Skip to main content

Basics of the Cytoskeleton: Myosins

  • Chapter
  • First Online:
Cytoskeleton and Human Disease

Abstract

The myosin superfamily of molecular motors plays essential roles in a wide variety of cellular processes by virtue of their ability to generate force and motion through an ATP-driven cyclic interaction with actin filaments. We provide an overview of the structure, function, and biophysical properties that are common to most characterized myosins and also include examples of how myosins are adapted to perform specific cellular functions. Since many myosins are implicated in disease conditions, a complete understanding of their cellular roles and biophysical properties is critical for developing treatments for these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    PubMed  CAS  Google Scholar 

  2. Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118

    PubMed  CAS  Google Scholar 

  3. Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103:3681–3686

    PubMed  CAS  Google Scholar 

  4. Odronitz F, Kollmar M (2007) Drawing the tree of eukaryotic life based on the analysis of 2,269 manually annotated myosins from 328 species. Genome Biol 8:R196

    PubMed  Google Scholar 

  5. Boger ET, Sellers JR, Friedman TB (2001) Human myosin XVBP is a transcribed pseudogene. J Muscle Res Cell Motil 22:477–483

    PubMed  CAS  Google Scholar 

  6. Desjardins PR, Burkman JM, Shrager JB, Allmond LA, Stedman HH (2002) Evolutionary implications of three novel members of the human sarcomeric myosin heavy chain gene family. Mol Biol Evol 19:375–393

    PubMed  CAS  Google Scholar 

  7. Collucio LM (ed) (2008) Myosins: a superfamily of molecular motors. Springer, Dordrecht

    Google Scholar 

  8. Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, Burnside B, Cheney RE, Corey DP, Coudrier E et al (2001) Myosin-I nomenclature. J Cell Biol 155:703–704

    PubMed  CAS  Google Scholar 

  9. Montell C, Rubin GM (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52:757–772

    PubMed  CAS  Google Scholar 

  10. Kalhammer G, Bahler M, Schmitz F, Jockel J, Block C (1997) Ras-binding domains: predicting function versus folding. FEBS Lett 414:599–602

    PubMed  CAS  Google Scholar 

  11. Patel KG, Liu C, Cameron PL, Cameron RS (2001) Myr 8, a novel unconventional myosin expressed during brain development associates with the protein phosphatase catalytic subunits 1 alpha and 1 gamma 1. J Neurosci 21:7954–7968

    PubMed  CAS  Google Scholar 

  12. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    PubMed  CAS  Google Scholar 

  13. Uyeda TQ, Abramson PD, Spudich JA (1996) The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93:4459–4464

    PubMed  CAS  Google Scholar 

  14. Spudich JA (1994) How molecular motors work. Nature 372:515–518

    PubMed  CAS  Google Scholar 

  15. Cheney RE, Mooseker MS (1992) Unconventional myosins. Curr Opin Cell Biol 4:27–35

    PubMed  CAS  Google Scholar 

  16. Houdusse A, Cohen C (1995) Target sequence recognition by the calmodulin superfamily: implications from light chain binding to the regulatory domain of scallop myosin. Proc Natl Acad Sci U S A 92:10644–10647

    PubMed  CAS  Google Scholar 

  17. Espreafico EM, Cheney RE, Matteoli M, Nascimento AA, De Camilli PV, Larson RE, Mooseker MS (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 119:1541–1557

    PubMed  CAS  Google Scholar 

  18. Rogers MS, Strehler EE (2001) The tumor-sensitive calmodulin-like protein is a specific light chain of human unconventional myosin X. J Biol Chem 276:12182–12189

    PubMed  CAS  Google Scholar 

  19. Collins JH (1991) Myosin light chains and troponin C: structural and evolutionary relationships revealed by amino acid sequence comparisons. J Muscle Res Cell Motil 12:3–25

    PubMed  CAS  Google Scholar 

  20. Timson DJ (2003) Fine tuning the myosin motor: the role of the essential light chain in striated muscle myosin. Biochimie 85:639–645

    PubMed  CAS  Google Scholar 

  21. Tyska MJ, Mooseker MS (2002) MYO1A (brush border myosin I) dynamics in the brush border of LLC-PK1-CL4 cells. Biophys J 82:1869–1883

    PubMed  CAS  Google Scholar 

  22. Mashanov GI, Tacon D, Peckham M, Molloy JE (2004) The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 279:15274–15280

    PubMed  CAS  Google Scholar 

  23. Hokanson DE, Ostap EM (2006) Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci U S A 103:3118–3123

    PubMed  CAS  Google Scholar 

  24. Patino-Lopez G, Aravind L, Dong X, Kruhlak MJ, Ostap EM, Shaw S (2010) Myosin 1G is an abundant class I myosin in lymphocytes whose localization at the plasma membrane depends on its ancient divergent pleckstrin homology (PH) domain (Myo1PH). J Biol Chem 285:8675–8686

    PubMed  CAS  Google Scholar 

  25. Tang N, Lin T, Ostap EM (2002) Dynamics of myo1c (myosin-ibeta) lipid binding and dissociation. J Biol Chem 277:42763–42768

    PubMed  CAS  Google Scholar 

  26. Doberstein SK, Pollard TD (1992) Localization and specificity of the phospholipid and actin binding sites on the tail of Acanthamoeba myosin IC. J Cell Biol 117:1241–1249

    PubMed  CAS  Google Scholar 

  27. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM (2004) A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 431:325–329

    PubMed  CAS  Google Scholar 

  28. Cao TT, Chang W, Masters SE, Mooseker MS (2004) Myosin-Va binds to and mechanochemically couples microtubules to actin filaments. Mol Biol Cell 15:151–161

    PubMed  CAS  Google Scholar 

  29. Les Erickson F, Corsa AC, Dose AC, Burnside B (2003) Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Mol Biol Cell 14:4173–4180

    PubMed  CAS  Google Scholar 

  30. Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6:523–531

    PubMed  Google Scholar 

  31. Roland JT, Kenworthy AK, Peranen J, Caplan S, Goldenring JR (2007) Myosin Vb interacts with Rab8a on a tubular network containing EHD1 and EHD3. Mol Biol Cell 18:2828–2837

    PubMed  CAS  Google Scholar 

  32. Lapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance DW Jr, Mercer JA, Bahler M, Goldenring JR (2001) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12:1843–1857

    PubMed  CAS  Google Scholar 

  33. Huxley HE (1953) Electron microscope studies of the organization of the filaments in striated muscle. Biochim Biophys Acta 12:387–394

    PubMed  CAS  Google Scholar 

  34. Hanson J, Huxley HE (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532

    PubMed  CAS  Google Scholar 

  35. Huxley AF, Niedergerke R (1954a) Structural changes in muscle during contraction; interference microscopy of living muscle fibers. Nature 173:971–973

    CAS  Google Scholar 

  36. Huxley AF, Niedergerke R (1954b) Measurement of muscle striations in stretch and contraction. J Physiol 124:46–47P

    CAS  Google Scholar 

  37. Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  38. Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    PubMed  CAS  Google Scholar 

