Skip to main content

Cytoskeleton and Cell Motility

  • Reference work entry
Encyclopedia of Complexity and Systems Science

Definition of the Subject

We, as human beings, are made of a collection of cells, which are most commonly considered as the elementary building blocks of all livingforms on earth [5]. Whether they belong to each of the three domains of life (archaea, bacteria or eukarya), cells are smallmembrane‐bounded compartments that are capable of homeostasis, metabolism, response to their environment, growth, reproduction, adaptation throughevolution and, at the cellular as well as multicellular level, organization. In addition, spontaneous, self‐generated movement – alsoknown as motility – is one of the properties that we most closely associate with all life forms. Even in thecase of apparently inanimate living forms on macroscopic scales, like most plants and fungi, constitutive cells are constantly remodeling their internalstructure for the entire organism to perform its metabolism, growth and reproduction [29]. In animalslike human beings, cell motility is at the basis of most – if not all –...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, for example,http://www.cytoskeletons.com/database.php.

  2. 2.

    Note that some zoologists also use the term “pseudopodia” or “pseudopods” rather generally to refer to a variety of cell‐surface protrusions. These include the different types of protrusions described here as playing a role in amoeboid motility, but also the long extended processes that some cell types use only as feeding apparatus, like axopodia.

  3. 3.

    A short video of a locomoting Amoeba proteus can be seen on the following website: http://www.bms.ed.ac.uk/research/others/smaciver/A.prot.Loc.mov.

  4. 4.

    Fibroblasts are the cells that synthesize and maintain the extracellular matrix in most animal connective tissues. They provide a structural framework (stroma) for many tissues, and play a crucial role in wound healing. Keratocytes are epithelial cells that have been characterized in the epidermis of fish and frogs, and that have been named so because of their abundant keratin filaments. They are specialized in wound healing, and are one of the most spectacular example of fast and persistent locomotion in cells, with velocities up to 30 µm/min [5,158].

  5. 5.

    Growth cones are structures that are found at the tip of axons and dendrites, by means of which neuron cells extend.

  6. 6.

    Cell‐motility videos can be seen at http://cellix.imba.oeaw.ac.at.

  7. 7.

    The persistence length L p is defined as follows: consider a thin flexible rod of fixed length L, submitted to thermal forces. Its shape is completely specified by the tangent angle \( { \theta(s) } \) in three dimensions along the arc length of the rod [154]. The persistence length L p is defined as the characteristic arc length above which thermal fluctuations of the angle \( { \theta(s) } \) become uncorrelated. Specifically, \( { \langle \cos{[\Delta\theta(s)]}\rangle = \exp{(-s/L_p)} } \), where \( { \Delta\theta(s) } \) is the three‐dimensional angle change over the arc length s. L p is related to the rod's material Young modulus E and its geometrical moment of inertia I by \( { L_p=EI/k_\text{B} T } \), where \( { k_\text{B} T } \) represents thermal energy [81].

  8. 8.

    The hydrolysis reaction of ATP (ATP \( { \rightleftharpoons {\text{ADP}} + \text{P}_i } \), where \( { \text{P}_i } \) designates inorganic phosphate) breaks a high‐energy chemical bond – here a phosphoanhydride bond – to drive many chemical reactions in the cell.

  9. 9.

    Animated movies of this process can be seen at http://www.uni-leipzig.de/%7Epwm/kas/actin/actin.html or http://cellix.imba.oeaw.ac.at/actin-polymerisation-drives-protrusion.

  10. 10.

    Illustrations of these structures can be found at http://cellix.imba.oeaw.ac.at. See also [136,257].

  11. 11.

    Similarly to ATP, GTP is a stored source of energy for the cell that is consumed via a hydrolysis reaction, here GTP \( { \rightleftharpoons {\text{GDP}} + \text{P}_i }\).

  12. 12.

    Animated movies of myosin skeletal fibers' detailed motion can be seen at http://www.scripps.edu/cb/milligan/research/movies/myosin.mov, or http://valelab.ucsf.edu.

  13. 13.

    Up-to-date information about myosin motors can be found at http://www.proweb.org.

  14. 14.

    Animated movie of kinesin's detailed motion can be seen at http://www.scripps.edu/cb/milligan/research/movies/kinesin.mov or http://valelab.ucsf.edu.

  15. 15.

    Up-to-date information about kinesin motors can be found at http://www.proweb.org.

  16. 16.

    In addition to Arp2 and Arp3, which are members of the Actin related proteins (Arp) family in that they have sequences and structures that are similar to actin , the Arp2/3 complex contains five other smaller proteins.

  17. 17.

    Up-to-date informations can be found at http://www.bms.ed.ac.uk/research/others/smaciver/Cyto-Topics/actinpage.htm.

  18. 18.

    See the movies associated with ref [215], as well as the one of a neutrophil cell that chases a bacterium at http://www.biochemweb.org/fenteany/research/cell_migration/movement_movies.html.

  19. 19.

    For an animated illustration, see http://www.jhu.edu/cmml/movies/anim/eBRatchet2.swf.

  20. 20.

    For an introduction to the elasticity of continuous media, see, e. g., [154].

  21. 21.

    An illustration of a paramecium can be seen in Fig. 1, center.

  22. 22.

    The next momentum \( { q_{\alpha\beta}=\langle u_{\alpha}u_{\beta} - d^{-1}\,\boldsymbol{p}^2\,\delta_{\alpha\beta}\rangle } \), where d is the dimension of space, is a symmetric traceless tensor of order two that corresponds to nematic order.

  23. 23.

    Note that only one relaxation time is assumed to characterize the system, as some experiments suggest that a power-law distribution of relaxation times is better suited to describe cytoskeleton dynamics, potentially because of some scale‐invariant dynamical properties in the system [18,61].

Abbreviations

Cell:

Structural and functional elementary unit of all life forms. The cell is the smallest unit that can be characterized as living.

Eukaryotic cell:

Cell that possesses a nucleus, a small membrane‐bounded compartment that contains the genetic material of the cell. Cells that lack a nucleus are called prokaryotic cells or prokaryotes.

Domains of life:

archaea, bacteria and eukarya – or in English eukaryotes, and made of eukaryotic cells – which constitute the three fundamental branches in which all life forms are classified. Archaea and bacteria are prokaryotes. All multicellular organisms are eukaryotes, but eukaryotes can also be single‐cell organisms. Eukaryotes are usually classified into four kingdoms: animals, plants, fungi and protists.

Motility:

Spontaneous, self‐generated movement of a biological system.

Cytoskeleton :

System of protein filaments crisscrossing the inner part of the cell and which, with the help of the many proteins that interact with it, enables the cell to insure its structural integrity and morphology, exert forces and produce motion.

Amoeboid motility :

Crawling locomotion of a eukaryotic cell by means of protrusion of its leading edge.

Molecular motor :

Motor of molecular size. In this context, protein or macromolecular complex that converts a specific source of energy into mechanical work.

Filament:

Here, extended unidimensional structure made of an assembly of repeated protein units that hold together via physical interactions (without covalent bonds). A filament will be either a single polymer (or here biopolymer), a linear assembly of such polymers, or a linear assembly of molecular motors .

Active gel :

Cross‐linked network of linear or branched polymers interacting by physical means, and that is dynamically driven out of equilibrium by a source of energy.

