Skip to main content

Reconstructing Paleoenvironmental Conditions Through Integration of Paleogeography, Stratigraphy, Sedimentology, Mineralogy and Stable Isotope Data of Lacustrine Carbonates: An Example from Early Middle Triassic Strata of Southwest Gondwana, Cuyana Rift, Argentina

  • Chapter
  • First Online:
Limnogeology: Progress, Challenges and Opportunities

Part of the book series: Syntheses in Limnogeology ((SYNLIMNO))

Abstract

Reconstructing continental paleoenvironmental conditions (temperature, precipitation, hydrology, and hydrography) is essential for constraining the influences on terrestrial ecosystems, sediment and solute yields to the ocean and carbon cycles, as well as for calibrating numerical paleoclimate models. Making such reconstructions from lacustrine strata, however, is quite challenging because of varying water sources, flow paths and residence times, paleogeographic effects, and eodiagenesis. Indeed, even stratigraphic evidence of fluctuations in lake level cannot be directly interpreted in terms of changing precipitation because of the complex response of lakes to changing input conditioned by upstream and downstream factors. Such challenges can be addressed by thorough integration of paleogeography, stratigraphy, sedimentology, mineralogy, and stable isotope data of lacustrine carbonates within a framework that accounts for the many and convoluted controls on lake systems.

We illustrate this approach using data from three lacustrine units from the Cuyana Basin (Argentina) of early Middle Triassic age—the Cerro de las Cabras, Santa Clara Arriba, and Cerro Puntudo formations. They represent sedimentation in carbonate-rich lacustrine systems during a time for which information on continental paleoenvironments is sparse, especially for interior Pangea. Our detailed study of the stable carbon and oxygen isotope composition of the carbonate beds of these paleolakes, integrated with other geological evidence, enabled interpretation of their complex hydrology and paleoclimate conditions. Sedimentological, stratigraphic, and mineralogical data suggest surface water flow ranged from intermittently open to persistently closed, whereas C and O stable isotope values indicate that both Cerro de las Cabras and Cerro Puntudo paleolakes had open groundwater flow. The Santa Clara Arriba paleolake, although intermittently open to surface flow, had long water residence time, based on high correlation of C and O stable isotopes.

This evidence of the hydrographic-hydrologic complexity of these continental interior basins obviates confident quantitative estimates of paleotemperature from oxygen isotopes. The isotope data do, however, indicate significant evaporation and frequently varying precipitation, runoff, and nutrient supply. These data, along with ephemeral-stream strata, subaerial-exposure features, vertisols, and clay-mineral assemblages dominated by smectite/illite, suggest a seasonally varying warm semi-arid to sub-humid paleoclimate. This is in agreement with paleoclimate models for the Triassic that pointed to marked seasonality in the Cuyana Rift Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alonso-Zarza, A. M. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews, 60, 261–298.

    Article  Google Scholar 

  • Alonso-Zarza, A. M., Meléndez, A., Martín-García, R., Herrero, M. J., & Martín-Pérez, A. (2012). Discriminating between tectonism and climate signatures in palustrine deposits: Lessons from the Miocene of the Teruel Graben, NE Spain. Earth-Science Reviews, 113, 141–160.

    Article  Google Scholar 

  • Anderson, N. J., & Leng, M. J. (2004). Increased aridity during the early Holocene in West Greenland inferred from stable isotopes in laminated-lake sediments. Quaternary Science Reviews, 23, 841–849.

    Article  Google Scholar 

  • Andres, M. S., Sumner, D. Y., Reid, R. P., & Swart, P. K. (2006). Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973–976.

    Article  Google Scholar 

  • Arenas, C., Casanova, J. O.-L., & Pardo, G. (1997). Stable-isotope characterization of the Miocene lacustrine systems of Los Monegros (Ebro Basin, Spain) palaeogeographic and palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 133–155.

    Article  Google Scholar 

  • Armenteros, I. (2010). Diagenesis of carbonates in continental settings. In A. M. Alonso-Zarza & L. Tanner (Eds.), Carbonates in continental settings, geochemistry, diagenesis and applications, developments in sedimentology (Vol. 62, pp. 61–151). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Artabe, A. E., Spalletti, L. A., Bodnar, J., & Morel, E. M. (2003). Estudio paleoxilológico y sedimentológico de la Formación Montaña (Triásico), provincia de Mendoza, Argentina. Ameghiniana, 46(1), 141–152.