  39. Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    PubMed  CAS  Google Scholar 

  40. Holmes KC, Geeves MA (2000) The structural basis of muscle contraction. Philos Trans R Soc Lond B Biol Sci 355:419–431

    PubMed  CAS  Google Scholar 

  41. Sweeney HL, Houdusse A (2010) Structural and functional insights into the Myosin motor mechanism. Annu Rev Biophys 39:539–557

    PubMed  CAS  Google Scholar 

  42. Volkmann N, Liu H, Hazelwood L, Krementsova EB, Lowey S, Trybus KM, Hanein D (2005) The structural basis of myosin V processive movement as revealed by electron cryomicroscopy. Mol Cell 19:595–605

    PubMed  CAS  Google Scholar 

  43. Volkmann N, Hanein D, Ouyang G, Trybus KM, DeRosier DJ, Lowey S (2000) Evidence for cleft closure in actomyosin upon ADP release. Nat Struct Biol 7:1147–1155

    PubMed  CAS  Google Scholar 

  44. Dominguez R, Freyzon Y, Trybus KM, Cohen C (1998) Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94:559–571

    PubMed  CAS  Google Scholar 

  45. Menetrey J, Llinas P, Mukherjea M, Sweeney HL, Houdusse A (2007) The structural basis for the large powerstroke of myosin VI. Cell 131:300–308

    PubMed  CAS  Google Scholar 

  46. Menetrey J, Bahloul A, Wells AL, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2005) The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435:779–785

    PubMed  CAS  Google Scholar 

  47. Sweeney HL, Houdusse A (2004) The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci 359:1829–1841

    PubMed  CAS  Google Scholar 

  48. Holmes KC, Schroder RR, Sweeney HL, Houdusse A (2004) The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci 359:1819–1828

    PubMed  CAS  Google Scholar 

  49. Coureux PD, Sweeney HL, Houdusse A (2004) Three myosin V structures delineate essential features of chemo-mechanical transduction. EMBO J 23:4527–4537

    PubMed  CAS  Google Scholar 

  50. Coureux PD, Wells AL, Menetrey J, Yengo CM, Morris CA, Sweeney HL, Houdusse A (2003) A structural state of the myosin V motor without bound nucleotide. Nature 425:419–423

    PubMed  CAS  Google Scholar 

  51. Houdusse A, Szent-Gyorgyi AG, Cohen C (2000) Three conformational states of scallop myosin S1. Proc Natl Acad Sci U S A 97:11238–11243

    PubMed  CAS  Google Scholar 

  52. Houdusse A, Kalabokis VN, Himmel D, Szent-Gyorgyi AG, Cohen C (1999) Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell 97:459–470

    PubMed  CAS  Google Scholar 

  53. Bauer CB, Holden HM, Thoden JB, Smith R, Rayment I (2000) X-ray structures of the apo and MgATP-bound states of Dictyostelium discoideum myosin motor domain. J Biol Chem 275:38494–38499

    PubMed  CAS  Google Scholar 

  54. Gulick AM, Bauer CB, Thoden JB, Pate E, Yount RG, Rayment I (2000) X-ray structures of the Dictyostelium discoideum myosin motor domain with six non-nucleotide analogs. J Biol Chem 275:398–408

    PubMed  CAS  Google Scholar 

  55. Gulick AM, Bauer CB, Thoden JB, Rayment I (1997) X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36:11619–11628

    PubMed  CAS  Google Scholar 

  56. Rayment I (1996) The structural basis of the myosin ATPase activity. J Biol Chem 271:15850–15853

    PubMed  CAS  Google Scholar 

  57. Smith CA, Rayment I (1995) X-ray structure of the magnesium(II)-pyrophosphate complex of the truncated head of Dictyostelium discoideum myosin to 2.7 A resolution. Biochemistry 34:8973–8981

    PubMed  CAS  Google Scholar 

  58. Rayment I, Smith C, Yount RG (1996) The active site of myosin. Annu Rev Physiol 58:671–702

    PubMed  CAS  Google Scholar 

  59. Smith CA, Rayment I (1996) X-ray structure of the magnesium (II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry 35:5404–5417

    PubMed  CAS  Google Scholar 

  60. Fisher AJ, Smith CA, Thoden JB, Smith R, Sutoh K, Holden HM, Rayment I (1995) X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry 34:8960–8972

    PubMed  CAS  Google Scholar 

  61. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    PubMed  CAS  Google Scholar 

  62. Whittaker M, Wilson-Kubalek EM, Smith JE, Faust L, Milligan RA, Sweeney HL (1995) A 35-A movement of smooth muscle myosin on ADP release. Nature 378:748–751

    PubMed  CAS  Google Scholar 

  63. Milligan RA (1996) Protein-protein interactions in the rigor actomyosin complex. Proc Natl Acad Sci U S A 93:21–26

    PubMed  CAS  Google Scholar 

  64. Vale RD, Milligan RA (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88–95

    PubMed  CAS  Google Scholar 

  65. Kohler D, Ruff C, Meyhofer E, Bahler M (2003) Different degrees of lever arm rotation control myosin step size. J Cell Biol 161:237–241

    PubMed  CAS  Google Scholar 

  66. Kinoshita K, Sadanami K, Kidera A, Go N (1999) Structural motif of phosphate-binding site common to various protein superfamilies: all-against-all structural comparison of protein-mononucleotide complexes. Protein Eng 12:11–14

    PubMed  CAS  Google Scholar 

  67. Root D (2002) The dance of actin and myosin. Cell Biochemistry and Biophysics 37:111–139

    PubMed  CAS  Google Scholar 

  68. Kull FJ, Vale RD, Fletterick RJ (1998) The case for a common ancestor: kinesin and myosin motor proteins and G proteins. J Muscle Res Cell Motil 19:877–886

    PubMed  CAS  Google Scholar 

  69. Kintses B, Gyimesi M, Pearson DS, Geeves MA, Zeng W, Bagshaw CR, Malnasi-Csizmadia A (2007) Reversible movement of switch 1 loop of myosin determines actin interaction. EMBO J 26:265–274

    PubMed  CAS  Google Scholar 

  70. Fischer S, Windshugel B, Horak D, Holmes KC, Smith JC (2005) Structural mechanism of the recovery stroke in the myosin molecular motor. Proc Natl Acad Sci U S A 102:6873–6878

    PubMed  CAS  Google Scholar 

  71. Sun M, Rose MB, Ananthanarayanan SK, Jacobs DJ, Yengo CM (2008) Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle. Proc Natl Acad Sci U S A 105:8631–8636

    PubMed  CAS  Google Scholar 

  72. Sun M, Oakes JL, Ananthanarayanan SK, Hawley KH, Tsien RY, Adams SR, Yengo CM (2006) Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer. J Biol Chem 281:5711–5717

    PubMed  CAS  Google Scholar 

  73. Kelley CA, Takahashi M, Yu JH, Adelstein RS (1993) An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J Biol Chem 268:12848–12854

    PubMed  CAS  Google Scholar 

  74. Rovner AS, Freyzon Y, Trybus KM (1997) An insert in the motor domain determines the functional properties of expressed smooth muscle myosin isoforms. J Muscle Res Cell Motil 18:103–110

