Skip to main content

In Vivo Methods in Cardiovascular Safety Pharmacology

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

Cardiovascular safety pharmacology (SP) studies aim to define the proarrhythmic risk of a new chemical entity (NCE) and examine its potential effects on the heart and peripheral vasculature as well as assess any other effect that may secondarily lead to an activation or depression of cardiovascular performance. According to the cardiovascular SP guidelines, telemetry studies in conscious large animals are preferred for evaluation of drug-induced effects on systemic arterial pressure, left ventricular pressure, and electrocardiography. However, telemetry studies in small animals can be invaluable as part of the lead optimization. It is important to recognize that rats should not be used to evaluate the drug effect in ventricular repolarization as they have different mechanisms of ventricular repolarization, compared to humans, large mammals, and guinea pigs. The main advantage of telemetry studies is that they are performed under unstressed and physiological conditions. Despite the preference for the use of conscious animals, SP studies are also performed using anesthetized animal models. Anesthetized animal studies allow for a more in-depth evaluation of possible drug effects on the heart and vascular function in a model with a highly stable hemodynamic state and very low variability of the measured parameters. However, consideration should be given to the potential influence of the anesthesia on the parameters measured. SP studies should also evaluate whether new chemical entities can impair the autonomic nervous system by assessing the baroreflex sensitivity (BRS) or heart rate variability. In this chapter, we highlight in vivo methods used in cardiovascular SP, including both conscious and anesthetized animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Annu Update Intensive Care Emerg Med 2011:443–456

    Article  Google Scholar 

  • Authier S, Tanguay J-F, Gauvin D, Di Fruscia R, Fournier S, Chaurand F, Troncy E (2007) A cardiovascular monitoring system in conscious cynomolgus monkeys for regulatory safety pharmacology: Part 1: Non-pharmacological validation. J Pharmacol Toxicol Methods 56:115–121

    Article  CAS  PubMed  Google Scholar 

  • Authier S, Gervais J, Fournier S, Gauvin D, Maghezzi S, Troncy E (2011) Cardiovascular and respiratory safety pharmacology in Göttingen minipigs: pharmacological characterization. J Pharmacol Toxicol Methods 64:53–59

    Article  CAS  PubMed  Google Scholar 

  • Avila AM, Bebenek I, Bonzo JA, Bourcier T, Davis Bruno KL, Carlson DB, Dubinion J, Elayan I, Harrouk W, Lee SL, Mendrick DL, Merrill JC, Peretz J, Place E, Saulnier M, Wange RL, Yao J, Zhao D, Brown PC (2020) An FDA/CDER perspective on nonclinical testing strategies: classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 114:104662

    Article  CAS  PubMed  Google Scholar 

  • Bachmann A, Mueller S, Kopp K, Brueggemann A, Suessbrich H, Gerlach U, Busch AE (2002) Inhibition of cardiac potassium currents by pentobarbital. Naunyn Schmiedeberg’s Arch Pharmacol 365:29–37

    Article  CAS  Google Scholar 

  • Baldrick P (2017) Getting a molecule into the clinic: nonclinical testing and starting dose considerations. Regul Toxicol Pharmacol 89:95–100

    Article  CAS  PubMed  Google Scholar 

  • Baldrick P (2021) Core battery safety pharmacology testing – an assessment of its utility in early drug development. J Pharmacol Toxicol Methods 109:107055

    Article  CAS  PubMed  Google Scholar 

  • Barker SJ, Gamel DM, Tremper KK (1987) Cardiovascular effects of anesthesia and operation. Crit Care Clin 3:251–268

    Article  CAS  PubMed  Google Scholar 

  • Bazett HC (1920) An analysis of the time relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  • Boulay E, Troncy E, Pugsley M, St-Pierre J, Downey A-M, Smutova V, Guerrier M, Maghezzi S, Authier S (2021) Combined cardiopulmonary assessments using impedance and digital implants in conscious freely moving cynomolgus monkeys, beagle dogs, and Göttingen minipigs: pharmacological characterization and social housing effects. Int J Toxicol 40:530–541