    Google Scholar 

  • Atudorei, V., & Baud, A. (1997). Carbon isotope events during the Triassic. Albertiana, 20, 45–49.

    Google Scholar 

  • Ávila, J. N., Chemale, F. J. R., Mallmann, G., Kawashita, K., & Armstrong, R. A. (2006). Combined stratigraphic and isotopic studies of Triassic strata, Cuyo Basin, Argentine Precordillera. GSA Bulletin, 118, 1088–1098.

    Article  Google Scholar 

  • Barredo, S. P. (2005). Análisis estructural y tectosedimentario de la subcuenca de Rincón Blanco. Precordillera Occidental, provincia de San Juan. Universidad de Buenos Aires, PhD Dissertation, 325p.

    Google Scholar 

  • Barredo, S. P., Chemale, F., Marsicano, C., Ávila, J. N., Ottone, E. G., & Ramos, V. A. (2011). Tectono-sequence stratigraphy and U–Pb zircon ages of the Rincón Blanco Depocenter, northern Cuyo Rift, Argentina. Gondwana Research, 21, 624–636.

    Article  Google Scholar 

  • Benavente, C. A., & Mancuso, A. C. (2016). Lacustrine Triassic paleoenvironments from Argentina: A context to paleobiology (p. 106). Río Negro, Argentina: 11° Congreso de la Asociación Paleontológica Argentina.

    Google Scholar 

  • Benavente, C. A., Mancuso, A. C., & Bohacs, K. M. (2019a). Paleohydrogeologic reconstruction of Triassic carbonate paleolakes from stable isotopes: Encompassing two lacustrine models. Journal of South American Earth Sciences, 95. https://doi.org/10.1016/j.jsames.2019.102292.

  • Benavente, C. A., Mancuso, A. C., Bohacs, K. M., & Irmis, R. B. (2019b). Multiproxy approach to paleohydrologic and paleoclimate reconstruction of Triassic lake basins of Argentina. Geological Society of America Abstracts with Programs, 51, 5. https://doi.org/10.1130/abs/2019AM-339785.

    Article  Google Scholar 

  • Benavente, C. A., Zavattieri, A. M., Mancuso, A. C., Abarzúa, F., & Gierlowski-Kordesch, E. H. (2018). Paleolimnology of the Santa Clara Arriba paleolake (Triassic Cuyana rift basin): Integrating sedimentology and palynology. Journal of Paleolimnology, 59, 5–20.

    Article  Google Scholar 

  • Benavente, C. A., Mancuso, A. C., & Cabaleri, N. G. (2012). First occurrence of charophyte algae from a Triassic paleolake in Argentina and their paleoenvironmental context. Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364, 172–183.

    Article  Google Scholar 

  • Benavente, C. A., Mancuso, A. C., Cabaleri, N. G., & Gierlowski-Kordesch, E. H. (2015). Comparison of lacustrine successions and their paleohydrologic implications in the two sub-basins of the Triassic Cuyana rift, Argentina. Sedimentology, 62, 1771–1813.

    Article  Google Scholar 

  • Beltrán, M., Bodnar, J., & Coturel, E. P. (2018). Lycopodites (Lycopodiidae, Lycopodiales): un nuevo integrante de las floras triásicas de la Argentina. Revista del Museo Argentino de Ciencias Naturales, 20(2), 205–216.

    Google Scholar 

  • Billi, P. (2007). Morphology and sediment dynamics of ephemeral stream terminal distributary systems in the Kobo Basin (northern Welo, Ethiopia). Geomorphology, 85, 98–113.

    Article  Google Scholar 

  • Bodnar, J., Drovandi, J., Morel, E., & Ganuza, D. (2018). Middle Triassic dipterid ferns from west-central Argentina and their relation to palaeoclimatic changes. Acta Palaeontologica Polonica, 63. https://doi.org/10.4202/app.00459.2018.

  • Bohacs, K. M., Carroll, A. R., Neal, J. E., & Mankiewicz, P. J. (2000). Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic—Geochemical framework. In E. Gierlowski-Kordesch & K. Kelts (Eds.), Lake basins through space and time (AAPG Studies in Geology) (Vol. 46, pp. 3–37).

