Skip to main content

From Volcanic Winter to Snowball Earth: An Alternative Explanation for Neoproterozoic Biosphere Stress

  • Chapter
Links Between Geological Processes, Microbial Activities&Evolution of Life

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 4))

Abstract

The ~450 million years of Neoproterozoic time (1000–542 Ma) was a remarkable episode of change in the Earth system and the biosphere. Here we develop and explore the hypothesis that explosive volcanism was at least partly responsible for Neoproterozoic climate change, synopsized as the “Volcanic winter to snowball Earth” (VW2SE) hypothesis. We review how climate cools as a result of sulfuric acid aerosols injected into the stratosphere by violent volcanic eruptions. A protracted increase in explosive volcanism could disrupt Earth’s radiative balance by continuously injecting sulfur aerosols into the stratosphere, causing cooling that could lead to glaciation. This mechanism would be especially effective when acting in concert with other agents for cooling. We show that the global Neoproterozoic magmatic flux was intense, so that explosive volcanism episodicly had a major effect on climate. Neoproterozoic volcanism and glacial activity happened about the same times in the Cryogenian and Ediacaran periods with no glaciation and reduced igneous activity in the Tonian Period. Glaciation followed soon after igneous activity increased as the supercontinent Rodinia broke apart, suggesting a causal relationship. The tectonic setting of climate-controlling explosive volcanism changed systematically over the Neoproterozoic supercontinent cycle, from extension-related early to arc-related late. Marinoan (~635 Ma) glaciation in particular corresponds to a peak time of subduction-related igneous activity in the Arabian-Nubian Shield and the East African Orogen. Isotopic chemostratigraphies are generally consistent with VW2SE hypothesis. These observations cumulatively support the VW2SE hypothesis as a viable explanation for what solid Earth processes caused Neoproterozoic climate oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  • Allen PA (2006) Snowball Earth on trial. EOS 87 45:495–496

    Article  Google Scholar 

  • Allen PA, Bowring SA, Leather J, Brasier M, Cozzi A, Grotzinger JP, McCarron G, Amthor J (2002) Chronology of Neoproterozoic glaciations: new insights from Oman. 16th International Sedimentological Congress, Johannesburg, International Association of Sedimentologists, pp 7–8 (abs)

    Google Scholar 

  • Ambrose SH (1998) Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans. J Hum Evol 34:623–651

    Article  Google Scholar 

  • Anbar AD, Knoll AH (2002) Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science 297:1137–1142

    Article  Google Scholar 

  • Avigad D, Kolodner K, McWilliams M, Persing H, Weissbrod T (2003) Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating. Geology 31:227–230

    Article  Google Scholar 

  • Avigad D, Stern RJ, Beyth M, Miller N, McWilliams MO (2007) Detrital zircon geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai): age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabian-Nubian Shield. Precambrian Res 154:88–106

    Article  Google Scholar 

  • Bekki S, Pyle JA, Zhong W, Toumi R, Haigh JD, Pyle DM (1996) The role of microphysical and chemical processes in prolonging the climate forcing of the Toba eruption. Geophys Res Lett 23:2669–2672

    Article  Google Scholar 

  • Beyth M, Stern RJ, Altherr R, Kröner A (1994) The Late Precambrian Timna Igneous Complex, southern Israel: evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos 31:103–124

    Article  Google Scholar 

  • Blake S (2003) Part IV: Atmospheric, climatic and environmental impacts of volcanic emissions. Correlations between eruption magnitude, SO2 yield, and surface cooling. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic Degassing, Geological Society, London, Special Publication 213, pp 371–380

    Google Scholar 

  • Bluth GJS, Doiron SD, Schnetzler SC, Krueger AJ, Walter LS (1992) Global tracking of the SO clouds from the June 1991 Mount Pinatubo eruptions. Geophys Res Lett 19:151

    Google Scholar 

  • Bodiselitsch B, Koeberl C, Master S, Reimold WU (2005) Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir Anomalies. Science 308(5719):239–242

    Article  Google Scholar 

  • Bowring SA, Myrow PM, Landing E, Ramezani J, Grotzinger J (2003) Geochronological constraints on terminal Neoproterozoic events and the rise of metazoans. Geophys Res 5:13219 (abs)