    Article  PubMed  Google Scholar 

  • Champeroux P, Martel E, Vannier C, Blanc V, Leguennec JY, Fowler J, Richard S (2000) The preclinical assessment of the risk for QT interval prolongation. Therapie 55:101–109

    Google Scholar 

  • Champeroux P, Martel E, Fowler JSL, Maurin A, Sola ML, Jude S, Elamrani F, Weyn AA, Laveissiere A, Lala P (2009) Calculation of QT shift in non clinical safety pharmacology studies. J Pharmacol Toxicol Methods 59:73–85

    Article  CAS  PubMed  Google Scholar 

  • Champeroux P, Ouillé A, Martel E, Fowler JSL, Maurin A, Jude S, Lala P, Le Guennec J-Y, Richard S (2010) Interferences of the autonomic nervous system with drug induced QT prolongation: a point to consider in non-clinical safety studies. J Pharmacol Toxicol Methods 61:251–263

    Article  CAS  PubMed  Google Scholar 

  • Champeroux P, Ouillé A, Martel E, Fowler JSL, Maurin A, Richard S, Le Guennec J-Y (2011) A step towards characterisation of electrophysiological profile of torsadogenic drugs. J Pharmacol Toxicol Methods 63:269–278

    Article  CAS  PubMed  Google Scholar 

  • Champeroux P, Martel E, Jude S, Laigot C, Laveissiere A, Weyn-Marotte A-A, Fowler JSL, Maurin A, Richard S, Babuty D (2013) Power spectral analysis of heart rate variability in cynomolgus monkeys in safety pharmacology studies: comparative study with beagle dogs. J Pharmacol Toxicol Methods 68:166–174

    Article  CAS  PubMed  Google Scholar 

  • Chui RW, Derakhchan K, Vargas HM (2012) Comprehensive analysis of cardiac arrhythmias in telemetered cynomolgus monkeys over a 6 month period. J Pharmacol Toxicol Methods 66:84–91

    Article  CAS  PubMed  Google Scholar 

  • Derakhchan K, Cardinal R, Brunet S, Klug D, Pharand C, Kuś T, Sasyniuk BI (1998) Polymorphic ventricular tachycardias induced by d-sotalol and phenylephrine in canine preparations of atrioventricular block: initiation in the conduction system followed by spatially unstable re-entry. Cardiovasc Res 38:617–630

    Article  CAS  PubMed  Google Scholar 

  • Derakhchan K, Chui RW, Vargas HM (2011a) Evaluation of cardiac conduction disturbances using jacketed external telemetry (JET) in conscious non-human primates (NHP). J Pharmacol Toxicol Methods 1:e46

    Article  Google Scholar 

  • Derakhchan K, Chui RW, Vargas HM (2011b) Utilization of jacketed external telemetry (JET) in conscious, non-human primates (NHP) over 1, 4, and 7months: acclimation considerations. J Pharmacol Toxicol Methods 1:e45–e46

    Article  Google Scholar 

  • Derakhchan K, Chui R, Stevens D, Gu W, Vargas H (2014) Detection of QTc interval prolongation using jacket telemetry in conscious non-human primates: comparison with implanted telemetry. Br J Pharmacol 171:509–522

    Article  CAS  PubMed  Google Scholar 

  • Deveney A, Kjellström Å, Forsberg T, Jackson D (1998) A pharmacological validation of radiotelemetry in conscious, freely moving rats. J Pharmacol Toxicol Methods 40:71–79

    Article  CAS  PubMed  Google Scholar 

  • Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193

    Google Scholar 

  • Franks P, Hooper R, Humphries R, Jones P, O’Connor S (1990) Effective pulmonary flow, aortic flow and cardiac output: in vitro and in vivo comparisons in the dog. Exp Physiol Transl Integr 75:95–106