    PubMed  CAS  Google Scholar 

  75. Lauzon AM, Tyska MJ, Rovner AS, Freyzon Y, Warshaw DM, Trybus KM (1998) A 7-amino-acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil 19:825–837

    PubMed  CAS  Google Scholar 

  76. Baker JE, Brosseau C, Fagnant P, Warshaw DM (2003) The unique properties of tonic smooth muscle emerge from intrinsic as well as intermolecular behaviors of myosin molecules. J Biol Chem 278:28533–28539

    PubMed  CAS  Google Scholar 

  77. Joel PB, Sweeney HL, Trybus KM (2003) Addition of lysines to the 50/20 kDa junction of myosin strengthens weak binding to actin without affecting the maximum ATPase activity. Biochemistry 42:9160–9166

    PubMed  CAS  Google Scholar 

  78. Onishi H, Mikhailenko SV, Morales MF (2006) Toward understanding actin activation of myosin ATPase: the role of myosin surface loops. Proc Natl Acad Sci U S A 103:6136–6141

    PubMed  CAS  Google Scholar 

  79. Yengo CM, Sweeney HL (2004) Functional role of loop 2 in myosin V. Biochemistry 43:2605–2612

    PubMed  CAS  Google Scholar 

  80. Cecchini M, Houdusse A, Karplus M (2008) Allosteric communication in myosin V: from small conformational changes to large directed movements. PLoS Comput Biol 4:e1000129

    PubMed  CAS  Google Scholar 

  81. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368:113–119

    PubMed  CAS  Google Scholar 

  82. Tyska MJ, Dupuis DE, Guilford WH, Patlak JB, Waller GS, Trybus KM, Warshaw DM, Lowey S (1999) Two heads of myosin are better than one for generating force and motion. Proc Natl Acad Sci U S A 96:4402–4407

    PubMed  CAS  Google Scholar 

  83. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates Inc, Sunderland

    Google Scholar 

  84. Toyoshima YY, Kron SJ, McNally EM, Niebling KR, Toyoshima C, Spudich JA (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328:536–539

    PubMed  CAS  Google Scholar 

  85. Cooke R, Franks K, Luciani GB, Pate E (1988) The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 395:77–97

    PubMed  CAS  Google Scholar 

  86. Pate E, Wilson GJ, Bhimani M, Cooke R (1994) Temperature dependence of the inhibitory effects of orthovanadate on shortening velocity in fast skeletal muscle. Biophys J 66:1554–1562

    PubMed  CAS  Google Scholar 

  87. Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50(Suppl):197–218

    PubMed  Google Scholar 

  88. Spink BJ, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich JA (2008) Long single alpha-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol 15:591–597

    PubMed  CAS  Google Scholar 

  89. Pauling L, Corey RB (1953) Compound helical configurations of polypeptide chains: structure of proteins of the alpha-keratin type. Nature 171:59–61

    PubMed  CAS  Google Scholar 

  90. Ikebe M, Komatsu S, Woodhead JL, Mabuchi K, Ikebe R, Saito J, Craig R, Higashihara M (2001) The tip of the coiled-coil rod determines the filament formation of smooth muscle and nonmuscle myosin. J Biol Chem 276:30293–30300

    PubMed  CAS  Google Scholar 

  91. Hostetter D, Rice S, Dean S, Altman D, McMahon PM, Sutton S, Tripathy A, Spudich JA (2004) Dictyostelium myosin bipolar thick filament formation: importance of charge and specific domains of the myosin rod. PLoS Biol 2:e356

    PubMed  Google Scholar 

  92. Forkey JN, Quinlan ME, Shaw MA, Corrie JE, Goldman YE (2003) Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422:399–404

    PubMed  CAS  Google Scholar 

  93. Sun Y, Sato O, Ruhnow F, Arsenault ME, Ikebe M, Goldman YE (2010) Single-molecule stepping and structural dynamics of myosin X. Nat Struct Mol Biol 17:485–491

    PubMed  CAS  Google Scholar 

  94. Yang Y, Kovacs M, Sakamoto T, Zhang F, Kiehart DP, Sellers JR (2006) Dimerized Drosophila myosin VIIa: a processive motor. Proc Natl Acad Sci U S A 103:5746–5751

    PubMed  CAS  Google Scholar 

  95. Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    PubMed  CAS  Google Scholar 

  96. Laakso JM, Lewis JH, Shuman H, Ostap EM (2008) Myosin I can act as a molecular force sensor. Science 321:133–136

    PubMed  CAS  Google Scholar 

  97. Nyitrai M, Geeves MA (2004) Adenosine diphosphate and strain sensitivity in myosin motors. Philos Trans R Soc Lond B Biol Sci 359:1867–1877

    PubMed  CAS  Google Scholar 

  98. Oguchi Y, Mikhailenko SV, Ohki T, Olivares AO, De La Cruz EM, Ishiwata S (2008) Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Proc Natl Acad Sci U S A 105:7714–7719

    PubMed  CAS  Google Scholar 

  99. Purcell TJ, Sweeney HL, Spudich JA (2005) A force-dependent state controls the coordination of processive myosin V. Proc Natl Acad Sci U S A 102:13873–13878

    PubMed  CAS  Google Scholar 

  100. Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7:861–869

    PubMed  CAS  Google Scholar 

  101. De La Cruz EM, Olivares AO (2009) Watching the walk: observing chemo-mechanical coupling in a processive myosin motor. HFSP J 3:67–70

    PubMed  CAS  Google Scholar 

  102. Dunn AR, Chuan P, Bryant Z, Spudich JA (2010) Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing. Proc Natl Acad Sci U S A 107:7746–7750

    PubMed  CAS  Google Scholar 

  103. Brunello E, Reconditi M, Elangovan R, Linari M, Sun YB, Narayanan T, Panine P, Piazzesi G, Irving M, Lombardi, V. (2007) Skeletal muscle resists stretch by rapid binding of the second motor domain of myosin to actin. Proc Natl Acad Sci U S A 104:20114–20119

    PubMed  CAS  Google Scholar 

  104. Hokanson DE, Laakso JM, Lin T, Sept D, Ostap EM (2006) Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol Biol Cell 17:4856–4865

    PubMed  CAS  Google Scholar 

  105. Barylko B, Binns DD, Albanesi JP (2000) Regulation of the enzymatic and motor activities of myosin I. Biochim Biophys Acta 1496:23–35

    PubMed  CAS  Google Scholar 

  106. Yonezawa S, Yoshizaki N, Sano M, Hanai A, Masaki S, Takizawa T, Kageyama T, Moriyama A (2003) Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev Growth Differ 45:175–185

    PubMed  CAS  Google Scholar 

  107. Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113(19):3439–3451

    PubMed  CAS  Google Scholar 

  108. Sousa AD, Cheney RE (2005) Myosin-X: a molecular motor at the cell’s fingertips. Trends Cell Biol 15:533–539

    PubMed  CAS  Google Scholar 

  109. Wang F, Thirumurugan K, Stafford WF, Hammer JA, 3rd, Knight PJ, Sellers JR (2004) Regulated conformation of myosin V. J Biol Chem 279:2333–2336