    Google Scholar 

  • Burret C, Berry R (2000) Proterozoic Australia-Western United States (AUSWUS) fit between Laurentia and Australia. Geology 28:103–106

    Article  Google Scholar 

  • Canfield DE, Teske A (1996) Late Proterozoic rise in atmosphere oxygen concentration inferred from phylogenetic and sulfhur-isotope studies. Nature 382:127–132

    Google Scholar 

  • Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Sci Rev 69:249–279

    Google Scholar 

  • Cogley JG (1984) Continental margins and the extent and number of continents. Rev Geophys Space Phys 22:101–122

    Article  Google Scholar 

  • Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108

    Google Scholar 

  • Condie KC (2000) Episodic continental growth models: afterthoughts and extensions. Tectonophysics 322:153–162

    Article  Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y (2005) U-Pb ages from the Neoproterozoic Doushantuo Formation, China, Science 308:95–98

    Article  Google Scholar 

  • Corsetti FA, Olcott AN, Bakermans C (2006) The biotic response to Neoproterozoic snowball Earth. Palaeogeogr Palaeoclimatol Palaeoecol 232:114–130

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–219

    Article  Google Scholar 

  • De Hoog JCM, Hattori KH, Hoblitt RP (2004) Oxidized sulfer-rich mafic magma at Mount Pinatubo, Philippines. Contrib Mineral Petrol 146:750–761

    Article  Google Scholar 

  • De Hoog JCM, Talor BE, van Bergen MJ (2001) Sulfur isotope systematices of basaltic lavas from Indonesia: Implications for the sulfur cycle in subduction zones. Earth Planet Sci Lett 189:237–252

    Article  Google Scholar 

  • Donnadieu Y, Goddéris Y, Ramstein G, Nédelec A, Meert, J (2004) A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428:303–306

    Article  Google Scholar 

  • Elliot WC, Aronson JL, Millard HT Jr (1992) Iridium content of basaltic tuffs and enclosing black shales of the balder formation, North Sea. Geochim Cosmochim Acta 56:2955–2961

    Article  Google Scholar 

  • Ernst WG, Hacker BR, Liou JG (2007) Petrotectonics of ultrahigh-pressure crustal and upper mantle rocks-implications for Phanerozoic collisional orogens. In: Sears J, Harms T, Evenchick C (eds) Whence the mountains? Inquiries into the evolution of orogenic systems: a volume in honor of Raymond A. Price, Geological Society of America, Special Paper No. 433, 27–49

    Google Scholar 

  • Fairchild IJ, Kennedy MJ (2007) Neoproterozoic glaciation in the Earth system. J Geol Soc London 164:895–921

    Article  Google Scholar 

  • Fanning CM (2006) Constraints on the timing of the Sturtian glaciation from southern Australia; i.e., for the true Sturtian, Geological Society of America Abstracts with Programs 38:115 (abs)

    Google Scholar 

  • Franklin B (1784) Meteorological imaginations and conjectures. Memoirs of the Literary and Philosophical Society of Manchester 2:357–361

    Google Scholar 

  • Garfunkel Z (1999) History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern Arabian-Nubian Shield. Isr J Earth Sci 48:135–157

    Google Scholar 

  • Goddéris Y, Donnadieu Y, Nédélec A, Dupré B, Dessert C, Grard A, Ramstein G, François LM (2003) The Sturtian ‘snowball’ glaciation: fire and ice. Earth Planet Sci Lett 211:1–12

    Article  Google Scholar 

  • Goodge J, Myrow P, Williams IS, Bowring SA (2002) Age and provenance of the Beardmore group, Antarctica: constraints on Rodinia Supercontinent breakup. J Geol 110:393–406

    Article  Google Scholar 

  • Goodwin AM (1991) Precambrian geology: the dynamic evolution of the continental crust. Academic Press, London, 666pp

    Google Scholar 

  • Halverson GP, Dudas F, Maloof AC, Bowring SA (2007) Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol 256:103–129