    Article  CAS  Google Scholar 

  • Fridericia L (1921) Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scand 54:17–50

    Article  Google Scholar 

  • Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396

    Article  CAS  PubMed  Google Scholar 

  • Gralinski MR (2000) The assessment of potential for QT interval prolongation with new pharmaceuticals Impact on drug development. J Pharmacol Toxicol Methods 43:91–99

    Google Scholar 

  • Gralinski MR (2003) The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol 31(Suppl):11–16

    CAS  PubMed  Google Scholar 

  • Guth BD (2007) Preclinical cardiovascular risk assessment in modern drug development. Toxicol Sci 97:4–20

    Article  CAS  PubMed  Google Scholar 

  • Guth BD, Germeyer S, Kolb W, Markert M (2004) Developing a strategy for the nonclinical assessment of proarrhythmic risk of pharmaceuticals due to prolonged ventricular repolarization. J Pharmacol Toxicol Methods 49:159–169

    Article  CAS  PubMed  Google Scholar 

  • Guth B, Bass A, Briscoe R, Chivers S, Markert M, Siegl P, Valentin J-P (2009) Comparison of electrocardiographic analysis for risk of QT interval prolongation using safety pharmacology and toxicological studies. J Pharmacol Toxicol Methods 60:107–116

    Article  CAS  PubMed  Google Scholar 

  • Hey J, Del Prado M, Kreutner W, Egan R (1996) Cardiotoxic and drug interaction profile of the second generation antihistamines ebastine and terfenadine in an experimental animal model of torsade de pointes. Arzneimittelforschung 46:159–163

    CAS  PubMed  Google Scholar 

  • Hoffmann P (2015) The evaluation of drug-induced changes in cardiac inotropy in dogs: results from a HESI-sponsored consortium. J Pharmacol Toxicol Methods 75:70–90. https://doi.org/10.1016/j.vascn.2015.02.002. Epub 2015 Apr 3

    Article  CAS  PubMed  Google Scholar 

  • Holzgrefe HH, Cavero I, Gleason CR (2007a) Analysis of the nonclinical telemetered ECG: impact of logging rate and RR bin width in the dog and cynomolgus monkey. J Pharmacol Toxicol Methods 56:34–42

    Article  CAS  PubMed  Google Scholar 

  • Holzgrefe HH, Cavero I, Gleason CR, Warner WA, Buchanan LV, Gill MW, Burkett DE, Durham SK (2007b) Novel probabilistic method for precisely correcting the QT interval for heart rate in telemetered dogs and cynomolgus monkeys. J Pharmacol Toxicol Methods 55:159–175

    Article  CAS  PubMed  Google Scholar 

  • Hunt GB, Ross DL (1988) Comparison of effects of three anesthetic agents on induction of ventricular tachycardia in a canine model of myocardial infarction. Circulation 78:221–226

    Article  CAS  PubMed  Google Scholar 

  • ICH Guideline (2001) Safety pharmacology studies for human pharmaceuticals S7A. Fed Regist 66:36791–36792

    Google Scholar 

  • ICH Harmonised Tripartite Guideline (2005) The non-clinical evaluation of the potential for delayed ventricular repolarization (Qt interval prolongation) by human pharmaceuticals. S7B. http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html

  • ICH Harmonised Tripartite Guideline (2009) Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals M3 (R2). In: International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use

    Google Scholar 

  • ICH Harmonised Tripartite Guideline (2011) Preclinical safety evaluation of biotechnology-derived pharmaceuticals S6 (R1). In: Proceedings of the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use

    Google Scholar 

  • Ishizaka T, Yoshimatsu Y, Ozawa M, Kimotsuki T, Takasaki W, Manabe S, Yasuda M (2009) Evaluation of drug-induced QT prolongation in a halothane-anesthetized monkey model: effects of sotalol. J Pharmacol Toxicol Methods 59:86–93