    Google Scholar 

  • Bohacs, K. M., Carroll, A. R., & Neal, J. E. (2003). Lessons from large lake systems – thresholds, nonlinearity, and strange attractors. In M. A. Chan & A. W. Archer (Eds.), Extreme depositional environments: Mega end members in geologic time: Boulder, Colorado (Geological Society of America Special Paper) (Vol. 370, pp. 75–90).

    Google Scholar 

  • Bowen, G. J., & Revenaugh, J. (2003). Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39, 10–1299.

    Article  Google Scholar 

  • Bowen, G. J., & Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation. Geology, 30(4), 315–318.

    Article  Google Scholar 

  • Camoin, G., Casanova, J., Rouchy, J. M., Blanc-Valleron, M. M., & Deconinck, J. F. (1997). Environmental controls on perennial and ephemeral carbonate lakes: The central palaeo-Andean Basin of Bolivia during Late Cretaceous to early Tertiary times. Sedimentary Geology, 113, 1–26.

    Article  Google Scholar 

  • Chamley, H. (1989). Clay sedimentology. Berlin: Springer, pp. 623.

    Google Scholar 

  • Chen, W.-Y., Su, T., Jia, L.-B., & Zhou, Z.-K. (2019). The relationship between leaf physiognomy and climate based on a large modern dataset: Implications for palaeoclimate reconstructions in China. Palaeogeography, Palaeoclimatology, Palaeoecology, 527, 1–13. https://doi.org/10.1016/j.palaeo.2019.04.022.

    Article  Google Scholar 

  • Cohen, A. S. (1990). A tectonostratigraphic model for sedimentation in Lake Tanganyika, Africa. In B. Katz (Ed.), Lacustrine Basin exploration. Case studies and modern analogs (Vol. 50, pp. 137–150). AAPG Memoir.

    Google Scholar 

  • Cortés, J. M., González, B. G., & Koukharsky, M. M. L. (2003). Hoja Geológica 3369-03 Yalguaráz. Provincias de San Juan y Mendoza República Argentina (p. 95). Subsecretaría de Minería de la Nación, Servicio Geológico Minero Argentino.

    Google Scholar 

  • Deocampo, D. M., & Ashley, G. M. (1999). Siliceous islands in a carbonate sea: Modern and Pleistocene spring-fed wetlands in Ngorongoro crater and Oldupai* gorge, Tanzania. Journal of Sedimentary Research, 69(5), 974–979.

    Article  Google Scholar 

  • Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162.

    Article  Google Scholar 

  • Frakes, L. A. (1979). Climates throughout geologic time (p. 304). Amsterdam, New York: Elsevier Scientific.

    Google Scholar 

  • Galfetti, T., Hochuli, P. A., Brayard, A., Bucher, H., Weissert, H., & Vigran, J. O. (2007). The Smithian/Spathian boundary event: A global climatic change in the wake of the end-Permian biotic crisis. Evidence from palynology, ammonoids and stable isotopes. Geology, 35, 291–294.

    Article  Google Scholar 

  • Gibson, J. J., Prepas, E. E., & Mceachern, P. (2002). Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: Modelling and results from a regional survey of Boreal lakes. Journal of Hydrology, 262, 128–144.

    Article  Google Scholar 

  • Folguera, A., & Etcheverría, M. (2004). Hoja Geológica 3369-15 Potrerillos, Provincia de Mendoza. Programa Nacional de Cartas Geológicas de la República Argentina, 1:100.000. Servicio Geológico Minero Argentino. Instituto de Geología y Recursos Minerales, 301, 1–136. Buenos Aires.

    Google Scholar 

  • Franzese, J., Spalletti, L. A., Gómez, P. I., & Macdonald, D. (2003). Tectonic and palaeoenvironmental evolution of Mesozoic sedimentary basins along the Argentinian Andes foothills (32° – 54° S.L.). In: Structure and Development of the Pacific Margin of Gondwana (Ed. by R.J. Pankhurst, L.A. Spalletti). Journal of South American Earth Sciences, 16(1), 81–90.

    Article  Google Scholar 

  • Freytet, P., & Verrecchia, E. P. (1998). Freshwater organisms that build stromatolites: A synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.