    PubMed  CAS  Google Scholar 

  110. Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, Wu D, Kachar B, Friedman TB, Raphael Y et al (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738

    PubMed  CAS  Google Scholar 

  111. Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, Miller W, Touchman JW, Jin L, Sullivan SL et al (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61:243–258

    PubMed  CAS  Google Scholar 

  112. Pashkova N, Jin Y, Ramaswamy S, Weisman LS (2006) Structural basis for myosin V discrimination between distinct cargoes. EMBO J 25:693–700

    PubMed  CAS  Google Scholar 

  113. Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Menetrey J, Franzini-Armstrong C, Selvin PR, Houdusse A, Sweeney HL (2009) Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell 35:305–315

    PubMed  CAS  Google Scholar 

  114. Salles FT, Merritt RC Jr, Manor U, Dougherty GW, Sousa AD, Moore JE, Yengo CM, Dose AC, Kachar B (2009) Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 11:443–450.

    PubMed  CAS  Google Scholar 

  115. Dose AC, Ananthanarayanan S, Moore JE, Burnside B, Yengo CM (2007) Kinetic mechanism of human myosin IIIA. J Biol Chem 282:216–231

    PubMed  CAS  Google Scholar 

  116. Huxley HE (1971) Structural changes during muscle contraction. Biochem J 125:85P

    Google Scholar 

  117. Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    PubMed  CAS  Google Scholar 

  118. Trybus KM, Waller GS, Chatman TA (1994) Coupling of ATPase activity and motility in smooth muscle myosin is mediated by the regulatory light chain. J Cell Biol 124:963–969

    PubMed  CAS  Google Scholar 

  119. Lu H, Krementsova EB, Trybus KM (2006) Regulation of myosin V processivity by calcium at the single molecule level. J Biol Chem 281:31987–31994

    PubMed  CAS  Google Scholar 

  120. Olivares AO, Chang W, Mooseker MS, Hackney DD, De La Cruz EM (2006) The tail domain of myosin Va modulates actin binding to one head. J Biol Chem 281:31326–31336

    PubMed  CAS  Google Scholar 

  121. Krementsov DN, Krementsova EB, Trybus KM (2004) Myosin V: regulation by calcium, calmodulin, and the tail domain. J Cell Biol 164:877–886

    PubMed  CAS  Google Scholar 

  122. Li JF, Nebenfuhr A (2008) The tail that wags the dog: the globular tail domain defines the function of myosin V/XI. Traffic 9:290–298

    PubMed  CAS  Google Scholar 

  123. Umeki N, Jung HS, Watanabe S, Sakai T, Li XD, Ikebe R, Craig R, Ikebe M (2009) The tail binds to the head-neck domain, inhibiting ATPase activity of myosin VIIA. Proc Natl Acad Sci U S A 106:8483–8488

    PubMed  CAS  Google Scholar 

  124. Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M (2009) Myosin VI undergoes cargo-mediated dimerization. Cell 138:537–548

    PubMed  CAS  Google Scholar 

  125. Bement WM, Mooseker MS (1995) TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton 31:87–92

    PubMed  CAS  Google Scholar 

  126. Brzeska H, Korn ED (1996) Regulation of class I and class II myosins by heavy chain phosphorylation. J Biol Chem 271:16983–16986

    PubMed  CAS  Google Scholar 

  127. Redowicz MJ (2001) Regulation of nonmuscle myosins by heavy chain phosphorylation. J Muscle Res Cell Motil 22:163–173

    PubMed  CAS  Google Scholar 

  128. De La Cruz EM, Ostap EM, Sweeney HL (2001) Kinetic mechanism and regulation of myosin VI. J Biol Chem 276:32373–32381

    PubMed  CAS  Google Scholar 

  129. Morris CA, Wells AL, Yang Z, Chen LQ, Baldacchino CV, Sweeney HL (2003) Calcium functionally uncouples the heads of myosin VI. J Biol Chem 278:23324–23330

    PubMed  CAS  Google Scholar 

  130. Buss F, Kendrick-Jones J (2008) How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun 369:165–175

    PubMed  CAS  Google Scholar 

  131. Quintero OA, Moore JE, Unrath WC, Manor U, Salles FT, Grati M, Kachar B, Yengo CM (2010) Intermolecular autophosphorylation regulates myosin IIIA activity and localization in parallel actin bundles. J Biol Chem 285:35770–35782

    PubMed  CAS  Google Scholar 

  132. Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M (2003) Determination of human myosin III as a motor protein having a protein kinase activity. J Biol Chem 278:21352–21360

    PubMed  CAS  Google Scholar 

  133. Altman D, Sweeney HL, Spudich JA (2004) The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116:737–749

    PubMed  CAS  Google Scholar 

  134. Park H, Ramamurthy B, Travaglia M, Safer D, Chen LQ, Franzini-Armstrong C, Selvin PR, Sweeney HL (2006) Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell 21:331–336

    PubMed  CAS  Google Scholar 

  135. Buss F, Spudich G, Kendrick-Jones J (2004) Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol 20:649–676

    PubMed  CAS  Google Scholar 

  136. Knight PJ, Thirumurugan K, Xu Y, Wang F, Kalverda AP, Stafford WF 3rd, Sellers JR, Peckham M (2005) The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 280:34702–34708

    PubMed  CAS  Google Scholar 

  137. Nagy S, Ricca BL, Norstrom MF, Courson DS, Brawley CM, Smithback PA, Rock RS (2008) A myosin motor that selects bundled actin for motility. Proc Natl Acad Sci U S A 105:9616–9620

    PubMed  CAS  Google Scholar 

  138. Trybus KM, Freyzon Y, Faust LZ, Sweeney HL (1997) Spare the rod, spoil the regulation: necessity for a myosin rod. Proc Natl Acad Sci U S A 94:48–52

    PubMed  CAS  Google Scholar 

  139. Periasamy M, Strehler EE, Garfinkel LI, Gubits RM, Ruiz-Opazo N, Nadal-Ginard B (1984) Fast skeletal muscle myosin light chains 1 and 3 are produced from a single gene by a combined process of differential RNA transcription and splicing. J Biol Chem 259:13595–13604

    PubMed  CAS  Google Scholar 

  140. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76:371–423

    PubMed  CAS  Google Scholar 

  141. Reggiani C, Bottinelli R, Stienen GJ (2000) Sarcomeric myosin isoforms: fine tuning of a molecular motor. News Physiol Sci 15:26–33

    PubMed  CAS  Google Scholar 

  142. Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S (2010) Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 588:353–364

    PubMed  CAS  Google Scholar 

  143. Winters LM, Briggs MM, Schachat F (1998) The human extraocular muscle myosin heavy chain gene (MYH13) maps to the cluster of fast and developmental myosin genes on chromosome 17. Genomics 54:188–189

    PubMed  CAS  Google Scholar 

  144. Stephenson GM (2001) Hybrid skeletal muscle fibers: a rare or common phenomenon? Clin Exp Pharmacol Physiol 28:692–702