Bibliography

Primary Literature

  1. Abercrombie M (1980) The crawling movement of metazoan cells. Proc R Soc Lond B Biol Sci 108:387–393

    Google Scholar 

  2. Ahmadi A, Liverpool TB, Marchetti MC (2005) Nematic and polar order in active filament solutions . Phys Rev E Stat Nonlin Soft Matter Phys 72(6 Pt 1):060901

    Google Scholar 

  3. Ahmadi A, Marchetti MC, Liverpool TB (2006) Hydrodynamics of isotropic and liquid crystalline active polymer solutions . Phys Rev E Stat Nonlin Soft Matter Phys 74(6 Pt 1):061913

    Google Scholar 

  4. Ajdari A (1995) Transport by active filaments . Europhys Lett 31(2):69–74

    ADS  Google Scholar 

  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland, New York

    Google Scholar 

  6. Albertson DG (1984) Formation of the first cleavage spindle in nematode embryos. Dev Biol 101(1):61–72

    Google Scholar 

  7. Alt W,Dembo M (1999) Cytoplasm dynamics and cell motion: two-phase flow models. Math Biosci 156(1–2):207–228

    Google Scholar 

  8. Amos LA, van den Ent F, Lowe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16(1):24–31

    Google Scholar 

  9. Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. Int J Biol Sci 3(5):303–317

    Google Scholar 

  10. Andersen SS (2000) Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/OP18. Trends Cell Biol 10(7):261–267

    Google Scholar 

  11. Aranson IS, Tsimring LS (2005) Pattern formation of microtubules and motors: Inelastic interaction of polar rods. Phys Rev E Stat Nonlin Soft Matter Phys 71(5 Pt 1):050901

    Google Scholar 

  12. Aranson IS, Tsimring LS (2006) Theory of self‐assembly of microtubules and motors. Phys Rev E Stat Nonlin Soft Matter Phys 74(3 Pt 1):031915

    MathSciNet  ADS  Google Scholar 

  13. Astumian RD (1997) Thermodynamics and kinetics of a brownian motor. Science 276(5314):917–922

    Google Scholar 

  14. Astumian RD, Bier M (1994) Fluctuation driven ratchet s: Molecular motors . Phys Rev Lett 72(11):1766–1769

    ADS  Google Scholar 

  15. Astumian RD, Bier M (1996) Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys J 70(2):637–653

    Google Scholar 

  16. Ausmees N, Kuhn JR, Jacobs‐Wagner C (2003) The bacterial cytoskeleton : an intermediate filament ‐like function in cell shape. Cell 115(6):705–713

    Google Scholar 

  17. Badoual M, Jülicher F, Prost J (2002) Bidirectional cooperative motion of molecular motors . Proc Natl Acad Sci USA 99(10):6696–6701

    Google Scholar 

  18. Balland M, Desprat N, Icard D, Fereol S, Asnacios A, Browaeys J, Henon S, Gallet F (2006) Power laws in microrheology experiments on living cells: Comparative analysis and modeling. Phys Rev E Stat Nonlin Soft Matter Phys 74(2 Pt 1):021911

    ADS  Google Scholar 

  19. Belmont LD, Hyman AA, Sawin KE, Mitchison TJ (1990) Real-time visualization of cell cycle‐dependent changes in microtubule dynamics in cytoplasmic extracts. Cell 62(3):579–589

    Google Scholar 

  20. Berg HC (2003) The rotary motor of bacterial flagella . Annu Rev Biochem 72:19–54

    Google Scholar 

  21. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780–794

    Google Scholar 

  22. Bernheim‐Groswasser A, Wiesner S, Golsteyn RM, Carlier M-F, Sykes C (2002) The dynamics of actin -based motility depend on surface parameters. Nature 417(6886):308–311

    Google Scholar 

  23. Bernheim‐Groswasser A, Prost J, Sykes C (2005) Mechanism of actin-based motility : a dynamic state diagram. Biophys J 89(2):1411–1419

    Google Scholar 

  24. Bershadsky A, Kozlov M, Geiger B (2006) Adhesion‐mediated mechanosensitivity: a time to experiment, and a time to theorize. Curr Opin Cell Biol 18(5):472–481

    Google Scholar 

  25. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348(Pt 2):241–255

    Google Scholar 

  26. Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89(16):7290–7294

    ADS  Google Scholar 

  27. Bottino D, Mogilner A, Roberts T, Stewart M, Oster G (2002) How nematode sperm crawl. J Cell Sci 115(Pt 2):367–384

    Google Scholar 

  28. Boukellal H, Campas O, Joanny J-F, Prost J, Sykes C (2004) Soft listeria : Actin -based propulsion of liquid drops. Phys Rev E Stat Nonlin Soft Matter Phys 69(6 Pt 1):061906

    Google Scholar 

  29. Bray D (2001) Cell movements, 2nd edn. Garland, New York

    Google Scholar 

  30. Brokaw CJ (1975) Molecular mechanism for oscillation in flagella and muscle. Proc Natl Acad Sci USA 72(8):3102–3106

    ADS  Google Scholar 

  31. Bullock TL, Roberts TM, Stewart M (1996) 2.5 A resolution crystal structure of the motile major sperm protein (MSP ) of Ascaris suum. J Mol Biol 263(2):284–296

    Google Scholar 

  32. Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nat Rev Mol Cell Biol 1(2):130–136

    Google Scholar 

  33. Camalet S, Jülicher F (2000) Generic aspects of axonemal beating. New J Phys 2:1–23

    Google Scholar 

  34. Camalet S, Jülicher F, Prost J (1999) Self‐organized beating and swimming of internally driven filaments. Phys Rev Lett 82(7):1590–1593

    Google Scholar 

  35. Cameron LA, Footer MJ, van Oudenaarden A, Theriot JA (1999) Motility of ActA protein‐coated microspheres driven byactin polymerization . Proc Natl Acad Sci USA 96(9):4908–4913

    ADS  Google Scholar 

  36. Cameron LA, Giardini PA, Soo FS, Theriot JA (2000) Secrets of actin -based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 1(2):110–119

    Google Scholar 

  37. CarlssonAE (2001) Growth of branchedactin networks against obstacles. Biophys J 81(4):1907–1923

    MathSciNet  Google Scholar 

  38. Carlsson AE (2003) Growth velocities of branched actin networks . Biophys J 84(5):2907–2918

    Google Scholar 

  39. Chaen S, Inoue J, Sugi H (1995) The force‐velocity relationship of the ATP‐dependent actin ‐myosin sliding causing cytoplasmic streaming in algal cells, studied using a centrifuge microscope. J Exp Biol 198(Pt 4):1021–1027

    Google Scholar 

  40. Chowdhury D, Schadschneider A, Nishinari K (2005) Physics of transport and traffic phenomena in biology from molecular motors and cells to organisms. Phys Life Rev 2(4):318–352

    ADS  Google Scholar 

  41. Cossart P, Bierne H (2001) The use of host cell machinery in the pathogenesis of Listeria monocytogenes. Curr Opin Immunol 13(1):96–103

    Google Scholar 

  42. Coussen F, Choquet D, Sheetz MP, Erickson HP (2002) Trimers of the fibronectin celladhesion domainlocalize to actin filament bundles and undergo rearward translocation. J Cell Sci 115(Pt 12):2581–2590