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka T, Yoshimatsu Y, Maeda Y, Takasaki W, Chiba K, Mori K (2017) Promising approach for the preclinical assessment of cardiac risks using left ventricular pressure-volume loop analyses in anesthetized monkeys. J Pharmacol Toxicol Methods 84:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka T, Yoshimatsu Y, Maeda Y, Chiba K, Mori K (2018) Inotropic effects of nicorandil on cardiac contractility assessed by left ventricular pressure–volume relationship analyses in anesthetized monkeys. J Cardiovasc Pharmacol 71:76–81

    Article  CAS  PubMed  Google Scholar 

  • Ishizaka T, Yoshimatsu Y, Maeda Y, Chiba K, Mori K (2022) Trastuzumab-induced negative chronotropic and lusitropic effects in cynomolgus monkeys. J Cardiovasc Pharmacol 79:e41–e49

    Article  CAS  PubMed  Google Scholar 

  • Iswaran J, Ahokas J (2004) Pharmacology – safety pharmacology assessment and associated regulations. UNESCO – encyclopedia of life support systems (EOLSS)

    Google Scholar 

  • Kågström J, Sjögren E-L, Ericson A-C (2007) Evaluation of the guinea pig monophasic action potential (MAP) assay in predicting drug-induced delay of ventricular repolarisation using 12 clinically documented drugs. J Pharmacol Toxicol Methods 56:186–193

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T (2005) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99:501–511

    Article  CAS  PubMed  Google Scholar 

  • Kass D, Maughan WL, Guo ZM, Kono A, Sunagawa K, Sagawa K (1987) Comparative influence of load versus inotropic states on indexes of ventricular contractility: experimental and theoretical analysis based on pressure-volume relationships. Circulation 76:1422–1436

    Article  CAS  PubMed  Google Scholar 

  • Katagi J, Nakamura Y, Cao X, Ohara H, Honda A, Izumi-Nakaseko H, Ando K, Sugiyama A (2016) Why can dl-sotalol prolong the QT interval in vivo despite its weak inhibitory effect on hERG K+ channels in vitro? Electrophysiological and pharmacokinetic analysis with the halothane-anesthetized guinea pig model. Cardiovasc Toxicol 16:138–146

    Article  CAS  PubMed  Google Scholar 

  • Kinter LB, Valentin JP (2002) Safety pharmacology and risk assessment. Fundam Clin Pharmacol 16:175–182

    Google Scholar 

  • Kondo Y, Hagiwara-Nagasawa M, Kambayashi R, Goto A, Chiba K, Nunoi Y, Izumi-Nakaseko H, Matsumoto A, Sugiyama A (2020) Electropharmacological characterization of Aciclovir in the halothane-anesthetized dogs: a proposal of evaluation method for cardiovascular safety pharmacology of anti-virus drugs. Cardiovasc Toxicol 20:419–426

    Article  CAS  PubMed  Google Scholar 

  • Lacroix P, Provost D (2000) Basic safety pharmacology: the cardiovascular system. Therapie 55:63–69

    Google Scholar 

  • Leishman DJ, Beck TW, Dybdal N, Gallacher DJ, Guth BD, Holbrook M, Roche B, Wallis RM (2012) Best practice in the conduct of key nonclinical cardiovascular assessments in drug development: current recommendations from the Safety Pharmacology Society. J Pharmacol Toxicol Methods 65:93–101

    Article  CAS  PubMed  Google Scholar 

  • Lund-Johansen P (1990) The dye dilution method for measurement of cardiac output. Eur Heart J 11:6–12

    Article  PubMed  Google Scholar 

  • Lynch J III, Wilson A, Hernandez L, Nelson R, Marsh K, Cox B, Mittelstadt S (2008) Dose–response effects of sotalol on cardiovascular function in conscious, freely moving cynomolgus monkeys. Br J Pharmacol 154:1439–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert M, Stubhan M, Mayer K, Trautmann T, Klumpp A, Schuler-Metz A, Schumacher K, Guth B (2009) Validation of the normal, freely moving Göttingen minipig for pharmacological safety testing. J Pharmacol Toxicol Methods 60:79–87