    Article  Google Scholar 

  • Halverson GP, Hoffman P, Schrag D (2002) A major perturbation of the carbon cycle before the Ghaub glaciation (Neoproterozoic) in Namibia: prelude to snowball Earth? Geochem Geophys Geosyst 3(6). doi:10.1029/2001GC000244

    Google Scholar 

  • Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN (2005) Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull 117:1181–1207

    Article  Google Scholar 

  • Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28:17–33

    Article  Google Scholar 

  • Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball Earth. Science 281:1342–1346

    Article  Google Scholar 

  • Hoffmann K-H, Condon DJ, Bowring SA, Crowley JL (2004) U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia:constraints on Marinoan glaciation. Geology 32:817–820

    Article  Google Scholar 

  • Hoffmann K-H, Condon DJ, Bowring SA, Prave AR, Fallick A (2006) Lithostratigraphic, carbon (δ13C) isotope and U-Pb zircon age constraints on early Neoproterozoic (ca. 755 Ma) glaciation in the Gariep Belt, southern Namibia. Snowball Earth Conference, 2006, Ascona, Switzerland p 51 (abs), 16–21 July 2006

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis:testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Holser WT, Schidlowski M, McKenzie FT, Maynard JB (1988) Geochemical cycles of carbon and sulfur, In: Gregor CB, Garrels RM, McKenzie FT, Maynard JB (eds) Chemical cycles in the evolution of the Earth, Wiley, New York, pp 105–173

    Google Scholar 

  • Hurtgen MT, Arthur MT, Suits NS, Kaufman AJ (2002) The sulfur isotopic composition of Neoproterozoic seawater sulfate: implications for a snowball Earth? Earth Planet Sci Lett 203:413–429

    Article  Google Scholar 

  • Hurtgen MT, Arthur MT, Halverson GP (2005) Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology 33:41–44

    Article  Google Scholar 

  • Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic ‘snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature 405:425–429

    Google Scholar 

  • Johnson PR, Kattan FH (2007) Geochronologic dataset for Precambrian rocks in the Arabian Peninsula: a catalog of U-Pb, Rb-Sr, Ar-Ar, and Sm-Nd ages, Saudi Arabian Deputy Ministry for Mineral Resources Open-File Report USGS-OF-2007-3, 40pp

    Google Scholar 

  • Kendall BS, Creaser RA, Selby D (2006) Re-Os geochronology of postglacial black shales in Australia: constraints on the timing of the ‘Sturtian’ glaciation. Geology 34:729–732

    Article  Google Scholar 

  • Kennedy M, Drosser M, Mayer LM, Pevear D, Mrofka D (2006) Late precambrian oxygenation; inception of the clay mineral factory. Science 311:1446–1449

    Article  Google Scholar 

  • Kennett JP, Thunnell RC (1977) Global increase in Quaternary explosive volcanic eruptions. Science 187:1231–1234

    Google Scholar 

  • Keppler H (1999) Experimental evidence for the source of excess sulfur in explosive volcanic eruptions. Science 284:1652–1654

    Article  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci 97:1400–1405

    Article  Google Scholar 

  • Knoll AH (2003) Life on a young planet; The first three billion year of evolution on Earth, Princeton University Press, Princeton/Oxford, 277pp

    Google Scholar 

  • Knoll AH, Hayes JM, Kaufman AJ, Swett K, Labert IB (1986) Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature 321:832–838

    Article  Google Scholar 

  • Kolodner K, Avigad D, McWilliams M, Wooden JL, Weissbrod T, Feinstein S (2006) Provenance of north Gondwana Cambrian-Ordovician sandstone: U-Pb SHRIMP dating of detrital zircons from Israel and Jordan. Geol Mag 143:367–391

    Article  Google Scholar 

  • Lamb HH (1970) Volcanic dust in the atmosphere; with a chronology and assessment of its meteorological significance. Philos Trans R Soc Lond A 266:425–533

    Article  Google Scholar 

  • Le Guerroué E, Allen PA, Cozzi A, Etienne JL, Fanning M (2006) 50 Myr recovery from the largest negative Δ13C excursion in the Ediacaran ocean. Terra Nova 18:147–153

    Article  Google Scholar 

  • Li ZX, Li XH, Kinny PD, Wan J (1999) The breakup of Rodinia: did it start with a mantle plume beneath South China? Earth Planet Sci Lett 173:171–181

