455–457

    PubMed  CAS  Google Scholar 

  119. Weber AJ, Zelenak D (2001) Experimental glaucoma in the primate induced by latex microspheres. J Neurosci Methods 111(1):39–48

    PubMed  CAS  Google Scholar 

  120. Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. I. Production of elevated intraocular pressure by anterior chamber injection of autologous ghost red blood cells. Invest Ophthalmol Vis Sci 19(2):126–136

    PubMed  CAS  Google Scholar 

  121. Quigley HA, Addicks EM (1980) Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. Invest Ophthalmol Vis Sci 19(2):137–152

    PubMed  CAS  Google Scholar 

  122. Krauss AH, Impagnatiello F, Toris CB et al (2011) Ocular hypotensive activity of BOL-303259-X, a nitric oxide donating prostaglandin F2α agonist, in preclinical models. Exp Eye Res 93(3):250–255. doi:10.1016/j.exer.2011.03.001

    PubMed  CAS  Google Scholar 

  123. Vareilles P, Silverstone D, Plazonnet B et al (1977) Comparison of the effects of timolol and other adrenergic agents on intraocular pressure in the rabbit. Invest Ophthalmol Vis Sci 16(11):987–996

    PubMed  CAS  Google Scholar 

  124. Nishio M, Fukunaga T, Sugimoto M et al (2009) The effect of the H-1152P, a potent Rho-associated coiled coil-formed protein kinase inhibitor, in rabbit normal and ocular hypertensive eyes. Curr Eye Res 34(4):282–286. doi:10.1080/02713680902783763

    PubMed  CAS  Google Scholar 

  125. Gual A, Mintenig GM, Belmonte C (1989) Intraocular pressure effects of water loading and venous compression tests in normal and denervated pigmented rabbits. Exp Eye Res 48(3):365–374

    PubMed  CAS  Google Scholar 

  126. Shah GB, Sharma S, Mehta AA et al (2000) Oculohypotensive effect of angiotensin-converting enzyme inhibitors in acute and chronic models of glaucoma. J Cardiovasc Pharmacol 36(2):169–175

    PubMed  CAS  Google Scholar 

  127. Ito Y, Nagai N, Shimomura Y (2010) Reduction in intraocular pressure by the instillation of eye drops containing disulfiram included with 2-hydroxypropyl-β-cyclodextrin in rabbit. Biol Pharm Bull 33(9):1574–1578

    PubMed  CAS  Google Scholar 

  128. François J, Benozzi G, Victoria-Troncoso V et al (1984) Ultrastructural and morphometric study of corticosteroid glaucoma in rabbits. Ophthalmic Res 16(3):168–178

    PubMed  Google Scholar 

  129. Song Z, Gong Y, Liu H et al (2011) Glycyrrhizin could reduce ocular hypertension induced by triamcinolone acetonide in rabbits. Mol Vis 17:2056–2064, Published online 2011 August 4. PMCID: PMC3156820

    PubMed  CAS  Google Scholar 

  130. Bonomi L, Perfetti S, Noya E et al (1978) Experimental corticosteroid ocular hypertension in the rabbit. Albrecht Von Graefes Arch Klin Exp Ophthalmol 209(2):73–82

    PubMed  CAS  Google Scholar 

  131. Stagni E, Privitera MG, Bucolo C et al (2008) A water-soluble carbon monoxide-releasing molecule (CORM-3) lowers intraocular pressure in rabbits. Br J Ophthalmol 93(2):254–257

    PubMed  Google Scholar 

  132. Melena J, Santafé J, Segarra J (1998) The effect of topical diltiazem on the intraocular pressure in betamethasone-induced ocular hypertensive rabbits. J Pharmacol Exp Ther 284(1):278–282

    PubMed  CAS  Google Scholar 

  133. Galassi F, Masini E, Giambene B et al (2006) A topical nitric oxide-releasing dexamethasone derivative: effects on intraocular pressure and ocular haemodynamics in a rabbit glaucoma model. Br J Ophthalmol 90(11):1414–1419

    PubMed  CAS  Google Scholar 

  134. Hester DE, Trites PN, Peiffer RL et al (1987) Steroid-induced ocular hypertension in the rabbit: a model using subconjunctival injections. J Ocul Pharmacol 3(3):185–189

    PubMed  CAS  Google Scholar 

  135. Gerometta R, Spiga MG, Borrás T et al (2010) Treatment of sheep steroid-induced ocular hypertension with a glucocorticoid-inducible MMP1 gene therapy virus. Invest Ophthalmol Vis Sci 51(6):3042–3048