    Article  Google Scholar 

  • Groeber, P., & Stipanicic, P. N. (1953). Triásico. In: Groeber P, Stipanicic PN, Mingramm (eds.) A.R.G.: Mesozoico. Geografía de la República Argentina. Sociedad Argentina de Estudios Geográficos GAEA, 2(1), 13–141.

    Google Scholar 

  • Hammarlund, D., Björck, S., Buchardt, B., Israelson, C., & Thomsen, C. T. (2003). Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quaternary Science Reviews, 22, 353–370.

    Article  Google Scholar 

  • Harrington, H. J. (1971). Descripción geológica de la Hoja 22c Ramblón. Provincias de Mendoza y San Juan. Boletín n° 114 (p. 81). Argentina: Dirección Nacional de Geología y Minería.

    Google Scholar 

  • Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Yancey, T. E., & Pérez-Huerta, A. (2018). Temperature evolution and the oxygen isotope composition of Phanerozoic oceans from carbonate clumped isotope thermometry. Earth and Planetary Science Letters, 490, 40–50.

    Article  Google Scholar 

  • Holz, M. (2015). Mesozoic paleogeography and paleoclimates – A discussion of the diverse greenhouse and hothouse conditions of an alien world. Journal of South American Earth Sciences, 61, 91–107.

    Google Scholar 

  • Hren, M. T., & Sheldon, N. D. (2012). Temporal variations in lake water temperature: Paleoenvironmental implications of lake carbonate δ18O and temperature records. Earth and Planetary Science Letters, 337–338, 77–84.

    Article  Google Scholar 

  • Huerta, P., & Armenteros, I. (2005). Calcrete and palustrine assemblages on a distal alluvial-floodplain: A response to local subsidence (Miocene of the Duero basin, Spain). Sedimentary Geology, 177, 253–270.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). A treatise on limnology (Geography, physics and chemistry) (Vol. 1). New York: Wiley, 1015 p.

    Google Scholar 

  • Jenchen, U., & Rosenfeld, U. (2002). Continental Triassic in Argentina: Response to tectonic activity. Journal of South American Earth Sciences, 15, 461–479.

    Article  Google Scholar 

  • Kelts, K., & Talbot, M. (1990). Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions. In M. M. Tilzer & C. Serruya (Eds.), Large lakes: ecological structure and function (pp. 290–317). Madison: Science Technical Publications.

    Google Scholar 

  • Kent, D. V., & Tauxe, L. (2005). Corrected Late Triassic latitudes for continents adjacent to the North Atlantic. Science, 307, 240–244.

    Article  Google Scholar 

  • Kokogian, D. A., Seveso, S. S., & Mosquera, A. (1993). Capítulo I-7 Las secuencias sedimentarias triásicas. In V. Ramos (Ed.), Relatorio Geología y Recursos Naturales de Mendoza (pp. 65–78). XII Congreso Geológico Argentino and II Congreso de Exploración de Hidrocarburos.

    Google Scholar 

  • Krull, E. S., Lehrmann, D. J., Druke, D., Kessel, B., Yu, Y. Y., & Li, R. (2004). Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 204, 297–315.

    Article  Google Scholar 

  • Legarreta, L., Kokogian, D. A., & Dellapé, D. A. (1992). Estructura terciaria de la Cuenca Cuyana: ¿Cuánto de inversión tectónica? Revista de la Asociación Geológica Argentina, 47, 83–86.

    Google Scholar 

  • Leng, M. J., & Marshall, J. D. (2004). Paleoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831.

    Article  Google Scholar 

  • Leng, M. J., Lamb, A. L., Heaton, T. H. E., Marshall, J. D., Wolfe, B. B., Jones, M. D., Holmes, J. A., & Arrowsmith, A. (2005). Isotopes in lake sediments. In M. J. Leng (Ed.), Isotopes in palaeoenvironmental research (pp. 147–184). The Netherlands: Springer.

    Google Scholar 

  • Li, H. C., & Ku, T. L. (1997). δ13C- δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, 69–80.

    Article  Google Scholar 

  • Liutkus, C. M., Wright, J. D., Ashley, G. M., & Sikes, N. E. (2005). Paleoenvironmental interpretation of lake-margin deposits using δ13C and δ 18O results from early Pleistocene carbonate rhizoliths, Olduvai Gorge, Tanzania. Geology, 33, 377–380.

