Skip to main content

Myosin X

  • Chapter
Myosins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

  • 1493 Accesses

Abstract

MyosinX(Myo10)is aMyTH4-FERMmyosinspecific to chordatesandrelated organisms. It is unique in that its tail contains three Pleckstrin Homology (PH) domains. Myo10 is expressed in most cells and tissues, although at relatively low levels. Myo10 localizes to regions of dynamic actin such as the tips of filopodia, where it may function as part of a filopodial tip complex involved in processes such as actin polymerization, cell adhesion, and cell signaling. Myo10 also undergoes a novel form of motility within filopodia termed intrafilopodial motility and it is hypothesized to function as a motor to power forward intrafilopodial motility. Myo10 has potent filopodia-inducing activity and plays an important role in filopodia formation. Myo10’s tail can bind to phosphatidylinositol-3,4,5-trisphosphate, certainβ-integrins, andVASPproteins. Surprisingly, Myo10’s tail also binds to microtubules, thus allowing it to function as a motorized link between actin filaments and microtubules. Exciting recent evidence indicates that Myo10 also binds to netrin receptors and is involved in axon outgrowth. Research with Myo10 and other myosins containing MyTH4-FERM domains suggest that these proteins have evolutionarily ancient roles in the membrane-cytoskeleton interactions underlying adhesion, phagocytosis, and the formation of filopodia and related structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belyantseva, I.A., E.T. Boger, and T.B. Friedman. (2003). Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 100, 13958–63.

    Article  PubMed  CAS  Google Scholar 

  • Belyantseva, I.A., E.T. Boger, S. Naz, G.I. Frolenkov, J.R. Sellers, Z.M. Ahmed, A.J. Griffith, and T.B. Friedman. (2005). Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol. 7, 148–56.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, R.D., A.S. Mauer, and E.E. Strehler. (2007). Calmodulin-like protein increases filopodia-dependent cell motility via up-regulation of myosin-10. J Biol Chem 282, 3205–12.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.S., and R.E. Cheney. (2002). Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4, 246–50.

    Article  PubMed  CAS  Google Scholar 

  • Berg, J.S., B.H. Derfler, C.M. Pennisi, D.P. Corey, and R.E. Cheney. (2000). Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113 Pt 19, 3439–51.

    Google Scholar 

  • Berg, J.S., B.C. Powell, and R.E. Cheney. (2001). A millennial myosin census. Mol Biol Cell 12, 780–94.

    PubMed  CAS  Google Scholar 

  • Blumenthal, A., J. Lauber, R. Hoffmann, M. Ernst, C. Keller, J. Buer, S. Ehlers, and N. Reiling. (2005). Common and unique gene expression signatures of human macrophages in response to four strains of Mycobacterium avium that differ in their growth and persistence characteristics. Infect Immun 73, 3330–41.

    Article  PubMed  CAS  Google Scholar 

  • Bohil, A.B., B.W. Robertson, and R.E. Cheney. (2006). Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 103, 12411–6.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, D.A., B. Yan, J.M. de Pereda, B.G. Alvarez, Y. Fujioka, R.C. Liddington, and M.H. Ginsberg. (2002). The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 277, 21749–58.

    Google Scholar 

  • Campbell, I.D., and M.H. Ginsberg. (2004). The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci 29, 429–35.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., F. Wang, H. Meng, and J.R. Sellers. (2001a). Characterization of Recombinant Myosin X. Biophys. J. (Annual Meeting Abstracts). 80, 573a.

    Google Scholar 

  • Chen, Z.Y., T. Hasson, P.M. Kelley, B.J. Schwender, M.F. Schwartz, M. Ramakrishnan, W.J. Kimberling, M.S. Mooseker, and D.P. Corey. (1996). Molecular cloning and domain structure of human myosin-VIIa, the gene product defective in Usher syndrome 1B. Genomics 36, 440–8.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z.Y., T. Hasson, D.S. Zhang, B.J. Schwender, B.H. Derfler, M.S. Mooseker, and D.P. Corey. (2001b). Myosin-VIIb, a novel unconventional myosin, is a constituent of microvilli in transporting epithelia. Genomics 72, 285–96.

    Article  CAS  Google Scholar 

  • Chishti, A.H., A.C. Kim, S.M. Marfatia, M. Lutchman, M. Hanspal, H. Jindal, S.C. Liu, P.S. Low, G.A. Rouleau, N. Mohandas, J.A. Chasis, J.G. Conboy, P. Gascard, Y. Takakuwa, S.C. Huang, E.J. Benz, Jr., A. Bretscher, R.G. Fehon, J.F. Gusella, V. Ramesh, F. Solomon, V.T. Marchesi, S. Tsukita, S. Tsukita, K.B. Hoover, and et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23, 281–2.

    Article  PubMed  CAS  Google Scholar 

  • Cox, D., J.S. Berg, M. Cammer, J.O. Chinegwundoh, B.M. Dale, R.E. Cheney, and S. Greenberg. (2002). Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4, 469–77.