    PubMed  Google Scholar 

  136. Gerometta R, Podos SM, Danias J et al (2009) Steroid-induced ocular hypertension in normal sheep. Invest Ophthalmol Vis Sci 50(2):669–673

    PubMed  Google Scholar 

  137. Tektas OY, Hammer CM, Danias J et al (2010) Morphologic changes in the outflow pathways of bovine eyes treated with corticosteroids. Invest Ophthalmol Vis Sci 51(8):4060–4066

    PubMed  Google Scholar 

  138. Gerometta R, Podos SM, Candia OA et al (2004) Steroid-induced ocular hypertension in normal cattle. Arch Ophthalmol 122(10):1492–1497

    PubMed  CAS  Google Scholar 

  139. Sears D, Sears M (1974) Blood aqueous barrier and alpha chymotrypsin glaucoma in rabbits. Am J Ophthalmol 77(3):378–383

    PubMed  CAS  Google Scholar 

  140. Best M, Rabinovitz AZ, Masket S (1975) Experimental alphachymotrypsin glaucoma. Ann Ophthalmol 7(6):803–810

    PubMed  CAS  Google Scholar 

  141. Melena J, Santafé J, Segarra-Doménech J et al (1999) Aqueous humor dynamics in alpha-chymotrypsin-induced ocular hypertensive rabbits. J Ocul Pharmacol Ther 15(1):19–27

    PubMed  CAS  Google Scholar 

  142. Campana G, Bucolo C, Murari G et al (2002) Ocular hypotensive action of topical flunarizine in the rabbit: role of sigma 1 recognition sites. J Pharmacol Exp Ther 303(3):1086–1094

    PubMed  CAS  Google Scholar 

  143. Chen J, Dinh T, Woodward DF et al (2005) Bimatoprost: mechanism of ocular surface hyperemia associated with topical therapy. Cardiovasc Drug Rev 23(3):231–246

    PubMed  CAS  Google Scholar 

  144. Rasmussen CA, Gabelt BT, Kaufman PL (2007) Aqueous humor dynamics in monkeys in response to the kappa opioid agonist bremazocine. Trans Am Ophthalmol Soc 105:225–238, discussion 238–9

    PubMed  Google Scholar 

  145. Lee PY, Podos SM, Serle JB et al (1987) Intraocular pressure effects of multiple doses of drugs applied to glaucomatous monkey eyes. Arch Ophthalmol 105(2):249–252

    PubMed  CAS  Google Scholar 

  146. Millar JC, Kaufman PL (1995) PGF2 alpha/pilocarpine interactions on IOP and accommodation in monkeys. Exp Eye Res 61(6):677–683

    PubMed  CAS  Google Scholar 

  147. Rouland JF, Traverso CE, Stalmans I, T2345 Study Group et al (2013) Efficacy and safety of preservative-free latanoprost eyedrops, compared with BAK-preserved latanoprost in patients with ocular hypertension or glaucoma. Br J Ophthalmol 97(2):196–200. doi:10.1136/bjophthalmol-2012-302121

    PubMed  Google Scholar 

  148. Sonty S, Mundorf TK, Stewart JA et al (2009) Short-term tolerability of once-daily timolol hemihydrate 0.5%, timolol maleate in sorbate 0.5%, and generic timolol maleate gel-forming solution 0.5% in glaucoma and/or ocular hypertension: a prospective, randomized, double-masked, active-controlled, three-period crossover pilot study. Clin Ther 31(10):2063–2071. doi:10.1016/j.clinthera.2009.10.003

    PubMed  CAS  Google Scholar 

  149. Dinslage S, Hueber A, Diestelhorst M et al (2004) The influence of latanoprost 0.005% on aqueous humor flow and outflow facility in glaucoma patients: a double-masked placebo-controlled clinical study. Graefes Arch Clin Exp Ophthalmol 242(8):654–660

    PubMed  Google Scholar 

  150. Wang D, Qi M, He M et al (2012) Ethnic difference of the anterior chamber area and volume and its association with angle width. Invest Ophthalmol Vis Sci 53(6):3139–3144

    PubMed  Google Scholar 

  151. O’Donnell C, Hartwig A, Radhakrishnan H (2012) Comparison of central corneal thickness and anterior chamber depth measured using LenStar LS900, Pentacam, and Visante AS-OCT. Cornea 31(9):983–988

    PubMed  Google Scholar 

  152. Deering MF (2005) A photon accurate model of the human eye. ACM Trans Graph 24(3):649–658

    Google Scholar 

  153. Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36(1):49–62. doi:10.1177/0192623307310955