    PubMed  CAS  Google Scholar 

  145. Oukhai K, Maricic N, Schneider M, Harzer W, Tausche E (2010) Developmental myosin heavy chain mRNA in masseter after orthognathic surgery: a preliminary study. J Craniomaxillofac Surg 39:401–406

    PubMed  Google Scholar 

  146. Reggiani C, Bottinelli R (2008) Myosin II: Sarcomeric myosins, the motors or contraction in cardiac and skeletal muscles. In: Coluccio LM (ed) Myosins: a superfamily of molecular motors. Springer: Dordrecht, pp 125–169

    Google Scholar 

  147. Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86:386–390

    PubMed  CAS  Google Scholar 

  148. Nakao K, Minobe W, Roden R, Bristow MR, Leinwand LA (1997) Myosin heavy chain gene expression in human heart failure. J Clin Invest 100:2362–2370

    PubMed  CAS  Google Scholar 

  149. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006

    PubMed  CAS  Google Scholar 

  150. Hamada Y, Yanagisawa M, Katsuragawa Y, Coleman JR, Nagata S, Matsuda G, Masaki T (1990) Distinct vascular and intestinal smooth muscle myosin heavy chain mRNAs are encoded by a single-copy gene in the chicken. Biochem Biophys Res Commun 170:53–58

    PubMed  CAS  Google Scholar 

  151. White S, Martin AF, Periasamy M (1993) Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am J Physiol 264:C1252–1258

    PubMed  CAS  Google Scholar 

  152. Rovner AS, Thompson MM, Murphy RA (1986) Two different heavy chains are found in smooth muscle myosin. Am J Physiol 250:C861–870

    PubMed  CAS  Google Scholar 

  153. Eddinger TJ, Murphy RA (1988) Two smooth muscle myosin heavy chains differ in their light meromyosin fragment. Biochemistry 27:3807–3811

    PubMed  CAS  Google Scholar 

  154. Nagai R, Kuro-o M, Babij P, Periasamy M (1989) Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem 264:9734–9737

    PubMed  CAS  Google Scholar 

  155. Cavaille F, Janmot C, Ropert S, d’Albis A (1986) Isoforms of myosin and actin in human, monkey and rat myometrium. Comparison of pregnant and non-pregnant uterus proteins. Eur J Biochem 160:507–513

    PubMed  CAS  Google Scholar 

  156. Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y, Yamashiro S, Matsumura F (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 164:427–439

    PubMed  CAS  Google Scholar 

  157. Gupton SL, Waterman-Storer CM (2006) Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–1374

    PubMed  CAS  Google Scholar 

  158. Brahmbhatt AA, Klemke RL (2003) ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J Biol Chem 278:13016–13025

    PubMed  CAS  Google Scholar 

  159. Fishkind DJ, Wang YL (1993) Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol 123:837–848

    PubMed  CAS  Google Scholar 

  160. Pollard TD (2010) Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 22:50–56

    PubMed  CAS  Google Scholar 

  161. Fujiwara K, Pollard TD (1976) Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol 71:848–875

    PubMed  CAS  Google Scholar 

  162. Shewan AM, Maddugoda M, Kraemer A, Stehbens SJ, Verma S, Kovacs EM, Yap AS (2005) Myosin 2 is a key Rho kinase target necessary for the local concentration of E-cadherin at cell-cell contacts. Mol Biol Cell 16:4531–4542

    PubMed  CAS  Google Scholar 

  163. Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA (2005) Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell 16:2636–2650

    PubMed  CAS  Google Scholar 

  164. Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura, S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312:1637–1650

    PubMed  CAS  Google Scholar 

  165. Betapudi V, Licate LS, Egelhoff TT (2006) Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res 66:4725–4733

    PubMed  CAS  Google Scholar 

  166. Lo CM, Buxton DB, Chua GC, Dembo M, Adelstein RS, Wang YL (2004) Nonmuscle myosin IIb is involved in the guidance of fibroblast migration. Mol Biol Cell 15:982–989

    PubMed  CAS  Google Scholar 

  167. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    PubMed  CAS  Google Scholar 

  168. Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516

    PubMed  CAS  Google Scholar 

  169. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226

    PubMed  CAS  Google Scholar 

  170. Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207–1217

    PubMed  CAS  Google Scholar 

  171. Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 100:13958–13963

    PubMed  CAS  Google Scholar 

  172. Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Griffith AJ, Friedman TB (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7:148–156

    PubMed  CAS  Google Scholar 

  173. Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566

    PubMed  CAS  Google Scholar 

  174. Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214:331–341

    PubMed  CAS  Google Scholar 

  175. Kerber ML, Jacobs DT, Campagnola L, Dunn BD, Yin T, Sousa AD, Quintero OA, Cheney RE (2009) A novel form of motility in filopodia revealed by imaging myosin-X at the single-molecule level. Curr Biol 19:967–973

    PubMed  CAS  Google Scholar 

  176. Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246–250

    PubMed  CAS  Google Scholar 

  177. Quintero OA, Svitkina TM, Chaga OY, Bhaskar A, Borisy GG, Cheney RE (2003) Dynamics of myosin-X (Myo10) and VASP at the filopodial tip. Mol Biol Cell 14:1010

    Google Scholar 

  178. Tokuo H, Ikebe M (2004) Myosin X transports Mena/VASP to the tip of filopodia. Biochem Biophys Res Commun 319:214–220

    PubMed  CAS  Google Scholar 

  179. Bohil AB, Robertson BW, Cheney RE (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci U S A 103:12411–12416

    PubMed  CAS  Google Scholar 

  180. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    PubMed  CAS  Google Scholar 

  181. Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bahler M (1995) A novel type of myosin implicated in signalling by rho family GTPases. EMBO J 14:697–704

    PubMed  CAS  Google Scholar 

  182. Muller RT, Honnert U, Reinhard J, Bahler M (1997) The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo: essential role of arginine 1695. Mol Biol Cell 8:2039–2053

    PubMed  CAS  Google Scholar 

  183. Graf B, Bahler M, Hilpela P, Bowe C, Adam T (2000) Functional role for the class IX myosin myr5 in epithelial cell infection by Shigella flexneri. Cell Microbiol 2:601–616

    PubMed  CAS  Google Scholar 

  184. Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VM, Andreadis A et al (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159:279–290

    PubMed  CAS  Google Scholar 

  185. Wehrle-Haller B, Imhof BA (2003) Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 35:39–50

    PubMed  CAS  Google Scholar 

  186. Wu XS, Tsan GL, Hammer JA 3rd (2005) Melanophilin and myosin Va track the microtubule plus end on EB1. J Cell Biol 171:201–207

    PubMed  CAS  Google Scholar 

  187. McMichael BK, Cheney RE, Lee BS (2010) Myosin X regulates sealing zone patterning in osteoclasts through linkage of podosomes and microtubules. J Biol Chem 285:9506–9515

    PubMed  CAS  Google Scholar 

  188. Woolner S, O’Brien LL, Wiese C, Bement WM (2008) Myosin-10 and actin filaments are essential for mitotic spindle function. J Cell Biol 182:77–88