    Google Scholar 

  43. de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell‐division protein FtsZ is a GTPase. Nature 359(6392):254–256

    ADS  Google Scholar 

  44. de Gennes P-G, Prost J (1993) The physics of liquid crystals, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  45. de Groot SR, Mazur P (1984) Non‐equilibrium thermodynamics. Dover Publications Inc, New York

    Google Scholar 

  46. Derrida B (1983) Velocity and diffusion constant of a periodic one‐dimensional hopping model. J Stat Phys 31(3):433

    MathSciNet  ADS  Google Scholar 

  47. Desai A, Verma S, Mitchison TJ, Walczak CE (1999) Kin I kinesins are microtubule ‐destabilizing enzymes. Cell 96(1):69–78

    Google Scholar 

  48. Dickinson RB, Purich DL (2007) Nematode sperm motility: nonpolar filament polymerization mediated by end‐tracking motors. Biophys J 92(2):622–631

    Google Scholar 

  49. Dickinson RB, Caro L, Purich DL (2004) Force generation by cytoskeletal filament end‐tracking proteins. Biophys J 87(4):2838–2854

    Google Scholar 

  50. Dogterom M, Yurke B (1997) Measurement of the force‐velocity relation for growing microtubule s. Science 278(5339):856–860

    ADS  Google Scholar 

  51. Dogterom M, Kerssemakers JWJ, Romet‐Lemonne G, Janson ME (2005) Force generation by dynamic microtubule s. Curr Opin Cell Biol 17(1):67–74

    Google Scholar 

  52. Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO (2004) Self‐concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett 93(9):098103

    ADS  Google Scholar 

  53. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: Regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473

    Google Scholar 

  54. Duke T, Leibler S (1996) Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys J 71(3):1235–1247

    Google Scholar 

  55. Endow SA Higuchi H (2000) A mutant of the motor protein kinesin that moves in both directions on microtubule s. Nature 406(6798):913–916

    ADS  Google Scholar 

  56. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    Google Scholar 

  57. Erickson HP (2007) Evolution of the cytoskeleton . Bioessays 29(7):668–677

    Google Scholar 

  58. Erickson HP, Taylor DW, Taylor KA, Bramhill D (1996) Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci USA 93(1):519–523

    ADS  Google Scholar 

  59. Euteneuer U, Schliwa M (1984) Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature 310(5972):58–61

    ADS  Google Scholar 

  60. Evans MR, Foster DP, Godreche C, Mukamel D (1995) Spontaneous symmetry breaking in a one dimensional driven diffusive system. Phys Rev Lett 74(2):208–211

    ADS  Google Scholar 

  61. Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas D, Fredberg JJ (2001) Scaling the microrheology of living cells. Phys Rev Lett 87(14):148102

    ADS  Google Scholar 

  62. Faivre‐Moskalenko C, Dogterom M (2002) Dynamics of microtubule asters in microfabricated chambers: The role of catastrophes. Proc Natl Acad Sci USA 99(26):16788–16793

    Google Scholar 

  63. Fernandez P, Pullarkat PA, Ott A (2006) A master relation defines the nonlinear viscoelasticity of single fibroblasts. Biophys J 90(10):3796–3805

    Google Scholar 

  64. Feynman RP, Leighton RB, Sands M (1963) The Feynman lectures on physics, vol 1. Addison‐Wesley, Reading

    Google Scholar 

  65. Fisher ME (1998) Renormalization group theory: Its basis and formulation in statistical physics. Rev Mod Phys 70(2):653–681

    ADS  Google Scholar 

  66. Fisher ME, Kolomeisky AB (1999) The force exerted by a molecular motor . Proc Natl Acad Sci USA 96(12):6597–6602

    ADS  Google Scholar 

  67. Fletcher DA, Theriot JA (2004) An introduction to cell motility for the physical scientist. Phys Biol 1(1–2):T1–10

    ADS  Google Scholar 

  68. Footer MJ, Kerssemakers JWJ, Theriot JA, Dogterom M (2007) Direct measurement of force generation by actin filament polymerization using an optical trap. PNAS 104(7):2181–2186

    ADS  Google Scholar 

  69. Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the venus flytrap snaps. Nature 433(7024):421–425

    ADS  Google Scholar 

  70. Frey E, Täuber UC, Cauber U (1994) 2-loop renormalization‐group analysis of the Burgers‐Kardar‐Parisi‐Zhang equation. Phys Rev E 50(2):1024–1045

    Google Scholar 

  71. Frischknecht F, Way M (2001) Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol 11(1):30–38

    Google Scholar 

  72. Fujita H, Ishiwata S (1998) Spontaneous oscillatory contraction without regulatory proteins in actin filament‐reconstituted fibers. Biophys J 75(3):1439–1445

    Google Scholar 

  73. Fukui Y (2002) Mechanistics of amoeboid locomotion: signal to forces. Cell Biol Int 26(11):933–944

    Google Scholar 

  74. Fygenson DK, Marko JF, Libchaber A (1997) Mechanics of microtubule ‐based membrane extension. Phys Rev Lett 79(22):4497–4500

    ADS  Google Scholar 

  75. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2004) Elastic behavior of cross‐linked and bundledactin networks . Science 304(5675):1301–1305

    ADS  Google Scholar 

  76. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2004) Scaling of F- actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 93(18):188102

    ADS  Google Scholar 

  77. Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F- actin networks cross‐linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci USA 103(6):1762–1767

    ADS  Google Scholar 

  78. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805

    Google Scholar 

  79. Gerbal F, Chaikin P, Rabin Y, Prost J (2000) An elastic analysis of Listeria monocytogenes propulsion. Biophys J 79(5):2259–2275

    Google Scholar 

  80. Giardini PA, Fletcher DA, Theriot JA (2003) Compression forces generated by actin comet tails on lipid vesicles. Proc Natl Acad Sci USA 100(11):6493–6498

    ADS  Google Scholar 

  81. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubule s and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120(4):923–934

    Google Scholar 

  82. Glotzer M (2001) Animal cell cytokinesis. Annu Rev Cell Dev Biol 17:351–386

    Google Scholar 

  83. Goldberg MB (2001) Actin -based motility of intracellular microbial pathogens. Microbiol Mol Biol Rev 65(4):595–626

    Google Scholar 

  84. Granger C, Cyr R (2001) Use of abnormal preprophase bands to decipher division plane determination. J Cell Sci 114(Pt 3):599–607

    Google Scholar 

  85. Grill SW, Gonczy P, Stelzer EH, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the caenorhabditis elegans embryo. Nature 409(6820):630–633

    ADS  Google Scholar 

  86. Grill SW, Kruse K, Jülicher F (2005) Theory of mitotic spindle oscillations. Phys Rev Lett 94(10):108104

    Google Scholar 

  87. Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422(6933):775–781

    ADS  Google Scholar 

  88. Gueron S, Levit‐Gurevich K, Liron N, Blum JJ (1997)Cilia internal mechanism and metachronal coordination as the result of hydrodynamical coupling. Proc Natl Acad Sci USA 94(12):6001–6006