    PubMed  CAS  Google Scholar 

  • Cox, D., C.C. Tseng, G. Bjekic, and S. Greenberg. (1999). A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J Biol Chem 274, 1240–7.

    Article  PubMed  CAS  Google Scholar 

  • Grabham, P.W., M. Foley, A. Umeojiako, and D.J. Goldberg. (2000). Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones. J Cell Sci 113 (Pt 17), 3003–12.

    Google Scholar 

  • Hamada, K., T. Shimizu, T. Matsui, S. Tsukita, and T. Hakoshima. (2000). Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Embo J. 19, 4449–62.

    Article  PubMed  CAS  Google Scholar 

  • Homma, K., and M. Ikebe. (2005). Myosin X is a high duty ratio motor. J Biol Chem. 280, 29381–91.

    Article  PubMed  CAS  Google Scholar 

  • Homma, K., J. Saito, R. Ikebe, and M. Ikebe. (2001). Motor function and regulation of myosin X. J Biol Chem 276, 34348–54.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y.F., Z.J. Zhang, and M. Sieber-Blum. (2006). An epidermal neural crest stem cell (EPI-NCSC) molecular signature. Stem Cells 24, 2692–702.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., H.J. Cheng, M. Tessier-Lavigne, and Y. Jin. (2002). MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron 34, 563–76.

    Article  PubMed  CAS  Google Scholar 

  • Isakoff, S.J., T. Cardozo, J. Andreev, Z. Li, K.M. Ferguson, R. Abagyan, M.A. Lemmon, A. Aronheim, and E.Y. Skolnik. (1998). Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. Embo J 17, 5374–87.

    Article  PubMed  CAS  Google Scholar 

  • Jalili, P.R., and C. Dass. (2004). Proteome analysis in the bovine adrenal medulla using liquid chromatography with tandem mass spectrometry. Rapid Commun Mass Spectrom 18, 1877–84.

    Article  PubMed  CAS  Google Scholar 

  • Klopfenstein, D.R., M. Tomishige, N. Stuurman, and R.D. Vale. (2002). Role of phosphatidylinositol(4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell 109, 347–58.

    Article  PubMed  CAS  Google Scholar 

  • Knight, P.J., K. Thirumurugan, Y. Xu, F. Wang, A.P. Kalverda, W.F. Stafford, 3rd, J.R. Sellers, and M. Peckham. (2005). The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 280, 34702–8.

    Article  Google Scholar 

  • Kovacs, M., F. Wang, and J.R. Sellers. (2005). Mechanism of action of myosin X, a membrane-associated molecular motor. J Biol Chem 280, 15071–83.

    Article  PubMed  CAS  Google Scholar 

  • Macias, M.J., A. Musacchio, H. Ponstingl, M. Nilges, M. Saraste, and H. Oschkinat. (1994). Structure of the pleckstrin homology domain from beta-spectrin. Nature 369, 675–7.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J.G., J.W. Booth, V. Stambolic, T. Mak, T. Balla, A.D. Schreiber, T. Meyer, and S. Grinstein. (2001). Restricted accumulation of phosphatidylinositol 3-kinase products in a plasmalemmal subdomain during Fc gamma receptor-mediated phagocytosis. J Cell Biol 153, 1369–80.

    Article  PubMed  CAS  Google Scholar 

  • Mashanov, G.I., D. Tacon, M. Peckham, and J.E. Molloy. (2004). The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 279, 15274–80.

    Article  PubMed  CAS  Google Scholar 

  • Mooseker, M.S., and L.G. Tilney. (1975). Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol 67, 725–43.

    CAS  Google Scholar 

  • Musacchio, A., T. Gibson, P. Rice, J. Thompson, and M. Saraste. 1993. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18, 343–8.

    Google Scholar 

  • Narasimhulu, S.B., and A.S. Reddy. 1998. Characterization of microtubule binding domains in the Arabidopsis kinesin-like calmodulin binding protein. Plant Cell 10, 957–65.

    Google Scholar 

  • Park, H., B. Ramamurthy, M. Travaglia, D. Safer, L.Q. Chen, C. Franzini-Armstrong, P.R. Selvin, and H.L. Sweeney. (2006). Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell 21, 331–6.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, M.A., D. Reczek, A. Bretscher, and P.A. Karplus (2000). Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–70.

    Article  PubMed  CAS  Google Scholar 

  • Pollard, T.D., and G.G. Borisy. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–65.

    Article  PubMed  CAS  Google Scholar 

  • Quintero, O.A., T.M. Svitkina, O.Y. Chago, A. Bhaskar, G.G. Borisy, and R.E. Cheney. (2003). Dynamics of myosin-X (Myo10) and VASP at the filopodial tip. Mol Biol Cell. 14s.

    Google Scholar 

  • Ratnikov, B.I., A.W. Partridge, and M.H. Ginsberg. (2005). Integrin activation by talin. J Thromb Haemost 3, 1783–90.