    Article  Google Scholar 

  • Llambías, E. J. (2001). Complejos magmáticos triásicos al norte de los 40° S. In A. Artabe, E. Morel, & A. Zamuner (Eds.), El Sistema Triásico de la Argentina (pp. 55–68). La Plata: Fundación Museo de La Plata “Francisco P. Moreno”.

    Google Scholar 

  • López-Arbarello, A., & Zavattieri, A. M. (2008). Systematic revision of Pseudobeaconia Bordas, 1944 and Mendocinichtys Whitley, 1953 (Actinopterygii “Perleidiformes”) from the Triassic of Argentina. Palaeontology, 51, 1025–1052.

    Article  Google Scholar 

  • Mancuso, A. C. (2009). Taphonomic analysis in lacustrine environment: Two very different Triassic lake paleoflora contexts from Western Gondwana. Sedimentary Geology, 222, 149–159.

    Article  Google Scholar 

  • Mancuso, A. C., Chemale, F., Barredo, S., Ávila, J. N., Ottone, E. G., & Marsicano, C. (2010). Age constraints for the northernmost outcrops of the Triassic Cuyana Basin, Argentina. Journal of South American Earth Sciences, 30, 97–103.

    Article  Google Scholar 

  • Markello, J. R., Koepnick, R. B., Waite, L. E., & Collins, J. F. (2007). The carbonate analogs through time (CATT) hypothesis and the global atlas of carbonate fields—A systematic and predictive look at Phanerozoic carbonate systems. SEPM Special Publication, 89, 1–31.

    Google Scholar 

  • Meléndez, N., Liesa, C. L., Soria, A. R., & Meléndez, A. (2009). Lacustrine system evolution during early rifting: El Castellar Formation (Galve subbasin, Central Iberian Chain). Sedimentary Geology, 222, 64–77.

    Article  Google Scholar 

  • Moernaut, J., Verschuren, D., Charlet, F., Kristen, I., Fagot, M., & De Batist, M. (2010). The seismic-stratigraphic record of lake-level fluctuations in Lake Challa: Hydrological stability and change in equatorial East Africa over the last 140 kyr. Earth and Planetary Science Letters, 290, 214–223.

    Article  Google Scholar 

  • Murphy, J. T. J. R., Lowenstein, T. K., & Pietras, J. T. (2014). Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney Member transition zone. Sedimentary Geology, 314, 75–91.

    Article  Google Scholar 

  • Noffke, N., Gerdes, G., Klenke, T., & Krumbein, W. E. (2001). Microbially induced sedimentary structures—A new category within the classification of primary sedimentary structures. Journal of Sedimentary Research, 71, 649–656.

    Article  Google Scholar 

  • Ostera, H. A., & Dapeña, C. (2003). Environmental Isotopes and Geochemistry of Bañado Carilauquen. Mendoza, Argentina. Short Papers – IV South American Symposium on Isotope Geology, 461–464.

    Google Scholar 

  • Parrish, J. (1993). Climate of the supercontinent Pangea. The Journal of Geology, 101, 215–233.

    Article  Google Scholar 

  • Parrish, J. T., Hyland, E. G., Chan, M. A., & Hasiotis, S. T. (2018). Stable and clumped isotopes in desert carbonate spring and lake deposits reveal palaeohydrology: A case study of the Lower Jurassic Navajo Sandstone, South-Western USA. Sedimentology, 66, 32–52.

    Article  Google Scholar 

  • Parrish, J. M., Parrish, J. T., & Ziegler, A. M. (1986). Permian-Triassic paleogeography, paleoclimatology, and implications for therapsid distributions. In N. H. Hotton, P. D. Maclean, & E. C. Roth (Eds.), The biology and ecology of mammal-like reptiles (pp. 109–132). Washington, DC: Smithsonian Press.

    Google Scholar 

  • Pla-Pueyo, S., Viseras, C., Candy, I., Soria, J. M., García-García, F., & Schreve, D. (2015). Climatic control on palaeohydrology and cyclical sediment distribution in the Plio-Quaternary deposits of the Guadix Basin (Betic Cordillera, Spain). Quaternary International, 389, 56–69.

    Article  Google Scholar 

  • Pla-Pueyo, S., Gierlowski-Kordesch, E. H., Viseras, C., & Soria, J. M. (2009). Major controls on sedimentation during the evolution of a continental basin: Pliocene–Pleistocene of the Guadix Basin (Betic Cordillera, southern Spain). Sedimentary Geology, 219, 97–114.