    Google Scholar 

  89. Guirao B, Joanny J-F (2007) Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia . Biophys J 92(6):1900–1917

    Google Scholar 

  90. Gupton SL, Waterman‐Storer CM (2006) Spatiotemporal feedback between actomyosin and focal‐adhesion systems optimizes rapid cell migration. Cell 125(7):1361–1374

    Google Scholar 

  91. Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33(Pt 5):891–895

    Google Scholar 

  92. Hanney T, Evans MR (2004) Condensation transitions in a two‐species zero-range process. Phys Rev E Stat Nonlin Soft Matter Phys 69(1 Pt 2):016107

    ADS  Google Scholar 

  93. Hanson J, Huxley HE (1953) Structural basis of the cross‐striations in muscle. Nature 172(4377):530–532

    ADS  Google Scholar 

  94. Hatwalne Y, Ramaswamy S, Rao M, Simha RA (2004) Rheology of active‐particle suspensions. Phys Rev Lett 92(11):118101

    ADS  Google Scholar 

  95. Hayden JH, Bowser SS, Rieder CL (1990) Kinetochores capture astral microtubule s during chromosome attachment to the mitotic spindle: Direct visualization in live newt lung cells. J Cell Biol 111(3):1039–1045

    Google Scholar 

  96. Heintzelman MB (2003) Gliding motility: The molecules behind the motion. Curr Biol 13(2):R57–9

    Google Scholar 

  97. Hill TL (1974) Theoretical formalism for the sliding filament model of contraction of striated muscle, part I. Prog Biophys Mol Biol 28:267–340

    Google Scholar 

  98. Hinrichsen H (2006) Non‐equilibrium phase transitions. Physica A 369(1):1–28

    MathSciNet  ADS  Google Scholar 

  99. Hoffman BD, Massiera G, Van Citters KM, Crocker JC (2006) The consensus mechanics of cultured mammalian cells. Proc Natl Acad Sci USA 103(27):10259–10264

    ADS  Google Scholar 

  100. Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49(3):435–479

    ADS  Google Scholar 

  101. Holy TE, Dogterom M, Yurke B, Leibler S (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci USA 94(12):6228–6231

    ADS  Google Scholar 

  102. Howard J (1997) Molecular motors : Structural adaptations to cellular functions. Nature 389(6651):561–567

    ADS  Google Scholar 

  103. Howard J (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates Inc, Sunderland

    Google Scholar 

  104. Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422(6933):753–758

    ADS  Google Scholar 

  105. Howard M, Rutenberg AD (2003) Pattern formation inside bacteria: Fluctuations due to the low copy number of proteins. Phys Rev Lett 90(12):128102

    ADS  Google Scholar 

  106. Humphrey D, Duggan C, Saha D, Smith D, Käs J (2002) Active fluidization of polymer networks through molecular motors . Nature 416(6879):413–416

    Google Scholar 

  107. Hunter AW, Caplow M, Coy DL, Hancock WO, Diez S, Wordeman L, Howard J (2003) The kinesin‐related protein MCAK is a microtubule depolymerase that forms an ATP‐hydrolyzing complex at microtubule ends. Mol Cell 11(2):445–457

    Google Scholar 

  108. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    Google Scholar 

  109. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173(4412):971–973

    ADS  Google Scholar 

  110. Huxley HE (1953) Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta 12(3):387–394

    Google Scholar 

  111. Huxley HE (1953) X-ray analysis and the problem of muscle. Proc R Soc Lond B Biol Sci 141(902):59–62

    ADS  Google Scholar 

  112. Huxley HE (1957) The double array of filaments in cross‐striated muscle. J Biophys Biochem Cytol 3(5):631–648

    Google Scholar 

  113. Huxley HE (1996) A personal view of muscle and motility mechanisms. Annu Rev Physiol 58:1–19

    ADS  Google Scholar 

  114. Huxley HE (2004) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271(8):1403–1415

    Google Scholar 

  115. Huxley HE, Hanson J (1954) Changes in the cross‐striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    ADS  Google Scholar 

  116. Hyman AA, Karsenti E (1996) Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84(3):401–410

    Google Scholar 

  117. Ibanez‐Tallon I, Heintz N, Omran H (2003) To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet 12(Spec no 1):R27–35

    Google Scholar 

  118. Inoue S, Salmon ED (1995) Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 6(12):1619–1640

    Google Scholar 

  119. Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier MF (1995) Flexibility ofactin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem 270(19):11437–11444 (1995)

    Google Scholar 

  120. Italiano JE Jr, Roberts TM, Stewart M, Fontana CA (1996) Reconstitution in vitro of the motile apparatus from the amoeboid sperm of ascaris shows that filament assembly and bundling move membranes. Cell 84(1):105–114

    Google Scholar 

  121. Italiano JE Jr, Stewart M, Roberts TM (1999) Localized depolymerization of the major sperm protein cytoskeleton correlates with the forward movement of the cell body in the amoeboid movement of nematode sperm. J Cell Biol 146(5):1087–1096

    Google Scholar 

  122. Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160

    Google Scholar 

  123. Janson ME, Dogterom M (2004) Scaling of microtubule force‐velocity curves obtained at different tubulin concentrations. Phys Rev Lett 92(24):248101

    ADS  Google Scholar 

  124. Joanny J-F, Jülicher F, Prost J (2003) Motion of an adhesive gel in a swelling gradient: A mechanism for cell locomotion. Phys Rev Lett 90(16):168102

    Google Scholar 

  125. Joanny J-F, Jülicher F, Kruse K, Prost J (2007) Hydrodynamic theory for multi‐component active polar gels . New J Phys 9:422

    Google Scholar 

  126. Jones LJ, Carballido‐Lopez R, Errington J (2001) Control of cell shape in bacteria: Helical, actin -like filaments in bacillus subtilis. Cell 104(6):913–922

    Google Scholar 

  127. Jülicher F, Prost J (1995) Cooperative molecular motors . Phys Rev Lett 75(13):2618–2621

    Google Scholar 

  128. Jülicher F, Prost J (1997) Spontaneous oscillations of collective molecular motors . Phys Rev Lett 78(23):4510–4513

    Google Scholar 

  129. Jülicher F, Ajdari A, Prost J (1997) Modeling molecular motors . Rev Mod Phys 69(4):1269–1281

    Google Scholar 

  130. Jülicher F, Kruse K, Prost J, Joanny JF (2007) Active behavior of the cytoskeleton . Phys Rep 449(1–3):3–28

    Google Scholar 

  131. Jurado C, Haserick JR, Lee J (2005) Slipping or gripping? fluorescent speckle microscopy in fish keratocytes reveals two different mechanisms for generating a retrograde flow of actin . Mol Biol Cell 16(2):507–518

    Google Scholar 

  132. Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115(4):475–487

    Google Scholar 

  133. Karki S, Holzbaur EL (1999) Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 11(1):45–53

    Google Scholar 

  134. Karsenti E, Vernos I (2001) The mitotic spindle: A self-made machine. Science 294(5542):543–547

    ADS  Google Scholar 

  135. Kasza KE, Rowat AC, Liu J, Angelini TE, Brangwynne CP, Koenderink GH, Weitz DA (2007) The cell as a material. Curr Opin Cell Biol 19(1):101–107