    Article  PubMed  CAS  Google Scholar 

  • Rechsteiner, M., and S.W. Rogers. (1996). PEST sequences and regulation by proteolysis. Trends Biochem Sci 21, 267–71.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, A.S., F. Safadi, S.B. Narasimhulu, M. Golovkin, and X. Hu. (1996). A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271, 7052–60.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez, O.C., A.W. Schaefer, C.A. Mandato, P. Forscher, W.M. Bement, and C.M. Waterman-Storer. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5, 599–609.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.S., and E.E. Strehler. (2001). The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J Biol Chem 276, 12182–9.

    Article  PubMed  CAS  Google Scholar 

  • Ross, M.E., X. Zhou, G. Song, S.A. Shurtleff, K. Girtman, W.K. Williams, H.C. Liu, R. Mahfouz, S.C. Raimondi, N. Lenny, A. Patel, and J.R. Downing. (2003). Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102, 2951–9.

    Article  PubMed  CAS  Google Scholar 

  • Rzadzinska, A.K., M.E. Schneider, C. Davies, G.P. Riordan, and B. Kachar. (2004). An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol 164, 887–97.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, M.E., A.C. Dose, F.T. Salles, W. Chang, F.L. Erickson, B. Burnside, and B. Kachar. (2006). A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 26, 10243–52.

    Article  PubMed  CAS  Google Scholar 

  • Solc, C.K., B.H. Derfler, G.M. Duyk, and D.P. Corey. (1994). Molecular cloning of myosins from the bullfrog saccular macula: a candidate for the hair cell adaptation motor. Aud Neurosci 1, 63–75.

    CAS  Google Scholar 

  • Sousa, A.D., J.S. Berg, B.W. Robertson, R.B. Meeker, and R.E. Cheney. (2006). Myo10 in brain: developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci. 119, 184–94.

    Article  PubMed  CAS  Google Scholar 

  • Sousa, A.D., and R.E. Cheney. (2005). Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell Biol 15, 533–9.

    Article  PubMed  CAS  Google Scholar 

  • Tacon, D., P.J. Knight, and M. Peckham. (2004). Imaging myosin 10 in cells. Biochem Soc Trans 32, 689–93.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, K., I. Bonilla, J.A. Winkles, and S.M. Strittmatter. (2003). Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci. 23, 9675–86.

    PubMed  CAS  Google Scholar 

  • Titus, M.A. (1999). A class VII unconventional myosin is required for phagocytosis. Curr Biol. 9:1297–303.

    Google Scholar 

  • Tokuo, H., and M. Ikebe. (2004). Myosin X transports Mena/VASP to the tip of filopodia. Biochem Biophys Res Commun. 319, 214–20.

    Article  PubMed  CAS  Google Scholar 

  • Tomishige, M., D.R. Klopfenstein, and R.D. Vale. (2002). Conversion of Unc104/KIF1A kinesin into a processive motor after dimerization. Science 297, 2263–7.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, F., and E. Nishida. (2007). Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. Embo J.

    Google Scholar 

  • Tuxworth, R.I., I. Weber, D. Wessels, G.C. Addicks, D.R. Soll, G. Gerisch, and M.A. Titus. (2001). A role for myosin VII in dynamic cell adhesion. Curr Biol 11, 318–29.

    Article  PubMed  CAS  Google Scholar 

  • Wang, A., Y. Liang, R.A. Fridell, F.J. Probst, E.R. Wilcox, J.W. Touchman, C.C. Morton, R.J. Morell, K. Noben-Trauth, S.A. Camper, and T.B. Friedman. (1998). Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280, 1447–51.

    Article  PubMed  CAS  Google Scholar 

  • Weber, K.L., A.M. Sokac, J.S. Berg, R.E. Cheney, and W.M. Bement. 2004. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431, 325–9.

    Google Scholar 

  • Yonezawa, S., A. Kimura, S. Koshiba, S. Masaki, T. Ono, A. Hanai, S. Sonta, T. Kageyama, T. Takahashi, and A. Moriyama. (2000). Mouse myosin X: molecular architecture and tissue expression as revealed by northern blot and in situ hybridization analyses. Biochem Biophys Res Commun 271, 526–33.

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa, S., N. Yoshizaki, M. Sano, A. Hanai, S. Masaki, T. Takizawa, T. Kageyama, and A. Moriyama. (2003). Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev Growth Differ 45, 175–85.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., J.S. Berg, Z. Li, Y. Wang, P. Lang, A.D. Sousa, A. Bhaskar, R.E. Cheney, and S. Stromblad. (2004). Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6, 523–31.

    Article  PubMed  Google Scholar 

  • Zhu, X.J., C.Z. Wang, P.G. Dai, Y. Xie, N.N. Song, Y. Liu, Q.S. Du, L. Mei, Y.Q. Ding, and W.C. Xiong. (2007). Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 9, 184–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Divito, M.M., Cheney, R.E. (2008). Myosin X. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_14

Download citation

Publish with us

Policies and ethics