    Article  Google Scholar 

  • Potter, J., Siemann, M. G., & Tsypukov, M. (2004). Large-scale carbon isotope fractionation in evaporites and the generation of extremely 13C-enriched methane. Geology, 32(6), 533–536.

    Article  Google Scholar 

  • Quattrocchio, M. E., Volkheimer, W., Borromei, A. M., & Martínez, M. A. (2011). Changes of the palynobiotas in the Mesozoic and Cenozoic of Patagonia: A review. Biological Journal of the Linnean Society, 103, 380–396.

    Article  Google Scholar 

  • Ramos, V. A., & Kay, S. M. (1991). Triassic rifting and associated basalts in the Cuyo Basin, central Argentina. In R. S. Harmon & C. W. Rapela (Eds.), Andean Magmatism and its Tectonic Setting (Geological Society of America Special Papers) (Vol. 265, pp. 79–91).

    Chapter  Google Scholar 

  • Retallack, G. J. (2013). Permian and Triassic greenhouse crises. Gondwana Research, 24, 90–103.

    Article  Google Scholar 

  • Retallack, G. J., Sheldon, N. D., Carr, P. F., Fanning, M., Thompson, C. A., Williams, M. L., Jones, B. G., & Hutton, A. (2011). Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 233–251.

    Article  Google Scholar 

  • Rozanski, K., & Araguás, L. (1995). Spatial and temporal variability of stable isotope composition of precipitation over the South American continent. Bulletin de l’Institut français d’études andines, 24(3), 379–390.

    Article  Google Scholar 

  • Rosen, M. R. (1994). The importance of groundwater in playas: A review of playa classifications and the sedimentology and hydrology of playas. Geological Society of America Special Paper, 289, 1–18.

    Article  Google Scholar 

  • Sanz-Montero, M. E., Rodríguez-Aranda, J. P., & García Del Cura, M. A. (2009). Bioinduced precipitation of barite and celestite in dolomite microbialites Examples from Miocene lacustrine sequences in the Madrid and Duero Basins, Spain. Sedimentary Geology, 222, 138–148.

    Article  Google Scholar 

  • Sanz-Montero, M. E., Rodríguez-Aranda, J. P., & García Del Cura, M. A. (2008). Dolomite–silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: The role of organotemplates in the precipitation of dolomite. Sedimentology, 55, 729–750.

    Article  Google Scholar 

  • Sanz-Montero, M. E., García Del Cura, M. A., & Rodríguez-Aranda, J. P. (2006). Facies dolomíticas de sistemas lacustres miocenos en las cuencas del Duero y de Madrid. Rasgos indicativos de su origen microbiano. GeoTemas, 9, 205–208.

    Google Scholar 

  • Scotese, C. R., Boucot, A. J., & Mckerrow, W. S. (1999). Gondwanan palaeogeography and palaeoclimatology. Journal of African Earth Sciences, 28, 99–114.

    Article  Google Scholar 

  • Sellwood, B. W., & Valdes, P. J. (2006). Mesozoic climates: General circulation models and the rock record. Sedimentary Geology, 190, 269–287.

    Article  Google Scholar 

  • Spalletti, L. A. (2001). Evolución de las cuencas sedimentarias. In A. E. Artabe, E. M. Morel, & A. B. Zamuner (Eds.), El Sistema Triásico en la Argentina (pp. 81–101). La Plata: Fundación Museo de La Plata “Francisco Pascasio Moreno”.

    Google Scholar 

  • Spalletti, L. A., & Zavattieri, A. M. (2009). El sistema lacustre de la Formación Mollar en el depocentro triásico de Santa Clara (provincia de Mendoza, Argentina). Andean Geology, 36, 236–263.

    Google Scholar 

  • Spalletti, L. A., Artabe, A. E., & Morel, E. M. (2003). Geological factors and evolution of southwestern Gondwana Triassic plants. Gondwana Research, 6, 119–134.

    Article  Google Scholar 

  • Stappenbeck, R. (1910). La Precordillera de San Juan y Mendoza. Ministerio de Agricultura de la Nación. Sección Geología, Mineralogía y Minería, Anales, 4(3), 1–187. Buenos Aires.