    Google Scholar 

  136. Kaverina I, Krylyshkina O, Small JV (2002) Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 34(7):746–761

    Google Scholar 

  137. King KL, Essig J, Roberts TM, Moerland TS (1994) Regulation of the ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motil Cytoskeleton 27(3):193–205

    Google Scholar 

  138. Klumpp S, Lipowsky R (2004) Asymmetric simple exclusion processes with diffusive bottlenecks. Phys Rev E Stat Nonlin Soft Matter Phys 70(6 Pt 2):066104

    Google Scholar 

  139. Klumpp S, Lipowsky R (2004) Phase transitions in systems with two species of molecular motors . Europhys Lett 66(1):90–96

    ADS  Google Scholar 

  140. Kolomeisky AB, Fisher ME (2001) Force‐velocity relation for growing microtubule s. Biophys J 80(1):149–154

    Google Scholar 

  141. Kondo S (2002) The reaction‐diffusion system: A mechanism for autonomous pattern formation in the animal skin. Genes Cells 7(6):535–541

    Google Scholar 

  142. Kozlov MM, Mogilner A (2007) Model of polarization and bistability of cell fragments. Biophys J 93(11):3811–3819

    Google Scholar 

  143. Krendel M, Zenke FT, Bokoch GM (2002) Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubule s and the actin cytoskeleton . Nat Cell Biol 4(4):294–301

    Google Scholar 

  144. Kruse K, Jülicher F (2000) Actively contracting bundles of polar filaments. Phys Rev Lett 85(8):1778–1781

    Google Scholar 

  145. Kruse K, Jülicher F (2003) Self‐organization and mechanical properties of active filament bundles . Phys Rev E Stat Nonlin Soft Matter Phys 67(5 Pt 1):051913

    Google Scholar 

  146. Kruse K, Jülicher F (2006) Dynamics and mechanics of motor‐filament systems. Eur Phys J E Soft Matter 20(4):459–465

    Google Scholar 

  147. Kruse K, Sekimoto K (2002) Growth of fingerlike protrusions driven by molecular motors . Phys Rev E Stat Nonlin Soft Matter Phys 66(3 Pt 1):031904

    ADS  Google Scholar 

  148. Kruse K, Camalet S, Jülicher F (2001) Self‐propagating patterns in active filament bundles . Phys Rev Lett 87(13):138101

    Google Scholar 

  149. Kruse K, Zumdieck A, Jülicher F (2003) Continuum theory of contractile fibres. Europhys Lett 64(5):716–722

    Google Scholar 

  150. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2004) Asters, vortices, and rotating spirals in active gels of polar filaments. Phys Rev Lett 92(7):078101

    Google Scholar 

  151. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K (2005) Generic theory of active polar gels : A paradigm for cytoskeletal dynamics. Eur Phys J E Soft Matter 16(1):5–16

    Google Scholar 

  152. Kruse K, Joanny JF, Jülicher F, Prost J (2006) Contractility and retrograde flow in lamellipodium motion. Phys Biol 3(2):130–137

    Google Scholar 

  153. Lacayo CI, Theriot JA (2004) Listeria monocytogenes actin -based motility varies depending on subcellular location: A kinematic probe for cytoarchitecture. Mol Biol Cell 15(5):2164–2175

    Google Scholar 

  154. Landau LD, Lifschitz EM (1995) The theory of elasticity. Butterworth‐Heinemann, Boston

    Google Scholar 

  155. Lasa I, Gouin E, Goethals M, Vancompernolle K, David V, Vandekerckhove J, Cossart P (1997) Identification of two regions in theN‑terminal domain of ActA involved in theactin comet tail formation by Listeria monocytogenes. EMBOJ 16(7):1531–1540

    Google Scholar 

  156. Lauffenburger DA, Horwitz AF (1996) Cell migration: A physically integrated molecular process. Cell 84(3):359–369

    Google Scholar 

  157. Lee HY, Kardar M (2001) Macroscopic equations for pattern formation in mixtures of microtubule s and molecular motors. Phys Rev E Stat Nonlin Soft Matter Phys 64(5 Pt 2):056113

    ADS  Google Scholar 

  158. Lee J, Ishihara A, Jacobson K (1993) The fish epidermal keratocyte as a model system for the study of cell locomotion. Symp Soc Exp Biol 47:73–89

    Google Scholar 

  159. Leibler S, Huse DA (1993) Porters versus rowers: A unified stochastic model of motor proteins . J Cell Biol 121(6):1357–1368

    Google Scholar 

  160. Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde F- actin flow in neuronal growth cones. Neuron 16(4):769–782

    Google Scholar 

  161. Lipowsky R, Klumpp S, Nieuwenhuizen TM (2001) Random walks of cytoskeletal motors in open and closed compartments. Phys Rev Lett 87(10):108101

    ADS  Google Scholar 

  162. Liverpool TB (2003) Anomalous fluctuations of active polar filaments . Phys Rev E Stat Nonlin Soft Matter Phys 67(3 Pt 1):031909

    ADS  Google Scholar 

  163. Liverpool TB (2006) Active gels : Where polymer physics meets cytoskeletal dynamics. Philos Trans A Math Phys Eng Sci 364(1849):3335–3355

    Google Scholar 

  164. Liverpool TB, Marchetti MC (2003) Instabilities of isotropic solutions of active polar filaments . Phys Rev Lett 90(13):138102

    ADS  Google Scholar 

  165. Liverpool TB, Marchetti MC (2005) Bridging the microscopic and the hydrodynamic in active filament solutions . Europhys Lett 69(5):846–852

    ADS  Google Scholar 

  166. Liverpool TB, Marchetti MC (2006) Rheology of active filament solutions . Phys Rev Lett 97(26):268101

    ADS  Google Scholar 

  167. Liverpool TB, Marchetti MC (2008) Hydrodynamics and rheology of active polar filaments . In: Lenz P (ed) Cell motility. Springer, New York

    Google Scholar 

  168. Liverpool TB, Maggs AC, Ajdari A (2001) Viscoelasticity of solutions of motile polymers. Phys Rev Lett 86(18):4171–4174

    ADS  Google Scholar 

  169. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152

    Google Scholar 

  170. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF (1999) Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401(6753):613–616

    ADS  Google Scholar 

  171. Lowe J, Amos LA (1998) Crystal structure of the bacterial cell‐division protein FtsZ. Nature 391(6663):203–206

    ADS  Google Scholar 

  172. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10(25):4617–4624

    Google Scholar 

  173. MacDonald CT, Gibbs JH, Pipkin AC (1968) Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1):1–5

    Google Scholar 

  174. Machesky LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146(2):267–272

    Google Scholar 

  175. Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD (1999) Scar, a WASp‐related protein,activates nucleation ofactin filaments by the Arp2/3 complex. Proc Natl Acad Sci USA 96(7):3739–3744

    ADS  Google Scholar 

  176. Machin KE (1958) Wave propagation along flagella . J Exp Biol 35:796

    Google Scholar 

  177. Magnasco MO (1993) Forced thermal ratchet s. Phys Rev Lett 71(10):1477–1481

    ADS  Google Scholar 

  178. Magnasco MO (1994) Molecular combustion motors. Phys Rev Lett 72(16):2656–2659

    ADS  Google Scholar 

  179. Mahadevan L, Matsudaira P (2000) Motility powered by supramolecular springs and ratchet s. Science 288(5463):95–100

    ADS  Google Scholar 

  180. Maney T, Wagenbach M, Wordeman L (2001) Molecular dissection of the microtubule depolymerizing activity of mitotic centromere‐associated kinesin. J Biol Chem 276(37):34753–34758