    Article  Google Scholar 

  • Lipman PW (2007) Incremental assembly and prolonged consolidation of Cordilleran magma chambers: evidence from the Southern Rocky Mountain volcanic field. Geospheres 3:42–70

    Article  Google Scholar 

  • Lund K, Aleinkoff JA, Evans KV, Fanning CM (2003) SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol Soc Am Bull 115:349–372

    Article  Google Scholar 

  • Maruyama S, Liou JG (1998) Initiation of ultrahigh-pressure metamorphism and its significance on the Proterozoic-Phanerozoic boundary. IslArc 7:6–35

    Google Scholar 

  • Maslin MA, Li XS, Loutre M-F, Berger A (1998) The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quaternary Sci Rev 17:411–426

    Article  Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. B Volcanol 66:735–748

    Article  Google Scholar 

  • McCormick MP, Thomason LW, Trepte CR (1995) Atmospheric effects of the Mt. Pinatubo eruption. Nature 373:399–404. doi:10.1038/373399a0

    Google Scholar 

  • Meert JG (2003) A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics 362:1–40

    Article  Google Scholar 

  • Melezhik VA, Gorokhov IM, Kuznetsov AB, Fallick AE (2001) Chemostratigraphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13:1–11

    Article  Google Scholar 

  • Murphy JB and Nance RD (2003) Do supercontinents turn inside-in or inside-out? Int Geol Rev 47:591–619

    Article  Google Scholar 

  • Nance D, Worsley TR, Moody JR (1988) The supercontinent cycle. Sci Am 259(1):72

    Article  Google Scholar 

  • Nance RD, Murphy RD, Strachan RA, Keppie JD, Gutiérez-Alonson G, Fernández-Suárez J, Quesada C, Linnemann U, D’Lemos R, Pisarevsky SA (in press) Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian versus West African connections. In: Nasser, E Liégeois, J-P (eds) The boundaries of the West African craton, Geological Society of London Special Publication

    Google Scholar 

  • Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Oppenheimer C (2002) Limited global change due to the largest known Quaternary eruption, Toba∼74 kyr BP? Quaternary Sci Rev 21:1593–1609

    Google Scholar 

  • Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geog 27:230–259

    Article  Google Scholar 

  • Pavlov AA, Toon OB, Pavlov AK, Bally J, Pollard D (2005) Passing through a giant molecular cloud: “Snowball” glaciations produced by interstellar dust. Geophys Res Lett 32:L03705, doi:10.1029/2004GL021890

    Article  Google Scholar 

  • Pollock JB, Toon OB, Sagan C, Summers A, Balwin B, van Camp W (1976) Volcanic explosions and climate change: a theoretical assessment. J Geophys Res 81:1071–1083

    Article  Google Scholar 

  • Post JD (1977) The last great subsistence crisis in the Western World. Johns Hopkins University Press, Baltimore, MD, 240pp

    Google Scholar 

  • Prueher LM, Rea DK (1998) Rapid onset of glacial conditions in the subarctic North Pacific at 2.67 Ma: clues to causality. Geology 26:1027–1030

    Article  Google Scholar 

  • Prueher LM, Rea DK (2001) Volcanic triggering of late Pliocene glaciation: evidence from the volcanic glass and ice-rafted debris to the North Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 173:215–230

    Article  Google Scholar 

  • Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359:50–52

    Article  Google Scholar 

  • Rampino MR, Self S, Stothers RB (1988) Volcanic winters. Annu Rev Earth Planet Sci 16:73–99

    Article  Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Article  Google Scholar 

  • Robock A (2004) Climatic impact of volcanic emissions. In: Sparks RSJ, Hawkesworth CJ, The state of the planet: frontiers and challenges in geophysics, Geophysical Monograph Series, American Geophysical Union, Washington, DC 150:125–134

    Google Scholar 

  • Rogers JJW, Unrug R, Sultan M (1995) Tectonic assembly of Gondwana. J Geodynamics 19:1–34

    Article  Google Scholar 

  • Sano Y, Williams SN (1996) Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys Res Lett 23:2749–2752