    Article  CAS  PubMed  Google Scholar 

  • Markert M, Shen R, Trautmann T, Guth B (2011) Heart rate correction models to detect QT interval prolongation in novel pharmaceutical development. J Pharmacol Toxicol Methods 64:25–41

    Article  CAS  PubMed  Google Scholar 

  • Markert M, Trautmann T, Groß M, Ege A, Mayer K, Guth B (2012) Evaluation of a method to correct the contractility index LVdP/dtmax for changes in heart rate. J Pharmacol Toxicol Methods 66:98–105

    Article  CAS  PubMed  Google Scholar 

  • Marks L, Borland S, Philp K, Ewart L, Lainée P, Skinner M, Kirk S, Valentin J-P (2012) The role of the anaesthetised guinea-pig in the preclinical cardiac safety evaluation of drug candidate compounds. Toxicol Appl Pharmacol 263:171–183

    Article  CAS  PubMed  Google Scholar 

  • Matsukura S, Nakamura Y, Cao X, Wada T, Izumi-Nakaseko H, Ando K, Yamazaki H, Sugiyama A (2017) Characterization of microminipigs as an in vivo experimental model for cardiac safety pharmacology. J Pharmacol Sci 133:103–109

    Article  CAS  PubMed  Google Scholar 

  • McMahon C, Mitchell AZ, Klein JL, Jenkins AC, Sarazan RD (2010) Evaluation of blood pressure measurement using a miniature blood pressure transmitter with jacketed external telemetry in cynomolgus monkeys. J Pharmacol Toxicol Methods 62:127–135

    Article  CAS  PubMed  Google Scholar 

  • Montano N, Cogliati C, Porta A, Pagani M, Malliani A, Narkiewicz K, Abboud FM, Birkett C, Somers VK (1998) Central vagotonic effects of atropine modulate spectral oscillations of sympathetic nerve activity. Circulation 98:1394–1399

    Article  CAS  PubMed  Google Scholar 

  • Morissette P, Nishida M, Trepakova E, Imredy J, Lagrutta A, Chaves A, Hoagland K, Hoe C-ML, Zrada MM, Travis JJ (2013) The anesthetized guinea pig: an effective early cardiovascular derisking and lead optimization model. J Pharmacol Toxicol Methods 68:137–149

    Article  CAS  PubMed  Google Scholar 

  • Morissette P, Regan HK, Fitzgerald K, Bernasconi S, Gerenser P, Travis J, Fanelli P, Sannajust F, Regan CP (2015) QT interval correction assessment in the anesthetized guinea pig. J Pharmacol Toxicol Methods 75:52–61

    Article  CAS  PubMed  Google Scholar 

  • Morissette P, Regan C, Fitzgerald K, Gerenser P, Travis J, Wang S, Fanelli P, Sannajust F (2016) Shortening of the electromechanical window in the ketamine/xylazine-anesthetized guinea pig model to assess pro-arrhythmic risk in early drug development. J Pharmacol Toxicol Methods 81:171–182

    Article  CAS  PubMed  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’orto S, Piccaluga E (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193

    Article  CAS  PubMed  Google Scholar 

  • Park J-S, Jeon J-Y, Yang J-H, Kim M-G (2019) Introduction to in silico model for proarrhythmic risk assessment under the CiPA initiative. Transl Clin Pharmacol 27:12–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Popesko P, Rajtova V, Horak J (1992) A colour atlas of the anatomy of small laboratory animals. Volume 1: rabbit, guinea pig. Wolfe Publishing, London

    Google Scholar 

  • Pourrias B, Porsolt RD, Lacroix P (1999) QT interval prolongation by noncardiovascular drugs. A proposed assessment strategy. Drug Dev Res 47:55–62