    Google Scholar 

  181. Manson MD, Armitage JP, Hoch JA, Macnab RM (1998) Bacterial locomotion and signal transduction. J Bacteriol 180(5):1009–1022

    Google Scholar 

  182. Marcy Y, Prost J, Carlier M-F, Sykes C (2004) Forces generated during actin -based propulsion : A direct measurement by micromanipulation. Proc Natl Acad Sci USA 101(16):5992–5997

    ADS  Google Scholar 

  183. Martin PC, Parodi O, Pershan P (1972) Unified hydrodynamic theory for crystals, liquid crystals and normal fluids. Phys Rev A 6:2401

    ADS  Google Scholar 

  184. McGrath JL, Eungdamrong NJ, Fisher CI, Peng F, Mahadevan L, Mitchison TJ, Kuo SC (2003) The force‐velocity relationship for the actin-based motility of Listeria monocytogenes. Curr Biol 13(4):329–332

    Google Scholar 

  185. McGrath JL, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114(1):61–73

    Google Scholar 

  186. Merrifield CJ, Moss SE, Ballestrem C, Imhof BA, Giese G, Wunderlich I, Almers W (1999) Endocytic vesicles move at the tips of actin tails in cultured mast cells. Nat Cell Biol 1(1):72–74

    Google Scholar 

  187. Miao L, Vanderlinde O, Stewart M, Roberts TM (2003) Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science 302(5649):1405–1407

    ADS  Google Scholar 

  188. Michie KA, Lowe J (2006) Dynamic filaments of the bacterial cytoskeleton . Annu Rev Biochem 75:467–492

    Google Scholar 

  189. Miki H, Setou M, Kaneshiro K, Hirokawa N (2001) All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci USA 98(13):7004–7011

    ADS  Google Scholar 

  190. Miranti CK, Brugge JS (2002) Sensing the environment: A historical perspective on integrin signal transduction. Nat Cell Biol 4(4):E83–90

    Google Scholar 

  191. Mitchison TJ, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312(5991):237–242

    ADS  Google Scholar 

  192. Mitchison TJ, Cramer LP (1996) Actin -based cell motility and cell locomotion. Cell 84(3):371–379

    Google Scholar 

  193. Mitchison TJ, Salmon ED (2001) Mitosis: A history of division. Nat Cell Biol 3(1):E17–21

    Google Scholar 

  194. Mogilner A (2006) On the edge: modeling protrusion. Curr Opin Cell Biol 18(1):32–39

    Google Scholar 

  195. Mogilner A, Oster G (1996) Cell motility driven by actin polymerization . Biophys J 71(6):3030–3045

    Google Scholar 

  196. Mogilner A, Oster G (2003) Cell biology. Shrinking gels pull cells. Science 302(5649):1340–1341

    Google Scholar 

  197. MogilnerA, Oster G (2003) Force generation byactin polymerization II: The elastic ratchet and tethered filaments. Biophys J 84(3):1591–1605

    Google Scholar 

  198. Mogilner A, Oster G (2003) Polymer motors: Pushing out the front and pulling up the back. Curr Biol 13(18):R721–33

    Google Scholar 

  199. Mohanty PK, Kruse K (2007) Driven diffusive systems of active filament bundles . J Stat Phys 128(1–2):95–110

    MathSciNet  ADS  Google Scholar 

  200. Mukherjee A, Dai K, Lutkenhaus J (1993) Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 90(3):1053–1057

    ADS  Google Scholar 

  201. Nakazawa H, Sekimoto K (1996) Polarity sorting in a bundle of actin filaments by two‐headed myosins. J Phys Soc Jpn 65(8):2404–2407

    ADS  Google Scholar 

  202. Nedelec F, Surrey T, Maggs AC (2001) Dynamic concentration of motors in microtubule arrays. Phys Rev Lett 86(14):3192–3195

    ADS  Google Scholar 

  203. Nedelec FJ, Surrey T, Maggs AC, Leibler S (1997) Self‐organization of microtubule s and motors. Nature 389(6648):305–308

    ADS  Google Scholar 

  204. Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422(6933):766–774

    ADS  Google Scholar 

  205. Nieuwenhuizen TM, Klumpp S, Lipowsky R (2004) Random walks of molecular motors arising from diffusional encounters with immobilized filaments. Phys Rev E 69(6):061911

    ADS  Google Scholar 

  206. Nogales E, Wolf SG, Downing KH (1998) Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391(6663):199–203

    ADS  Google Scholar 

  207. Noireaux V, Golsteyn RM, Friederich E, Prost J, Antony C, Louvard D, Sykes C (2000) Growing anactin gel on spherical surfaces. Biophys J 78(3):1643–1654

    Google Scholar 

  208. Okada Y, Takeda S, Tanaka Y, Izpisua Belmonte J-C, Hirokawa N (2005) Mechanism of nodal flow: A conserved symmetry breaking event in left-right axis determination. Cell 121(4):633–644

    Google Scholar 

  209. Okamura N, Ishiwata S (1988) Spontaneous oscillatory contraction of sarcomeres in skeletal myofibrils. J Muscle Res Cell Motil 9(2):111–119

    Google Scholar 

  210. Ott A, Magnasco M, Simon A, Libchaber A (1993) Measurement of the persistence length of polymerized actin using fluorescence microscopy. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 48(3):R1642–R1645

    Google Scholar 

  211. Paluch E, Sykes C, Prost J, Bornens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16(1):5–10

    Google Scholar 

  212. Paluch E, van der Gucht J, Joanny J-F, Sykes C (2006) Deformations in actin comets from rocketing beads. Biophys J 91(8):3113–3122

    Google Scholar 

  213. Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin E-L (2006) Thermal fluctuations of grafted microtubule s provide evidence of a length‐dependent persistence length. Proc Natl Acad Sci USA 103(27):10248–10253

    ADS  Google Scholar 

  214. Pantaloni D, Le Clainche C, Carlier MF (2001) Mechanism of actin -based motility . Science 292(5521):1502–1506

    ADS  Google Scholar 

  215. Parent CA, Devreotes PN (1999) A cell’s sense of direction. Science 284(5415):765–770

    ADS  Google Scholar 

  216. Parmeggiani A, Franosch T, Frey E (2003) Phase coexistence in driven one‐dimensional transport. Phys Rev Lett 90(8):086601

    ADS  Google Scholar 

  217. Parmeggiani A, Jülicher F, Ajdari A, Prost J (1999) Energy transduction of isothermal ratchet s: Generic aspects and specific examples close to and far from equilibrium. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60(2 Pt B):2127–2140

    Google Scholar 

  218. Peskin CS, Ermentrout GB, Oster GF (1994) Cell mechanics and cellular engineering. Springer, New York

    Google Scholar 

  219. Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the brownian ratchet . Biophys J 65(1):316–324

    Google Scholar 

  220. Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization – A unified approach to nonlinear science. Cambridge University Press, Cambridge