    Article  Google Scholar 

  • Schmitz B, Asaro F (1996) Iridium geochemistry of volcanic ash layers from early Eocene rifting of the northeastern North Atlantic and some other Phanerozoic events. Geol Soc Am Bull 115:349–372

    Google Scholar 

  • Schrag DP, Berner RA, Hoffman PF, Halverson GP (2002) On the initiation of a snowball Earth. Geochem Geophy Geosyst 3(6):1036. doi:10.1029/2001GC000219

    Article  Google Scholar 

  • Sears JW, Price RA (2003) Tightening the Siberian connection to western Laurentia. Geol Soc Am Bull 115:943–953

    Article  Google Scholar 

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A 364:2073–2097

    Article  Google Scholar 

  • Self S, Thordarson T, Widdowson M (2005) Gas fluxes from flood basalt eruptions. Elements 1:283–287

    Article  Google Scholar 

  • Sigurdsson H (1990) Evidence of volcanic loading of the atmosphere and climate response. Palaeogeogr Palaeoclimatol Palaeoecol 89:277–289

    Article  Google Scholar 

  • Sohl LE, Christie-Blick N, Kent DV (1999) Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of low-latitude glaciation in Neoproterozoic time. Geol Soc Am Bull 111:1120–1139

    Article  Google Scholar 

  • Stern RJ (1994) Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annu Rev Earth Planet Sci 22:319–335

    Google Scholar 

  • Stern RJ, Avigad D, Miller NR, Beyth M (2006) Geological Society of Africa Presidential Review, No. 10: evidence for the snowball Earth hypothesis in the Arabian-Nubian Shield and East African Orogen. J Afr Earth Sci 44:1–20

    Article  Google Scholar 

  • Stern RJ (in press) Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history. Gondwana Research doi: 10.1016/j.gr. 2007.08.006

    Google Scholar 

  • Tabazadeh A, Turco RP (1993) Stratospheric chlorine injection by volcanic eruptions: HCl scavenging and implications for ozone. Science 260:1082–1084

    Article  Google Scholar 

  • Tajika E (2003) Faint young Sun and the carbon cycle: implication for the Proterozoic global glaciations. Earth Planet Sci Lett 214:443–453

    Article  Google Scholar 

  • Torsvik T (2003) The Rodinia jigsaw puzzle. Science 300:1379–1381

    Article  Google Scholar 

  • Trompette R (2000) Gondwana evolution; its assembly at around 600 Ma. C R Acad Sci Paris, Sci de la Terre et des Planets 330:305–315

    Google Scholar 

  • Walter MR, Veevers JJ, Calver CR, Gorjan P, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon and sulfur in seawater, and some interpretative models. Precambrian Res 100:371–433

    Article  Google Scholar 

  • Wang J, Li Z-X (2003) History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up 122:141–158

    Google Scholar 

  • White SM, Crips JA, Spera FJ (2006) Long-term volumetric eruption rates and magma budgets. Geochem Geophys Geosyst 7(3). doi:10.1029/2005GC001002

    Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth-Sci Rev 53:1–33

    Article  Google Scholar 

  • Young GM (2003) Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations: relevance to the snowball Earth debate. J Afr Earth Sci 35:451–466

    Article  Google Scholar 

  • Zielinski GA (2000) Use of paleo-records in determining variability within the volcanism-climate system. Quaternary Sci Rev 19:417–438

    Article  Google Scholar 

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Taylor K (1996) Potential atmospheric impact of the Toba mega-eruption ∼71,000 years ago. Geophys Res Lett 23:837–840

    Article  Google Scholar 

  • Zoller WH, Parrington JR, Kotra JMP (1983) Iridium Enrichment in Airborne Particles from Kilauea Volcano: January 1983. Science 222:1118–1121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Stern, R.J., Avigad, D., Miller, N., Beyth, M. (2008). From Volcanic Winter to Snowball Earth: An Alternative Explanation for Neoproterozoic Biosphere Stress. In: Dilek, Y., Furnes, H., Muehlenbachs, K. (eds) Links Between Geological Processes, Microbial Activities&Evolution of Life. Modern Approaches in Solid Earth Sciences, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8306-8_10

Download citation

Publish with us

Policies and ethics