    Article  CAS  Google Scholar 

  • Prior H, McMahon N, Schofield J, Valentin J-P (2009) Non-invasive telemetric electrocardiogram assessment in conscious beagle dogs. J Pharmacol Toxicol Methods 60:167–173

    Article  CAS  PubMed  Google Scholar 

  • Provan G, Stanton A, Sutton A, Rankin-Burkart A, Laycock SK (2005) Development of a surgical approach for telemetering guinea pigs as a model for screening QT interval effects. J Pharmacol Toxicol Methods 52:223–228

    Article  CAS  PubMed  Google Scholar 

  • Pugsley MK, Authier S, Curtis MJ (2008) Principles of safety pharmacology. Br J Pharmacol 154:1382–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart GA, Fryer RM, Osinski MA, Polakowski JS, Cox BF, Gintant GA (2005) Predictive, non-GLP models of secondary pharmacodynamics: putting the best compounds forward. Curr Opin Chem Biol 9:392–399

    Article  CAS  PubMed  Google Scholar 

  • Rocchiccioli C, Saad M, Elghozi J-L (1989) Attenuation of the baroreceptor reflex by propofol anesthesia in the rat. J Cardiovasc Pharmacol 14:631–635

    Article  CAS  PubMed  Google Scholar 

  • Sarazan RD, Mittelstadt S, Guth B, Koerner J, Zhang J, Pettit S (2011) Cardiovascular function in nonclinical drug safety assessment: current issues and opportunities. Int J Toxicol 30:272–286

    Article  PubMed  Google Scholar 

  • Sasaki H, Shimizu N, Suganami H, Yamamoto K (2005) QT PRODACT: inter-facility variability in electrocardiographic and hemodynamic parameters in conscious dogs and monkeys. J Pharmacol Sci 99:513–522

    Article  CAS  PubMed  Google Scholar 

  • Schmitz S, Henke J, Tacke S, Guth B (2016) Successful implantation of an abdominal aortic blood pressure transducer and radio-telemetry transmitter in guinea pigs – anaesthesia, analgesic management and surgical methods, and their influence on hemodynamic parameters and body temperature. J Pharmacol Toxicol Methods 80:9–18

    Article  CAS  PubMed  Google Scholar 

  • Skinner M, Hale E, Ceuppens P, Pollard C (2021) Differentiating multichannel block on the guinea pig ECG: use of Tpeak-Tend and J-Tpeak. J Pharmacol Toxicol Methods 111:107085

    Article  CAS  PubMed  Google Scholar 

  • Stubhan M, Markert M, Mayer K, Trautmann T, Klumpp A, Henke J, Guth B (2008) Evaluation of cardiovascular and ECG parameters in the normal, freely moving Göttingen Minipig. J Pharmacol Toxicol Methods 57:202–211

    Article  CAS  PubMed  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  • Tabo M, Kimura K, Ito S (2007) Monophasic action potential in anaesthetized guinea pigs as a biomarker for prediction of liability for drug-induced delayed ventricular repolarization. J Pharmacol Toxicol Methods 55:271–278

    Article  CAS  Google Scholar 

  • Tashibu H, Miyazaki H, Aoki K, Akie Y, Yamamoto K (2005) QT PRODACT: in vivo QT assay in anesthetized dog for detecting the potential for QT interval prolongation by human pharmaceuticals. J Pharmacol Sci 99:473–486

    Article  CAS  PubMed  Google Scholar 

  • Tattersall ML, Dymond M, Hammond T, Valentin J-P (2006) Correction of QT values to allow for increases in heart rate in conscious Beagle dogs in toxicology assessment. J Pharmacol Toxicol Methods 53:11–19