    Google Scholar 

  • Stipanicic, P. N. (1947). Estudio geológico, estratigráfico y tectónico de la Precordillera, al este del río de Los Patos en Sorocayense (San Juan). Tesis Doctoral. Universidad de Buenos Aires. Buenos Aires, 270 p. (Inédito).

    Google Scholar 

  • Swart,​ P. K., Burns, S. J., & Leder, J. J. (1991). Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology, 86, 89–96.

    Google Scholar 

  • Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, 80, 261–279.

    Google Scholar 

  • Teixeira, B. M. N., Astini, R. A., Gomez, F. J., Morales, N., & Pimentel, M. M. (2018). Source-to-sink analysis of continental rift sedimentation: Triassic Cuyo basin, Precordillera Argentina. Sedimentary Geology, 376, 164–184.

    Article  Google Scholar 

  • Thompson, J. B., Schultze-Lam, S., Beveridge, T. J., & Des Marais, D. J. (1997). Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton. Limnology and Oceanography, 42(1), 133–141.

    Article  Google Scholar 

  • Torsvik, T. H., & Cocks, L. R. M. (2013). Gondwana from top to base in space and time. Gondwana Research, 24, 999–1030.

    Article  Google Scholar 

  • Torsvik, T. H., Van Der Voo, R., Preeden, U., Niocaill, C. M., Steinberger, B., Doubrovine, P. V., Van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., Mccausland, P. J. A., & Cocks, L. R. M. (2012). Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–338.

    Article  Google Scholar 

  • Uliana, M. A., & Biddle, K. (1988). Mesozoic–Cenozoic paleogeographic and geodynamic evolution of southern South America. Revista Brasileira de Geociencias, 18, 172–190.

    Article  Google Scholar 

  • Van Hinsbergen, D. J. J., De Groot, L. V., Van Schaik, S. J., Spakman, W., Bijl, P. K., & Sluijs, A. (2015). A Paleolatitude Calculator for Paleoclimate Studies. PLoS One, 10(6), e0126946. https://doi.org/10.1371/journal.pone.0126946.

    Article  Google Scholar 

  • Veizer, J., & Prokoph, A. (2015). Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Science Reviews, 146, 92–104.

    Article  Google Scholar 

  • Wang, Y., Momohara, A., & Huang, Y.-J. (2019). Monsoon-induced errors in paleotemperature estimation based on leaf morphology analysis in central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 533. https://doi.org/10.1016/j.palaeo.2019.109237.

  • Zavattieri, A. M. (1990). Palinología de la Formación Las Cabras (Triásico) en su localidad tipo, Cuenca Cuyana (Provincia de Mendoza, Argentina). Parte 1. Esporas triletes. Ameghiniana, 27(1–2), 107–129.

    Google Scholar 

  • Zavattieri, A. M. (1991). Granos de polen de la Formación Las Cabras (Triásico) en su localidad tipo, Provincia de Mendoza, Argentina. Parte 2. Ameghiniana, 28(1–2), 3–29.

    Google Scholar 

  • Ziegler, A. M., Scotese, C. R., & Barrett, S. F. (1983). Mesozoic and Cenozoic paleogeographic maps. In P. Broche & J. Sundermann (Eds.), Tidal friction and the earth’s rotation II. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgments

We want to thank Elizabeth Gierlowski-Kordesch for expanding the field of Limnogeology and being the spark that ignited integrated Mesozoic lake basin studies in Argentina. It is our wish to continue honoring her memory carrying on her passion, lake science.

We also thank Editors Sila Pla Pueyo and Michael Rosen and anonymous Reviewers that improved significantly this contribution. Funding was provided by PICT 2013-0805 (ACM) and PICT 2014-0489 (CAB).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benavente, C.A., Mancuso, A.C., Bohacs, K.M. (2021). Reconstructing Paleoenvironmental Conditions Through Integration of Paleogeography, Stratigraphy, Sedimentology, Mineralogy and Stable Isotope Data of Lacustrine Carbonates: An Example from Early Middle Triassic Strata of Southwest Gondwana, Cuyana Rift, Argentina. In: Rosen, M.R., Finkelstein, D.B., Park Boush, L., Pla-Pueyo, S. (eds) Limnogeology: Progress, Challenges and Opportunities . Syntheses in Limnogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66576-0_16

Download citation

Publish with us

Policies and ethics