    PubMed  CAS  Google Scholar 

  189. Toyoshima F, Nishida E (2007) Integrin-mediated adhesion orients the spindle parallel to the substratum in an EB1- and myosin X-dependent manner. EMBO J 26:1487–1498

    PubMed  CAS  Google Scholar 

  190. Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS, Baines IC (1996) Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J Cell Biol 134:675–687

    PubMed  CAS  Google Scholar 

  191. Matsumura F, Ono S, Yamakita Y, Totsukawa G, Yamashiro S (1998) Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol 140:119–129

    PubMed  CAS  Google Scholar 

  192. Matson S, Markoulaki S, Ducibella T (2006) Antagonists of myosin light chain kinase and of myosin II inhibit specific events of egg activation in fertilized mouse eggs. Biol Reprod 74:169–176

    PubMed  CAS  Google Scholar 

  193. Mooseker MS, Foth BJ (2008) The structural and functional diversity of the myosin family of actin-based molecular motors. In: Coluccio LM (ed) Myosins, Vol. 7, pp. 1–34. The Netherlands, Springer

    Google Scholar 

  194. Titus MA (2000) The role of unconventional myosins in Dictyostelium endocytosis. J Eukaryot Microbiol 47:191–196

    PubMed  CAS  Google Scholar 

  195. Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci U S A 100:6481–6486

    PubMed  CAS  Google Scholar 

  196. Araki N (2006) Role of microtubules and myosins in Fc gamma receptor-mediated phagocytosis. Front Biosci 11:1479–1490

    PubMed  CAS  Google Scholar 

  197. Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425

    PubMed  CAS  Google Scholar 

  198. Holt JP, Bottomly K, Mooseker MS (2007) Assessment of myosin II, Va, VI and VIIa loss of function on endocytosis and endocytic vesicle motility in bone marrow-derived dendritic cells. Cell Motil Cytoskeleton 64:756–766

    PubMed  CAS  Google Scholar 

  199. Araki N, Hatae T, Furukawa A, Swanson JA (2003) Phosphoinositide-3-kinase-independent contractile activities associated with Fcgamma-receptor-mediated phagocytosis and macropinocytosis in macrophages. J Cell Sci 116:247–257

    PubMed  CAS  Google Scholar 

  200. Kolpak AL, Jiang J, Guo D, Standley C, Bellve K, Fogarty K, Bao ZZ (2009) Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning. J Neurosci 29:10488–10498

    PubMed  CAS  Google Scholar 

  201. Jiang J, Kolpak AL, Bao ZZ (2010) Myosin IIB isoform plays an essential role in the formation of two distinct types of macropinosomes. Cytoskeleton (Hoboken) 67:32–42

    CAS  Google Scholar 

  202. Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, Greenberg S (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477

    PubMed  CAS  Google Scholar 

  203. Swanson JA, Johnson MT, Beningo K, Post P, Mooseker M, Araki N (1999) A contractile activity that closes phagosomes in macrophages. J Cell Sci 112(3):307–316

    PubMed  CAS  Google Scholar 

  204. Rey M, Valenzuela-Fernandez A, Urzainqui A, Yanez-Mo M, Perez-Martinez M, Penela P, Mayor F Jr, Sanchez-Madrid F (2007) Myosin IIA is involved in the endocytosis of CXCR4 induced by SDF-1alpha. J Cell Sci 120:1126–1133

    PubMed  CAS  Google Scholar 

  205. Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168:329–338

    PubMed  CAS  Google Scholar 

  206. Gotoh N, Yan Q, Du Z, Biemesderfer D, Kashgarian M, Mooseker MS, Wang T (2010) Altered renal proximal tubular endocytosis and histology in mice lacking myosin-VI. Cytoskeleton 67:178–192

    PubMed  CAS  Google Scholar 

  207. Hasson T (2003) Myosin VI: two distinct roles in endocytosis. J Cell Sci 116:3453–3461

    PubMed  CAS  Google Scholar 

  208. Dance AL, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner, L, Hasson T (2004) Regulation of myosin-VI targeting to endocytic compartments. Traffic 5:798–813

    PubMed  CAS  Google Scholar 

  209. Buss F, Kendrick-Jones J, Lionne C, Knight AE, Cote GP, Luzio JP (1998) The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J Cell Biol 143:1535–1545

    PubMed  CAS  Google Scholar 

  210. Warner CL, Stewart A, Luzio JP, Steel KP, Libby RT, Kendrick-Jones J, Buss F (2003) Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J 22:569–579

    PubMed  CAS  Google Scholar 

  211. Provance DW, Mercer JA (1999) Myosin-V: head to tail. Cell Mol Life Sci 56:233–242

    PubMed  CAS  Google Scholar 

  212. Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51

    PubMed  CAS  Google Scholar 

  213. Dekker-Ohno K, Hayasaka S, Takagishi Y, Oda S, Wakasugi N, Mikoshiba K, Inouye M, Yamamura H (1996) Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res 714:226–230

    PubMed  CAS  Google Scholar 

  214. Takagishi Y, Oda S, Hayasaka S, Dekker-Ohno K, Shikata T, Inouye M, Yamamura H (1996) The dilute-lethal (dl) gene attacks a Ca2 + store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215:169–172

    PubMed  CAS  Google Scholar 

  215. Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2 +- dependent interaction with the synaptobrevin–synaptophysin complex. J Cell Biol 137:1589–1601

    PubMed  CAS  Google Scholar 

  216. Rudolf R, Kogel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JA 3rd, Gerdes HH (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–1348

    PubMed  CAS  Google Scholar 

  217. Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111(14):2055–2066

    PubMed  CAS  Google Scholar 

  218. Lapierre LA, Goldenring JR (2005) Interactions of myosin vb with rab11 family members and cargoes traversing the plasma membrane recycling system. Methods Enzymol 403:715–723

    PubMed  CAS  Google Scholar 

  219. Provance DW Jr, Gourley CR, Silan CM, Cameron LC, Shokat KM, Goldenring JR, Shah K, Gillespie PG, Mercer JA (2004) Chemical-genetic inhibition of a sensitized mutant myosin Vb demonstrates a role in peripheral-pericentriolar membrane traffic. Proc Natl Acad Sci U S A 101:1868–1873

    PubMed  CAS  Google Scholar 

  220. Nedvetsky PI, Stefan E, Frische S, Santamaria K, Wiesner B, Valenti G, Hammer JA 3rd, Nielsen S, Goldenring JR, Rosenthal W et al (2007) A Role of myosin Vb and Rab11-FIP2 in the aquaporin-2 shuttle. Traffic 8:110–123

    PubMed  CAS  Google Scholar 

  221. Tzaban S, Massol RH, Yen E, Hamman W, Frank SR, Lapierre LA, Hansen SH, Goldenring JR, Blumberg RS, Lencer WI (2009) The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol 185:673–684

    PubMed  CAS  Google Scholar 

  222. Gardner LA, Hajjhussein H, Frederick-Dyer KC, Bahouth SW (2010) Rab11a and its binding partners regulate the recycling of the β1-adrenergic receptor. Cellular Signalling 23:46–57

    PubMed  Google Scholar 

  223. Jacobs DT, Weigert R, Grode KD, Donaldson JG, Cheney RE (2009) Myosin Vc is a molecular motor that functions in secretary granule trafficking. Mol Biol Cell 20:4471–4488

    PubMed  CAS  Google Scholar 

  224. Marchelletta RR, Jacobs DT, Schechter JE, Cheney RE, Hamm-Alvarez SF (2008) The class V myosin motor, myosin 5c, localizes to mature secretary vesicles and facilitates exocytosis in lacrimal acini. Am J Physiol Cell Physiol 295:C13–28

    PubMed  CAS  Google Scholar 

  225. Wang Z, Edwards JG, Riley N, Provance Jr DW, Karcher R, Li X-d, Davison IG, Ikebe M, Mercer JA, Kauer JA et al (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135:535–548

    PubMed  CAS  Google Scholar 

  226. Lisé MF, Wong TP, Trinh A, Hines RM, Liu L, Kang R, Hines DJ, Lu J, Goldenring JR, Wang YT et al (2006) Involvement of myosin Vb in glutamate receptor trafficking. J Biol Chem 281:3669–3678

    PubMed  Google Scholar 

  227. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda S-I, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244

    PubMed  CAS  Google Scholar 

  228. Quintero OA, DiVito MM, Adikes RC, Kortan MB, Case LB, Lier AJ, Panaretos NS, Slater SQ, Rengarajan M, Feliu M et al (2009) Human Myo19 is a novel myosin that associates with mitochondria. Curr Biol 19:2008–2013

    PubMed  CAS  Google Scholar 

  229. Nambiar R, McConnell RE, Tyska MJ (2010) Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell Mol Life Sci 67:1239–1254

    PubMed  CAS  Google Scholar 

  230. Nambiar R, McConnell RE, Tyska MJ (2009) Control of cell membrane tension by myosin-I. Proc Natl Acad Sci U S A 106:11972–11977

    PubMed  CAS  Google Scholar 

  231. Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16:2443–2457

    PubMed  CAS  Google Scholar 

  232. McConnell RE, Higginbotham JN, Shifrin DA Jr, Tabb DL, Coffey RJ, Tyska MJ (2009) The enterocyte microvillus is a vesicle-generating organelle. J Cell Biol 185:1285–1298

    PubMed  CAS  Google Scholar 

  233. McConnell RE, Tyska MJ (2007) Myosin-1a powers the sliding of apical membrane along microvillar actin bundles. J Cell Biol 177:671–681

    PubMed  CAS  Google Scholar 

  234. Bobola N, Jansen RP, Shin TH, Nasmyth K (1996) Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84:699–709

    PubMed  CAS  Google Scholar 

  235. Jansen RP, Dowzer C, Michaelis C, Galova M, Nasmyth K (1996) Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84:687–697

    PubMed  CAS  Google Scholar 

  236. Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A (2009) Myosin-V regulates oskar mRNA localization in the Drosophila oocyte. Curr Biol 19:1058–1063

    PubMed  CAS  Google Scholar 

  237. Sotelo-Silveira JR, Calliari A, Cardenas M, Koenig E, Sotelo JR (2004) Myosin Va and kinesin II motor proteins are concentrated in ribosomal domains (periaxoplasmic ribosomal plaques) of myelinated axons. J Neurobiol 60:187–196

    PubMed  CAS  Google Scholar 

  238. Sotelo-Silveira J, Crispino M, Puppo A, Sotelo JR, Koenig E (2008) Myelinated axons contain beta-actin mRNA and ZBP-1 in periaxoplasmic ribosomal plaques and depend on cyclic AMP and F-actin integrity for in vitro translation. J Neurochem 104:545–557

    PubMed  CAS  Google Scholar 

  239. Ohashi S, Koike K, Omori A, Ichinose S, Ohara S, Kobayashi S, Sato TA, Anzai K (2002) Identification of mRNA/protein (mRNP) complexes containing Puralpha, mStaufen, fragile X protein, and myosin Va and their association with rough endoplasmic reticulum equipped with a kinesin motor. J Biol Chem 277:37804–37810

    PubMed  CAS  Google Scholar 

  240. Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16:2345–2351

    PubMed  CAS  Google Scholar 

  241. Salerno VP, Calliari A, Provance DW Jr, Sotelo-Silveira JR, Sotelo JR, Mercer JA (2008) Myosin-Va mediates RNA distribution in primary fibroblasts from multiple organs. Cell Motil Cytoskeleton 65:422–433

    PubMed  CAS  Google Scholar 

  242. Nowak G, Pestic-Dragovich L, Hozak P, Philimonenko A, Simerly C, Schatten G, de Lanerolle P (1997) Evidence for the presence of myosin I in the nucleus. J Biol Chem 272:17176–17181

    PubMed  CAS  Google Scholar 

  243. Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y, Settlage RE, Shabanowitz J, Hunt DF, Hozak P, de Lanerolle P (2000) A myosin I isoform in the nucleus. Science 290:337–341

    PubMed  CAS  Google Scholar 

  244. Li Q, Sarna SK (2009) Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 137:1051–1060

    PubMed  CAS  Google Scholar 

  245. Pranchevicius MC, Baqui MM, Ishikawa-Ankerhold HC, Lourenco EV, Leao RM, Banzi SR, dos Santos CT, Roque-Barreira MC, Espreafico EM, Larson RE (2008) Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil Cytoskeleton 65:441–456

    PubMed  CAS  Google Scholar 

  246. Jung EJ, Liu G, Zhou W, Chen X (2006) Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol Cell Biol 26:2175–2186

    PubMed  CAS  Google Scholar 

  247. Salamon M, Millino C, Raffaello A, Mongillo M, Sandri C, Bean C, Negrisolo E, Pallavicini A, Valle G, Zaccolo M et al (2003) Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J Mol Biol 326:137–149

    PubMed  CAS  Google Scholar 

  248. Cameron RS, Liu C, Mixon AS, Pihkala JP, Rahn RJ, Cameron PL (2007) Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton 64:19–48

    PubMed  CAS  Google Scholar 

  249. Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K, Kahle M, Zentgraf H, Hofmann WA, de Lanerolle P, Hozak P et al (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1172

    PubMed  CAS  Google Scholar 

  250. Percipalle P, Fomproix N, Cavellan E, Voit R, Reimer G, Kruger T, Thyberg J, Scheer U, Grummt I, Farrants AK (2006) The chromatin remodelling complex WSTF-SNF2 h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep 7:525–530

    PubMed  CAS  Google Scholar 

  251. Cavellan E, Asp P, Percipalle P, Farrants AK (2006) The WSTF-SNF2 h chromatin remodeling complex interacts with several nuclear proteins in transcription. J Biol Chem 281:16264–16271

    PubMed  CAS  Google Scholar 

  252. Ye J, Zhao J, Hoffmann-Rohrer U, Grummt I (2008) Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev 22:322–330

    PubMed  CAS  Google Scholar 

  253. Lindsay AJ, McCaffrey MW (2009) Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil Cytoskeleton 66:1057–1072

    PubMed  CAS  Google Scholar 

  254. Hofmann WA, Vargas GM, Ramchandran R, Stojiljkovic L, Goodrich JA, de Lanerolle P (2006) Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J Cell Biochem 99:1001–1009

    PubMed  CAS  Google Scholar 

  255. Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio PC, Crippa MP, Bussi M, Biffo S (2006) Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell 23:749–755

    PubMed  CAS  Google Scholar 

  256. Philimonenko VV, Janacek J, Harata M, Hozak P (2010) Transcription-dependent rearrangements of actin and nuclear myosin I in the nucleolus. Histochem Cell Biol 134:243–249

    PubMed  CAS  Google Scholar 

  257. Obrdlik A, Louvet E, Kukalev A, Naschekin D, Kiseleva E, Fahrenkrog B, Percipalle P (2010) Nuclear myosin 1 is in complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 24:146–157

    PubMed  Google Scholar 

  258. Cisterna B, Malatesta M, Dieker J, Muller S, Prosperi E, Biggiogera M (2009) An active mechanism flanks and modulates the export of the small ribosomal subunits. Histochem Cell Biol 131:743–753

    PubMed  CAS  Google Scholar 

  259. Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR, Ohgi KA, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG et al (2008) Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A 105:19199–19204

    PubMed  CAS  Google Scholar 

  260. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:R5

    PubMed  Google Scholar 

  261. Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P, Belmont AS (2006) Long-range directional movement of an interphase chromosome site. Curr Biol 16:825–831

    PubMed  CAS  Google Scholar 

  262. Althaus K, Greinacher A (2009) MYH9-related platelet disorders. Semin Thromb Hemost 35:189–203

    PubMed  CAS  Google Scholar 

  263. Chroneos ZC, Abdolrasulnia R, Whitsett JA, Rice WR, Shepherd VL (1996) Purification of a cell-surface receptor for surfactant protein A. J Biol Chem 271:16375–16383

    PubMed  CAS  Google Scholar 

  264. Yang CH, Szeliga J, Jordan J, Faske S, Sever-Chroneos Z, Dorsett B, Christian RE, Settlage RE, Shabanowitz J, Hunt DF et al (2005) Identification of the surfactant protein A receptor 210 as the unconventional myosin 18 A. J Biol Chem 280:34447–34457

    PubMed  CAS  Google Scholar 

  265. Weikert LF, Lopez JP, Abdolrasulnia R, Chroneos ZC, Shepherd VL (2000) Surfactant protein A enhances mycobacterial killing by rat macrophages through a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279:L216–223

    PubMed  CAS  Google Scholar 

  266. Weikert LF, Edwards K, Chroneos ZC, Hager C, Hoffman L, Shepherd VL (1997) SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol 272:L989–995

    PubMed  CAS  Google Scholar 

  267. Borron P, McCormack FX, Elhalwagi BM, Chroneos ZC, Lewis JF, Zhu S, Wright JR, Shepherd VL, Possmayer F, Inchley K et al (1998) Surfactant protein A inhibits T cell proliferation via its collagen-like tail and a 210-kDa receptor. Am J Physiol 275:L679–686

    PubMed  CAS  Google Scholar 

  268. Gruenheid S, Finlay BB (2003) Microbial pathogenesis and cytoskeletal function. Nature 422:775–781

    PubMed  CAS  Google Scholar 

  269. Henry T, Gorvel JP, Méresse S (2006) Molecular motors hijacking by intracellular pathogens. Cellular Microbiology 8:23–32

    PubMed  CAS  Google Scholar 

  270. Kolesnikova L, Bohil AB, Cheney RE, Becker S (2007) Budding of Marburg virus is associated with filopodia. Cell Microbiol 9:939–951

    PubMed  CAS  Google Scholar 

  271. Roberts KL, Baines JD (2010) Myosin va enhances secretion of herpes simplex virus 1 virions and cell surface expression of viral glycoproteins. J Virol 84:9889–9896

    PubMed  CAS  Google Scholar 

  272. Nakano T, Tani M, Nishioka M, Kohno T, Otsuka A, Ohwada S, Yokota J (2005) Genetic and epigenetic alterations of the candidate tumor-suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. Genes Chromosomes Cancer 43:162–171

    PubMed  CAS  Google Scholar 

  273. Nishioka M, Kohno T, Tani M, Yanaihara N, Tomizawa Y, Otsuka A, Sasaki S, Kobayashi K, Niki T, Maeshima A et al (2002) MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc Natl Acad Sci U S A 99:12269–12274

    PubMed  CAS  Google Scholar 

  274. Tani M, Ito J, Nishioka M, Kohno T, Tachibana K, Shiraishi M, Takenoshita S, Yokota J (2004) Correlation between histone acetylation and expression of the MYO18B gene in human lung cancer cells. Genes Chromosomes Cancer 40:146–151

    PubMed  CAS  Google Scholar 

  275. Yanaihara N, Nishioka M, Kohno T, Otsuka A, Okamoto A, Ochiai K, Tanaka T, Yokota J (2004) Reduced expression of MYO18B, a candidate tumor-suppressor gene on chromosome arm 22q, in ovarian cancer. Int J Cancer 112:150–154

    PubMed  CAS  Google Scholar 

  276. Dunn TA, Chen S, Faith DA, Hicks JL, Platz EA, Chen Y, Ewing CM, Sauvageot J, Isaacs WB, De Marzo AM et al (2006) A novel role of myosin VI in human prostate cancer. Am J Pathol 169:1843–1854

    PubMed  CAS  Google Scholar 

  277. Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H (2004) Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A 101:8144–8149

    PubMed  CAS  Google Scholar 

  278. Shigesada K, van de Sluis B, Liu PP (2004) Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene 23:4297–4307

    PubMed  CAS  Google Scholar 

  279. Woolner S, Bement WM (2009) Unconventional myosins acting unconventionally. Trends Cell Biol 19:245–252

    PubMed  CAS  Google Scholar 

  280. Chantler P, Wylie S, Wheeler-Jones C, McGonnell I (2010) Conventional myosins—unconventional functions. Biophysical Reviews 2:67–82

    Google Scholar 

  281. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K et al (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222

    PubMed  CAS  Google Scholar 

  282. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    PubMed  CAS  Google Scholar 

  283. Lorenz M, Holmes KC (2010) The actin-myosin interface. Proc Natl Acad Sci U S A 107:12529–12534

    PubMed  CAS  Google Scholar 

  284. Houdusse A, Sweeney HL (2001) Myosin motors: missing structures and hidden springs. Curr Opin Struct Biol 11:182–194

    PubMed  CAS  Google Scholar 

  285. Schrodinger LLC (2010) The PyMOL molecular graphics system, version 1.3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Yengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Quintero, O.A., Moore, J.E., Yengo, C.M. (2012). Basics of the Cytoskeleton: Myosins. In: Kavallaris, M. (eds) Cytoskeleton and Human Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-788-0_4

Download citation

Publish with us

Policies and ethics