    PubMed  CAS  Google Scholar 

  154. Lapuerta P, Schein SJ (1995) A four-surface schematic eye of macaque monkey obtained by an optical method. Vision Res 35(16):2245–2254

    PubMed  CAS  Google Scholar 

  155. Kaufman PL, Calkins BT, Erickson KA (1981) Ocular biometry of the cynomolgus monkey. Curr Eye Res 1(5):307–309

    PubMed  CAS  Google Scholar 

  156. McCulloh RJ, Holley GP, Miller PE et al (2008) Pachymetry in New Zealand White Rabbits, Beagle dogs, and Cynomologus Monkeys. In: Abstracts of the 2008 annual meeting of the association for research in vision and ophthalmology, Fort Lauderdale, Florida, May 2008. Electronic abstract

    Google Scholar 

  157. Moodie KL, Hashizume N, Houston DL et al (2001) Postnatal development of corneal curvature and thickness in the cat. Vet Ophthalmol 4(4):267–272

    PubMed  CAS  Google Scholar 

  158. Carrington SD, Woodward EG (1986) Corneal thickness and diameter in the domestic cat. Ophthalmic Physiol Opt 6(4):385–389

    PubMed  CAS  Google Scholar 

  159. Rankin AJ, Crumley WR, Allbaugh RA (2012) Effects of ocular administration of ophthalmic 2% dorzolamide hydrochloride solution on aqueous humor flow rate and intraocular pressure in clinically normal cats. Am J Vet Res 73(7):1074–1078

    PubMed  CAS  Google Scholar 

  160. Vakkur GJ, Bishop PO (1963) The schematic eye in the cat. Vision Res 61:357–381

    PubMed  CAS  Google Scholar 

  161. Konrade KA, Hoffman AR, Ramey KL et al (2012) Refractive states of eyes and associations between ametropia and age, breed, and axial globe length in domestic cats. Am J Vet Res 73(2):279–284. doi:10.2460/ajvr.73.2.279

    PubMed  Google Scholar 

  162. Mutti DO, Zadnik K, Murphy CJ (1999) Naturally occurring vitreous chamber-based myopia in the Labrador retriever. Invest Ophthalmol Vis Sci 40(7):1577–1584

    PubMed  CAS  Google Scholar 

  163. Ward DA, Cawrse MA, Hendrix DV (2001) Fluorophotometric determination of aqueous humor flow rate in clinically normal dogs. Am J Vet Res 62(6):853–858

    PubMed  CAS  Google Scholar 

  164. Bozkir G, Bozkir M, Dogan H et al (1997) Measurements of axial length and radius of corneal curvature in the rabbit eye. Acta Med Okayama 51(1):9–11

    PubMed  CAS  Google Scholar 

  165. Hughes A (1972) A schematic eye for the rabbit. Vision Res 12(1):123–138

    PubMed  CAS  Google Scholar 

  166. Gwon A (2008) The rabbit in cataract/IOL surgery. In: Tsonis PA (ed) Animal models in eye. Research Elsevier Ltd, San Diego, CA, pp 184–205

    Google Scholar 

  167. Sanchez I, Martin R, Ussa F et al (2011) The parameters of the porcine eyeball. Graefes Arch Clin Exp Ophthalmol 249:475–482

    PubMed  Google Scholar 

  168. Faber C, Scherfig E, Prause JU et al (2008) Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand J Lab Anim Sci 35(1):35–43

    Google Scholar 

  169. Yin J, Huang J, Chen C et al (2011) Corneal complications in streptozocin-induced type I diabetic rats. Invest Ophthalmol Vis Sci 52(9):6589–6596. doi:10.1167/iovs.11-7709

    PubMed  Google Scholar 

  170. Massaf RW, Chang FW (1972) A revision of the rat schematic eye. Vision Res 12(5):793–796

    Google Scholar 

  171. Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31

    PubMed  CAS  Google Scholar 

  172. Aihara M, Lindsey JD, Weinreb RN (2003) Aqueous humor dynamics in mice. Invest Ophthalmol Vis Sci 44(12):5168–5173

    PubMed  Google Scholar 

  173. Mansoor H, Zeng H, Chiao M (2011) Real-time thickness measurement of biological tissues using a microfabricated magnetically-driven lens actuator. Biomed Microdevices 13(4):641–649. doi:10.1007/s10544-011-9534-6

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miller, P.E. (2013). Study Design and Methodologies for Evaluation of Anti-glaucoma Drugs. In: Gilger, B. (eds) Ocular Pharmacology and Toxicology. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/7653_2013_8

Download citation

  • DOI: https://doi.org/10.1007/7653_2013_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-744-0

  • Online ISBN: 978-1-62703-745-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics