Skip to main content

How Myosin 5 Walks Deduced from Single-Molecule Biophysical Approaches

  • Chapter
  • First Online:
Myosins

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1239))

Abstract

Myosin 5a is a two-headed myosin that functions as a cargo transporter in cells. To accomplish this task it has evolved several unique structural and kinetic features that allow it to move processively as a single molecule along actin filaments. A plethora of biophysical techniques have been used to elucidate the detailed mechanism of its movement along actin filaments in vitro. This chapter describes how this mechanism was deduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MY, Uemura S, Adachi K, Itoh H, Kinosita K Jr, Ishiwata S (2002) Myosin V is a left-handed spiral motor on the right-handed actin helix. Nat Struct Biol 9(6):464–467

    Article  CAS  PubMed  Google Scholar 

  • Ali MY, Krementsova EB, Kennedy GG, Mahaffy R, Pollard TD, Trybus KM, Warshaw DM (2007) From the cover: myosin Va maneuvers through actin intersections and diffuses along microtubules. Proc Natl Acad Sci U S A 104(11):4332–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MY, Lu H, Bookwalter CS, Warshaw DM, Trybus KM (2008) Myosin V and Kinesin act as tethers to enhance each others’ processivity 11. Proc Natl Acad Sci U S A 105(12):4691–4696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MY, Vilfan A, Trybus KM, Warshaw DM (2016) Cargo transport by two coupled myosin Va motors on actin filaments and bundles. Biophys J 111(10):2228–2240. https://doi.org/10.1016/j.bpj.2016.09.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrecka J, Ortega Arroyo J, Takagi Y, de Wit G, Fineberg A, MacKinnon L, Young G, Sellers JR, Kukura P (2015) Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. elife 4. https://doi.org/10.7554/eLife.05413

  • Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, Goldman YE, Kukura P (2016) Interferometric scattering microscopy for the study of molecular motors. Methods Enzymol 581:517–539. https://doi.org/10.1016/bs.mie.2016.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baboolal TG, Sakamoto T, Forgacs E, White HD, Jackson SM, Takagi Y, Farrow RE, Molloy JE, Knight PJ, Sellers JR, Peckham M (2009) The SAH domain extends the functional length of the myosin lever 2. Proc Natl Acad Sci U S A 106(52):22193–22198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker JE, Krementsova EB, Kennedy GG, Armstrong A, Trybus KM, Warshaw DM (2004) Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc Natl Acad Sci U S A 101(15):5542–5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao J, Huck D, Gunther LK, Sellers JR, Sakamoto T (2013) Actin structure-dependent stepping of myosin 5a and 10 during processive movement. PLoS ONE 8(9):e74936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beausang JF, Schroeder HW III, Nelson PC, Goldman YE (2008) Twirling of actin by myosins II and V observed via polarized TIRF in a modified gliding assay 10. Biophys J 95(12):5820–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beausang JF, Shroder DY, Nelson PC, Goldman YE (2013) Tilting and wobble of myosin V by high-speed single-molecule polarized fluorescence microscopy. Biophys J 104(6):1263–1273. https://doi.org/10.1016/j.bpj.2013.01.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12(4):780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemink MJ, Geeves MA (2011) Shaking the myosin family tree: biochemical kinetics defines four types of myosin motor. Semin Cell Dev Biol 22(9):961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess S, Walker M, Wang F, Sellers JR, White HD, Knight PJ, Trinick J (2002) The prepower stroke conformation of myosin V. J Cell Biol 159(6):983–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23

    Article  CAS  PubMed  Google Scholar 

  • Clemen AE, Vilfan M, Jaud J, Zhang J, Barmann M, Rief M (2005) Force-dependent stepping kinetics of myosin-V. Biophys J 88(6):4402–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig EM, Linke H (2009) Mechanochemical model for myosin V. Proc Natl Acad Sci U S A 106(43):18261–18266. https://doi.org/10.1073/pnas.0908192106

    Article  PubMed  PubMed Central  Google Scholar 

  • De La Cruz EM, Ostap EM (2004) Relating biochemistry and function in the myosin superfamily. Curr Opin Cell Biol 16(1):61–67

    Article  CAS  Google Scholar 

  • De La Cruz EM, Wells AL, Rosenfeld SS, Ostap EM, Sweeney HL (1999) The kinetic mechanism of myosin V. Proc Natl Acad Sci U S A 96(24):13726–13731

    Article  Google Scholar 

  • Dunn AR, Spudich JA (2007) Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 14(3):246–248

    Article  CAS  PubMed  Google Scholar 

  • Espindola FS, Espreafico EM, Coelho MV, Martins AR, Costa FRC, Mooseker MS, Larson RE (1992) Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin. J Cell Biol 118:359–368

    Article  CAS  PubMed  Google Scholar 

  • Espindola FS, Suter DM, Partata LB, Cao T, Wolenski JS, Cheney RE, King SM, Mooseker MS (2000) The light chain composition of chicken brain myosin-Va: calmodulin, myosin-II essential light chains, and 8-kDa dynein light chain/PIN. Cell Motil Cytoskeleton 47(4):269–281

    Article  CAS  PubMed  Google Scholar 

  • Forgacs E, Cartwright S, Kovacs M, Sakamoto T, Sellers JR, Corrie JE, Webb MR, White HD (2006) Kinetic mechanism of myosinV-S1 using a new fluorescent ATP analogue. Biochemistry 45(43):13035–13045

    Article  CAS  PubMed  Google Scholar 

  • Forgacs E, Cartwright S, Sakamoto T, Sellers JR, Corrie JE, Webb MR, White HD (2008) Kinetics of ADP dissociation from the trail and lead heads of actomyosin V following the power stroke. J Biol Chem 283(2):766–773

    Article  CAS  PubMed  Google Scholar 

  • Gardini L, Heissler SM, Arbore C, Yang Y, Sellers JR, Pavone FS, Capitanio M (2018) Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat Commun 9(1):2844. https://doi.org/10.1038/s41467-018-05251-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhardt JC, Clemen AE, Jaud J, Rief M (2006) Myosin-V is a mechanical ratchet. Proc Natl Acad Sci U S A 103(23):8680–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther LK, Furuta K, Bao J, Urbanowski MK, Kojima H, White HD, Sakamoto T (2014) Coupling of two non-processive myosin 5c dimers enables processive stepping along actin filaments. Sci Rep 4:4907. https://doi.org/10.1038/srep04907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer JA III, Sellers JR (2012) Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13(1):13–26

    Article  CAS  Google Scholar 

  • Heissler SM, Sellers JR (2016) Kinetic adaptations of myosins for their diverse cellular functions. Traffic 17(8):839–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heissler SM, Chinthalapudi K, Sellers JR (2017) Kinetic signatures of myosin-5B, the motor involved in microvillus inclusion disease. J Biol Chem 292(44):18372–18385. https://doi.org/10.1074/jbc.M117.801456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges AR, Krementsova EB, Trybus KM (2007) Engineering the processive run length of myosin V. J Biol Chem 282(37):27192–27197

    Article  CAS  PubMed  Google Scholar 

  • Johnston GC, Prendergast JA, Singer RA (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 113:539–552

    Article  CAS  PubMed  Google Scholar 

  • Kad NM, Trybus KM, Warshaw DM (2008) Load and Pi control flux through the branched kinetic cycle of myosin V 9. J Biol Chem 283(25):17477–17484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight PJ, Thirumurugan K, Yu Y, Wang F, Kalverda AP, Stafford WF III, Sellers JR, Peckham M (2005) The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J Biol Chem 280:34702–34708

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Kinoshita T, Ito T, Ando T (2003) High-resolution imaging of myosin motor in action by a high-speed atomic force microscope. Adv Exp Med Biol 538:119–127

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468(7320):72–76

    Article  CAS  PubMed  Google Scholar 

  • Krementsova EB, Furuta K, Oiwa K, Trybus KM, Ali MY (2017) Small teams of myosin Vc motors coordinate their stepping for efficient cargo transport on actin bundles. J Biol Chem 292(26):10998–11008. https://doi.org/10.1074/jbc.M117.780791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis JH, Beausang JF, Sweeney HL, Goldman YE (2012) The azimuthal path of myosin V and its dependence on lever-arm length. J Gen Physiol 139(2):101–120. https://doi.org/10.1085/jgp.201110715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Taylor DW, Krementsova EB, Trybus KM, Taylor KA (2006) Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 442(7099):208–211

    Article  CAS  PubMed  Google Scholar 

  • Lombardo AT, Nelson SR, Ali MY, Kennedy GG, Trybus KM, Walcott S, Warshaw DM (2017) Myosin Va molecular motors manoeuvre liposome cargo through suspended actin filament intersections in vitro. Nat Commun 8:15692. https://doi.org/10.1038/ncomms15692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo AT, Nelson SR, Kennedy GG, Trybus KM, Walcott S, Warshaw DM (2019) Myosin Va transport of liposomes in three-dimensional actin networks is modulated by actin filament density, position, and polarity. Proc Natl Acad Sci U S A 116(17):8326–8335. https://doi.org/10.1073/pnas.1901176116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Ali MY, Bookwalter CS, Warshaw DM, Trybus KM (2009) Diffusive movement of processive kinesin-1 on microtubules 4. Traffic 10(10):1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margossian SS, Lowey S (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol 85:55–71

    Article  CAS  PubMed  Google Scholar 

  • Mehta AD, Pullen KA, Spudich JA (1998) Single molecule biochemistry using optical tweezers. FEBS Lett 430(1–2):23–27

    Article  CAS  PubMed  Google Scholar 

  • Mehta AD, Rock RS, Ridf M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593

    Article  CAS  PubMed  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713

    Article  CAS  PubMed  Google Scholar 

  • Oguchi Y, Mikhailenko SV, Ohki T, Olivares AO, De La Cruz EM, Ishiwata S (2008) Load-dependent ADP binding to myosins V and VI: implications for subunit coordination and function. Proc Natl Acad Sci U S A 105(22):7714–7719. https://doi.org/10.1073/pnas.0800564105

    Article  PubMed  PubMed Central  Google Scholar 

  • Okada T, Tanaka H, Iwane AH, Kitamura K, Ikebe M, Yanagida T (2007) The diffusive search mechanism of processive myosin class-V motor involves directional steps along actin subunits. Biochem Biophys Res Commun 354(2):379–384

    Article  CAS  PubMed  Google Scholar 

  • Oke OA, Burgess SA, Forgacs E, Knight PJ, Sakamoto T, Sellers JR, White H, Trinick J (2010) Influence of lever structure on myosin 5a walking 1. Proc Natl Acad Sci U S A 107(6):2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortega AJ, Andrecka J, Spillane KM, Billington N, Takagi Y, Sellers JR, Kukura P (2014) Label-free, all-optical detection, imaging and tracking of a single protein. Nano Lett 14(4):2065–2070

    Article  CAS  Google Scholar 

  • Pastural E, Barrat FJ, Dufourcq-Lagelouse R, Certain S, Sanal O, Jabado N, Seger R, Griscelli C, Fischer A, de Saint BG (1997) Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat Genet 16(3):289–292

    Article  CAS  PubMed  Google Scholar 

  • Purcell TJ, Morris C, Spudich JA, Sweeney HL (2002) Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99(22):14159–14164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell TJ, Sweeney HL, Spudich JA (2005) A force-dependent state controls the coordination of processive myosin V. Proc Natl Acad Sci U S A 102(39):13873–13878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993a) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261:58–65

    Article  CAS  PubMed  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993b) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  PubMed  Google Scholar 

  • Rief M, Rock RS, Mehta AD, Mooseker MS, Cheney RE, Spudich JA (2000) Myosin-V stepping kinetics: a molecular model for processivity. Proc Natl Acad Sci U S A 97(17):9482–9486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld SS, Sweeney HL (2004) A model of myosin V processivity. J Biol Chem 279(40100):40111

    Google Scholar 

  • Sakamoto T, Amitani I, Yokota E, Ando T (2000) Direct observation of processive movement by individual myosin V molecules. Biochem Biophys Res Commun 272(2):586–590

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Wang F, Schmitz S, Xu YH, Xu Q, Molloy JE, Veigel C, Sellers JR (2003) Neck length and processivity of myosin V. J Biol Chem 278(31):29201–29207

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Yildiz A, Selvin PR, Sellers JR (2005) Step-size is determined by neck length in myosin V. Biochemistry 44:16203–16210

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Webb MR, Forgacs E, White HD, Sellers JR (2008) Direct observation of the mechanochemical coupling in myosin Va during processive movement. Nature 455(7209):128–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sellers JR, Veigel C (2010) Direct observation of the myosin-Va power stroke and its reversal 1. Nat Struct Mol Biol 17(5):590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladewski TE, Krementsova EB, Trybus KM (2016) Myosin Vc is specialized for transport on a secretory superhighway. Curr Biol 26(16):2202–2207. https://doi.org/10.1016/j.cub.2016.06.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder GE, Sakamoto T, Hammer JA III, Sellers JR, Selvin PR (2004) Nanometer localization of single green fluorescent proteins: evidence that myosin V walks hand-over-hand via telemark configuration. Biophys J 87(3):1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney HL, Houdusse A (2010) Structural and functional insights into the myosin motor mechanism 2. Annu Rev Biophys 39:539–557

    Article  CAS  PubMed  Google Scholar 

  • Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25(12):730–748. https://doi.org/10.1016/j.tcb.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  • Syed S, Snyder GE, Franzini-Armstrong C, Selvin PR, Goldman YE (2006) Adaptability of myosin V studied by simultaneous detection of position and orientation. EMBO J 25(9):1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi Y, Yang Y, Fujiwara I, Jacobs D, Cheney RE, Sellers JR, Kovacs M (2008) Human myosin Vc is a low duty ratio, non-processive molecular motor. J Biol Chem

    Google Scholar 

  • Takagi Y, Farrow RE, Billington N, Nagy A, Batters C, Yang Y, Sellers JR, Molloy JE (2014) Myosin-10 produces its power-stroke in two phases and moves processively along a single actin filament under low load. Proc Natl Acad Sci U S A 111(18):E1833–E1842. https://doi.org/10.1073/pnas.1320122111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Homma K, Iwane AH, Katayama E, Ikebe R, Saito J, Yanagida T, Ikebe M (2002) The motor domain determines the large step of myosin-V. Nature 415(6868):192–195

    Article  CAS  PubMed  Google Scholar 

  • Thirumurugan K, Sakamoto T, Hammer JA III, Sellers JR, Knight PJ (2006) The cargo-binding domain regulates structure and activity of myosin 5. Nature 442(7099):212–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toprak E, Enderlein J, Syed S, McKinney SA, Petschek RG, Ha T, Goldman YE, Selvin PR (2006) Defocused orientation and position imaging (DOPI) of myosin V. Proc Natl Acad Sci U S A 103(17):6495–6499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura S, Higuchi H, Olivares AO, De La Cruz EM, Ishiwata S (2004) Mechanochemical coupling of two substeps in a single myosin V motor. Nat Struct Mol Biol 11:877–883

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Wang F, Bartoo ML, Sellers JR, Molloy JE (2002) The gated gait of the precessive molecular motor, myosin V. Nat Cell Biol 4:59–65

    Article  CAS  PubMed  Google Scholar 

  • Veigel C, Schmitz S, Wang F, Sellers JR (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat Cell Biol 7(9):861–869

    Article  CAS  PubMed  Google Scholar 

  • Vilfan A (2005) Elastic lever-arm model for myosin V. Biophys J 88(6):3792–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner W, Brenowitz SD, Hammer JA III (2011) Myosin-Va transports the endoplasmic reticulum into the dendritic spines of Purkinje neurons. Nat Cell Biol 13(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Walker ML, Burgess SA, Sellers JR, Wang F, Hammer JA III, Trinick J, Knight PJ (2000) Two-headed binding of a processive myosin to F-actin. Nature 405:804–807

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Chen L, Arcucci O, Harvey EV, Bowers B, Xu Y, Hammer JA III, Sellers JR (2000) Effect of ADP and ionic strength on the kinetic and motile properties of recombinant mouse myosin V. J Biol Chem 275(6):4329–4335

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Thirumurugan K, Stafford WF, Hammer JA III, Knight PJ, Sellers JR (2004) Regulated conformation of myosin V. J Biol Chem 279(4):2333–2336

    Article  CAS  PubMed  Google Scholar 

  • Warshaw DM, Kennedy GG, Work SS, Krementsova EB, Beck S, Trybus KM (2005) Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophys J 88(5):L30–L32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe TM, Tanaka H, Iwane AH, Maki-Yonekura S, Homma K, Inoue A, Ikebe R, Yanagida T, Ikebe M (2004) A one-headed class V myosin molecule develops multiple large (approximately 32-nm) steps successively. Proc Natl Acad Sci U S A 101(26):9630–9635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Mabuchi K, Ikebe R, Ikebe M (2006) Mechanoenzymatic characterization of human myosin Vb. Biochemistry 45(8):2729–2738

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Watanabe TM, Sato O, Awata J, Homma K, Umeki N, Higuchi H, Ikebe R, Ikebe M (2008) Human myosin Vc is a low duty ratio nonprocessive motor. J Biol Chem 283(16):10581–10592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe TM, Iwane AH, Tanaka H, Ikebe M, Yanagida T (2010) Mechanical characterization of one-headed myosin-V using optical tweezers. PLoS ONE 5(8):e12224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wells A, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Bowers B, Rao K, Wei Q, Hammer JA III (1998) Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J Cell Biol 143:1–20

    Article  Google Scholar 

  • Wu XS, Masedunskas A, Weigert R, Copeland NG, Jenkins NA, Hammer JA (2012) Melanoregulin regulates a shedding mechanism that drives melanosome transfer from melanocytes to keratinocytes. Proc Natl Acad Sci U S A 109(31):E2101–E2109. https://doi.org/10.1073/pnas.1209397109

    Article  PubMed  PubMed Central  Google Scholar 

  • Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38(7):574–582

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JS would like to thank all his many collaborators who participated in studying the molecular mechanism of myosin 5a for their friendship, keen scientific insight and magnificent technical skills. It’s been fun! Particularly, he would like to thank Claudia Veigel, Peter Knight, Justin Molloy, John Trinick (deceased), Stan Burgess, Philipp Kukura, Joanna Andrecka, Howard White, Fei Wang and Takeshi Sakamoto. The authors especially want to thank Peter Knight for his insightful comments on the manuscript and for preparing Fig. 8.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Sellers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sellers, J.R., Takagi, Y. (2020). How Myosin 5 Walks Deduced from Single-Molecule Biophysical Approaches. In: Coluccio, L. (eds) Myosins. Advances in Experimental Medicine and Biology, vol 1239. Springer, Cham. https://doi.org/10.1007/978-3-030-38062-5_8

Download citation

Publish with us

Policies and ethics