    Google Scholar 

  221. Plastino J, Lelidis I, Prost J, Sykes C (2004) The effect of diffusion, depolymerization and nucleation promoting factors onactin gel growth. Eur Biophys J 33(4):310–320

    Google Scholar 

  222. Plastino J, Sykes C (2005) The actin slingshot. Curr Opin Cell Biol 17(1):62–66

    Google Scholar 

  223. Pollard TD (2003) The cytoskeleton , cellular motility and the reductionist agenda. Nature 422(6933):741–5

    ADS  Google Scholar 

  224. Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Google Scholar 

  225. Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly ofactin filaments . Cell 112(4):453–465

    Google Scholar 

  226. Porter ME (1996) Axonemal dyneins: Assembly, organization, and regulation. Curr Opin Cell Biol 8(1):10–17

    Google Scholar 

  227. Prost J, Chauwin JF, Peliti L, Ajdari A (1994) Asymmetric pumping of particles. Phys Rev Lett 72(16):2652–2655

    ADS  Google Scholar 

  228. Purcell EM (1977) Life at low reynolds number. Am J Phys 45:3

    ADS  Google Scholar 

  229. Raftopoulou M, Hall A (2004) Cell migration: Rho GTPases lead the way. Dev Biol 265(1):23–32

    Google Scholar 

  230. Ramaswamy S, Simha RA, Toner J (2003) Active nematics on a substrate: Giant number fluctuations and long-time tails. Europhys Lett 62(2):196–202 Apr

    ADS  Google Scholar 

  231. Ramaswamy S, Toner J, Prost J (2000) Nonequilibrium fluctuations, traveling waves, and instabilities in active membranes. Phys Rev Lett 84(15):3494–3497

    ADS  Google Scholar 

  232. Raychaudhuri D, Park JT (1992) Escherichia coli cell‐division gene FtsZ encodes a novel GTP‐binding protein. Nature 359(6392):251–254

    ADS  Google Scholar 

  233. Reimann P (2002) Brownian motors: Noisy transport far from equilibrium. Phys Rep 361:57–265

    MathSciNet  ADS  Google Scholar 

  234. Revenu C, Athman R, Robine S, Louvard D (2004) The co‐workers of actin filaments : From cell structures to signals. Nat Rev Mol Cell Biol 5(8):635–646

    Google Scholar 

  235. Ridley AJ (2001) Rho family proteins: Coordinating cell responses. Trends Cell Biol 11(12):471–477

    Google Scholar 

  236. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR (2003) Cell migration: Integrating signals from front to back. Science 302(5651):1704–1709

    ADS  Google Scholar 

  237. Rieder CL, Khodjakov A (2003) Mitosis through the microscope: advances in seeing inside live dividing cells. Science 300(5616):91–96

    ADS  Google Scholar 

  238. Risler T, Prost J, Jülicher F (2004) Universal critical behavior of noisy coupled oscillators. Phys Rev Lett 93(17):175702

    Google Scholar 

  239. Riveline D, Ott A, Jülicher F, Winkelmann DA, Cardoso O, Lacapere JJ, Magnusdottir S, Viovy JL, Gorre‐Talini L, Prost J (1998) Acting on actin : The electric motility assay. Eur Biophys J 27(4):403–408

    Google Scholar 

  240. Roberts TM, Stewart M (2000) Acting like actin . The dynamics of the nematode major sperm protein (MSP ) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility . J Cell Biol 149(1):7–12

    Google Scholar 

  241. Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton . Curr Opin Cell Biol 12(1):57–62

    Google Scholar 

  242. Rubinstein B, Jacobson K, Mogilner A (2005) Multiscale two‐dimensional modeling of a motile simple‐shaped cell. Multiscale Model Simul 3(2):413–439

    MathSciNet  Google Scholar 

  243. Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity‐driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci USA 104(20):8281–8286

    ADS  Google Scholar 

  244. Sammak PJ, Borisy GG (1988) Direct observation of microtubule dynamics in living cells. Nature 332(6166):724–726

    ADS  Google Scholar 

  245. Sankararaman S, Menon GI, Sunil Kumar PB (2004) Self‐organized pattern formation in motor‐microtubule mixtures. Phys Rev E Stat Nonlin Soft Matter Phys 70(3 Pt 1):031905

    ADS  Google Scholar 

  246. Schliwa M, Woehlke G (2003) Molecular motors . Nature 422(6933):759–765

    ADS  Google Scholar 

  247. Schmittmann B, Zia RKP (1995) Statistical mechanics of driven diffusive systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 17. Academic Press, London

    Google Scholar 

  248. Scholey JM, Brust‐Mascher I, Mogilner A (2003) Cell division. Nature 422(6933):746–752

    Google Scholar 

  249. Schuyler SC, Pellman D (2001) Microtubule “plus-end‐tracking proteins”: The end is just the beginning. Cell 105(4):421–424

    Google Scholar 

  250. Schütz GM (2001) Exactly solvable models for many-body systems. In: Domb C, Lebowitz JL (eds) Phase transitions and critical phenomena, vol 19. Academic Press, London

    Google Scholar 

  251. Sekimoto K, Nakazawa H (1998) Contraction of a bundle of actin filaments : 50 years after Szent‐Gyorgyi, vol 1. World Scientific, Singapore, p 394

    Google Scholar 

  252. Sekimoto K, Prost J, Jülicher F, Boukellal H, Bernheim‐Grosswasser A (2004) Role of tensilestress in actin gels and a symmetry‐breaking instability. Eur Phys J E Soft Matter 13(3):247–259

    Google Scholar 

  253. Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton . Microbiol Mol Biol Rev 70(3):729–754

    Google Scholar 

  254. Simha RA, Ramaswamy S (2002) Hydrodynamic fluctuations and instabilities in ordered suspensions of self‐propelled particles. Phys Rev Lett 89(5):058101

    ADS  Google Scholar 

  255. Small JV, Geiger B, Kaverina I, Bershadsky A (2002) How do microtubule s guide migrating cells? Nat Rev Mol Cell Biol 3(12):957–964

    Google Scholar 

  256. Small JV, Kaverina I (2003) Microtubule s meet substrate adhesions to arrange cell polarity. Curr Opin Cell Biol 15(1):40–47

    Google Scholar 

  257. Small JV, Stradal T, Vignal E, Rottner K (2002) The lamellipodium: Where motility begins. Trends Cell Biol 12(3):112–120

    Google Scholar 

  258. Spudich JA (1994) How molecular motors work. Nature 372(6506):515–518

    ADS  Google Scholar 

  259. Storm C, Pastore JJ, MacKintosh FC, Lubensky TC, Janmey PA (2005) Nonlinear elasticity in biological gels. Nature 435(7039):191–194

    ADS  Google Scholar 

  260. Surrey T, Nedelec F, Leibler S, Karsenti E (2001) Physical properties determining self‐organization of motors and microtubules. Science 292(5519):1167–1171

    ADS  Google Scholar 

  261. Täuber UC, Howard M, Vollmayr‐Lee BP (2005) Applications of field‐theoretic renormalization group methods to reaction‐diffusion problems. J Phys A 38(17):R79–R131

    Google Scholar 

  262. Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin ‐dependent propulsion of endosomes and lysosomes by recruitment of N-WASp. J Cell Biol 148(3):519–530

    Google Scholar 

  263. Taylor GI (1951) Analysis of the swimming of microscopic organisms. Proc R Soc A 209:447

    ADS  Google Scholar 

  264. Theriot JA (2000) The polymerization motor. Traffic 1(1):19–28

    Google Scholar 

  265. Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA (1992) The rate of actin -based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization . Nature 357(6375):257–260

    ADS  Google Scholar 

  266. TilneyLG, Portnoy DA (1989)Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109(4 Pt 1):1597–1608

    Google Scholar 

  267. Toner J, Tu YH (1998) Flocks, herds, and schools: A quantitative theory of flocking. Phys Rev E 58(4):4828–4858

    MathSciNet  ADS  Google Scholar 

  268. Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153(2):397–411

    Google Scholar 

  269. Turing AM (1952) The chemical basis of morphogenesis. Phil Trans Roy Soc (Lond) 237:37

    ADS  Google Scholar 

  270. Upadhyaya A, Chabot JR, Andreeva A, Samadani A, van Oudenaarden A (2003) Probing polymerization forces by using actin ‐propelled lipid vesicles. Proc Natl Acad Sci USA 100(8):4521–4526

    ADS  Google Scholar 

  271. Upadhyaya A, van Oudenaarden A (2003) Biomimetic systems for studying actin -based motility . Curr Biol 13(18):R734–744

    Google Scholar 

  272. Urrutia R, McNiven MA, Albanesi JP, Murphy DB, Kachar B (1991) Purified kinesin promotes vesicle motility and induces active sliding between microtubule s in vitro. Proc Natl Acad Sci USA 88(15):6701–6705

    ADS  Google Scholar 

  273. Vale RD, Milligan RA (2000) The way things move: Looking under the hood of molecular motor proteins . Science 288(5463):88–95

    ADS  Google Scholar 

  274. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force‐generating protein, kinesin, involved in microtubule ‐based motility. Cell 42(1):39–50

    Google Scholar 

  275. Vallotton P, Danuser G, Bohnet S, Meister J-J, Verkhovsky AB (2005) Tracking retrograde flow in keratocytes: News from the front. Mol Biol Cell 16(3):1223–1231

    Google Scholar 

  276. Van den Ent F, Amos LA, Lowe J (2001) Prokaryotic origin of the actin cytoskeleton . Nature 413(6851):39–44

    ADS  Google Scholar 

  277. Verkhovsky AB, Svitkina TM, Borisy GG (1999) Self‐polarization and directional motility of cytoplasm. Curr Biol 9(1):11–20

    Google Scholar 

  278. Vernon GG, Woolley DM (2004) Basal sliding and the mechanics of oscillation in a mammalian sperm flagellum . Biophys J 87(6):3934–3944

    Google Scholar 

  279. Vilfan A, Frey E, Schwabl F (1998) Elastically coupled molecular motors . Eur Phys J B 3(4):535–546

    ADS  Google Scholar 

  280. Vilfan A, Frey E, Schwabl F (1999) Force‐velocity relations of a two-state crossbridge model for molecular motors . Europhys Lett 45(3):283–289

    ADS  Google Scholar 

  281. Vilfan A, Jülicher F (2006) Hydrodynamic flow patterns and synchronization of beating cilia . Phys Rev Lett 96(5):058102

    Google Scholar 

  282. Voituriez R, Joanny JF, Prost J (2006) Generic phase diagram of active polar films . Phys Rev Lett 96(2):028102

    ADS  Google Scholar 

  283. Waterman‐Storer CM, Worthylake RA, Liu BP, Burridge K, Salmon ED (1999) Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nat Cell Biol 1(1):45–50

    Google Scholar 

  284. Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ (1998) Interaction of human Arp2/3 complex and the Listeriamonocytogenes ActA protein inactin filament nucleation. Science 281(5373):105–108

    ADS  Google Scholar 

  285. Wiesner S, Helfer E, Didry D, Ducouret G, Lafuma F, Carlier M-F, Pantaloni D (2003) A biomimetic motility assay provides insight into the mechanism of actin -based motility . J Cell Biol 160(3):387–398

    Google Scholar 

  286. Wolgemuth CW, Miao L, Vanderlinde O, Roberts T, Oster G (2005) MSP dynamics drives nematode sperm locomotion. Biophys J 88(4):2462–2471

    Google Scholar 

  287. Yasuda K, Shindo Y, Ishiwata S (1996) Synchronous behavior of spontaneous oscillations of sarcomeres in skeletal myofibrils under isotonic conditions. Biophys J 70(4):1823–1829

    Google Scholar 

  288. Yeh E, Yang C, Chin E, Maddox P, Salmon ED, Lew DJ, Bloom K (2000) Dynamic positioning of mitotic spindles in yeast: Role of microtubule motors and cortical determinants. Mol Biol Cell 11(11):3949–3961

    Google Scholar 

  289. Yoshida K, Soldati T (2006) Dissection of amoeboid movement into two mechanically distinct modes. J Cell Sci 119(Pt 18):3833–3844

    Google Scholar 

  290. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – A marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2(9):669–677

    Google Scholar 

  291. Zhou FQ, Cohan CS (2001) Growth cone collapse through coincident loss of actin bundles and leading edge actin without actin depolymerization. J Cell Biol 153(5):1071–1084

    Google Scholar 

  292. Ziebert F, Zimmermann W (2004) Pattern formation driven by nematic ordering of assembling biopolymers. Phys Rev E 70(2):022902

    ADS  Google Scholar 

  293. Ziebert F, Zimmermann W (2005) Nonlinear competition between asters and stripes in filament‐motor systems. Eur Phys JE 18(1):41–54

    Google Scholar 

  294. Zinn‐Justin J (2002) Quantum field theory and critical phenomena, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  295. Zumdieck A, Lagomarsino MC, Tanase C, Kruse K, Mulder B, Dogterom M, Jülicher F (2005) Continuum description of the cytoskeleton : ring formation in the cell cortex. Phys Rev Lett 95(25):258103

    Google Scholar 

Books and Reviews

  1. Alberts B et al (2002) The cytoskeleton . The mechanics of cell division. In: Gibbs S (ed) Molecular biology of the cell. Garland, New York

    Google Scholar 

  2. Bray D (2000) In: Day M (ed) Cell movements. Garland, New York

    Google Scholar 

  3. Howard J (2001) Mechanics of motor proteins and the cytoskeleton . Sinauer Associates Inc, Sunderland

    Google Scholar 

  4. Lenz P (ed) (2008) Cell motility. Biological and medical physics, biomedical engineering. Springer, New York

    Google Scholar 

  5. Reviews of special interest and that cover the subjects treated in this article can be found in the following references: [9,57,67,114,129,130,136,163,222,223,233,236,253,257].

    Google Scholar 

Download references

Acknowledgments

To write this article, I grandly benefited from Karsten Kruse's habilitation thesis, which constituteda very good starting point as an extensive review of the existing biophysical literature on the cytoskeleton . I acknowledge Cécile Sykes andJean‐François Joanny for discussions, careful reading of the manuscript and constructive criticisms and suggestions. I also acknowledge AndrewCallan‐Jones for pointing to me important references.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Risler, T. (2009). Cytoskeleton and Cell Motility. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30440-3_112

Download citation

Publish with us

Policies and ethics