    Article  CAS  PubMed  Google Scholar 

  • Testai L, Calderone V, Salvadori A, Breschi MC, Nieri P, Martinotti E (2004) QT prolongation in anaesthetized guinea-pigs: an experimental approach for preliminary screening of torsadogenicity of drugs and drug candidates. J Appl Toxicol 24:217–222

    Article  CAS  PubMed  Google Scholar 

  • Testai L, Breschi MC, Martinotti E, Calderone V (2007) QT prolongation in guinea pigs for preliminary screening of torsadogenicity of drugs and drug-candidates. II. J Appl Toxicol 27:270–275

    Article  CAS  PubMed  Google Scholar 

  • The European Agency for the Evaluation of Medicinal Products. Human Medicine Evaluation Unit (2000) ICH topic S7, safety pharmacology studies for human pharmaceuticals. Note for guidance on safety pharmacology studies in human pharmaceuticals

    Google Scholar 

  • Usui T, Sugiyama A, Ishida Y, Satoh Y, Sasaki Y, Hashimoto K (1998) Simultaneous assessment of the hemodynamic, cardiomechanical, and electrophysiological effects of terfenadine on the in vivo canine model. Heart Vessel 13:49–57

    Article  CAS  Google Scholar 

  • Van De Water A, Verheyen J, Xhonneux R, Reneman R (1989) An improved method to correct the QT interval of the electrocardiogram for changes in heart rate. J Pharmacol Methods 22:207–217

    Article  PubMed  Google Scholar 

  • Van Der Linde H, Van Deuren B, Teisman A, Towart R, Gallacher D (2008) The effect of changes in core body temperature on the QT interval in beagle dogs: a previously ignored phenomenon, with a method for correction. Br J Pharmacol 154:1474–1481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Noord C, Eijgelsheim M, Stricker BHC (2010) Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol 70:16–23

    Google Scholar 

  • Vargas HM, Derakhchan K, Chui RW, Stevens DW (2010) Evaluation of d, l-SOTALOL (SOT) using jacketed external telemetry (JET) in conscious non-human primates (NHP) over 4weeks of evaluation. J Pharmacol Toxicol Methods 2:e24–e25

    Article  Google Scholar 

  • Vicente J, Zusterzeel R, Johannesen L, Ochoa-Jimenez R, Mason JW, Sanabria C, Kemp S, Sager PT, Patel V, Matta MK (2019) Assessment of multi-ion channel block in a phase I randomized study design: results of the Ci PA Phase I ECG Biomarker Validation study. Clin Pharmacol Ther 105:943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel GH, Maas J, Hock FJ, Mayer D (2013) Drug discovery and evaluation: safety and pharmacokinetic assays. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Weissenburger J, Nesterenko VV, Antzelevitch C (2000) Transmural heterogeneity of ventricular repolarization under baseline and long QT conditions in the canine heart in vivo: torsades de pointes develops with halothane but not pentobarbital anesthesia. J Cardiovasc Electrophysiol 11:290–304

    Article  CAS  PubMed  Google Scholar 

  • Welfare, J. M. O. H. A (1995) Japanese guidelines for nonclinical studies of drugs manual. Pharmaceutical Affairs Bureau, Japanese Ministry of Health and Welfare, Yakugi Nippo, Japan

    Google Scholar 

  • Yao X, Anderson DL, Ross SA, Lang DG, Desai BZ, Cooper DC, Wheelan P, McIntyre MS, Bergquist ML, Mackenzie KI, Becherer JD, Hashim MA (2008) Predicting QT prolongation in humans during early drug development using hERG inhibition and an anaesthetized guinea-pig model. Br J Pharmacol 154:1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Pascal Champeroux, Brian D. Guth, Michael Markert, and Georg Rast for granting us the authorization to update the chapter entitled “Methods in Cardiovascular Safety Pharmacology” that was originally published in the 2nd edition of this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liomar A. A. Neves .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Neves, L.A.A., Šarenac, O., Gralinski, M.R. (2022). In Vivo Methods in Cardiovascular Safety Pharmacology. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics