Skip to main content

The Use of Göttingen Minipigs in Juvenile Studies

  • Living reference work entry
  • First Online:
Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays

Abstract

Translational animal models are essential for understanding human development and diseases, and for developing safe and efficacious human medicines and vaccines. Over the last decades, the use of minipigs and especially Göttingen Minipigs has emerged as an animal model in preclinical safety testing of small-molecule drugs and for pharmacological research within various disease and therapeutic areas such as cardiometabolic diseases and pain management, but also for vaccine development.

Today, a pediatric assessment is required by regulatory authorities for all new drug applications and for food intended for infants below 16 weeks of age. Guidelines and recommendations for such juvenile studies have been published by regulatory authorities including the US Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the European Food Safety Authority (EFSA). Those guidelines all recommend considering minipigs and highlight the many similar developmental milestones between minipigs and man, the large litter size allowing balanced sex distribution and cross-fostering, the relatively large size at birth, and easy handling including easiness of all routes of administration, and further state that the minipig may be a more appropriate model than other species when there are differences in drug metabolism between the human and other laboratory animal species. Finally, the EFSA scientific opinion highlights that (pre)term piglets are a relevant animal model for the safety evaluation of food additives, pesticide residues, and contaminants present in food on general toxicity parameters and postnatal development and maturation of various organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Anadkat JS, Kuzniewicz MW, Chaudhari BP, Cole FS, Hamvas A (2012) Increased risk for respiratory distress among white, male, late preterm and term infants. J Perinatol 32:780–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen BB, Nielsen R, Olsen AK, Grand N, Hemmingsen R, Pakkenberg B (2006) The postnatal development of neocortical neurons and glial cells in the Gottingen minipig and the domestic pig brain. J Exp Biol 209:1454–1462. https://doi.org/10.1242/jeb.02141

    Article  Google Scholar 

  • Ayuso M, Michiels J, Wuyts S, Yan H, DeGroote J, Lebeer S, Le Bourgot C, Apper E, Majdeddin M, Van Noten N et al (2020) Short-chain fructo-oligosaccharides supplementation to suckling piglets: assessment of pre- and post-weaning performance and gut health. PLoS One 15:e0233910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayuso M, Buyssens L, Stroe M, Valenzuela A, Allegaert K, Smits A, Annaert P, Mulder A, Carpentier S, Van Ginneken C, Van Cruchten S (2021) The neonatal and juvenile pig in pediatric drug discovery and development. Pharmaceutics 13(1):44

    Article  CAS  Google Scholar 

  • Bode G, Clausing P, Gervais F et al (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62:196–220

    Article  CAS  PubMed  Google Scholar 

  • Boudreaux JP, Schieber RA, Cook DR (1984) Hemodynamic effects of halothane in the newborn piglet. Anesth Analg 63:731–737

    Article  CAS  PubMed  Google Scholar 

  • Braendli-Baiocco A, Festag M, Erichsen KD, Persson R, Mihatsch MJ, Fisker N, Funk J, Mohr S, Constien R, Ploix C et al (2017) From the cover: the minipig is a suitable non-rodent model in the safety assessment of single stranded oligonucleotides. Toxicol Sci 157:112–128. https://doi.org/10.1093/toxsci/kfx025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brix N, Ernst A, Lauridsen LLB, Parner E, Støvring H, Olsen J, Henriksen TB, Ramlau-Hansen CH (2018) Timing of puberty in boys and girls: a population-based study. Paediatr Périnat Epidemiol 33:70–78. https://doi.org/10.1111/ppe.12507

    Article  PubMed  PubMed Central  Google Scholar 

  • Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp GT, Lukacova V, Meibohm B, Nigam SK, Rieder PFMJ, De Wildt SN et al (2015) Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther 98:266–287. https://doi.org/10.1002/cpt.176

    Article  CAS  PubMed  Google Scholar 

  • Burel SA, Hart CE, Cauntay P, Hsiao J, Machemer T, Katz M, Watt AT, Bui H-H, Younis H, Sabripour M et al (2016) Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts. Nucleic Acids Res 44:2093–2109. https://doi.org/10.1093/nar/gkv1210

    Article  CAS  PubMed  Google Scholar 

  • Busignies V, Simon G, Mollereau G, Bourry O, Mazel V, Rosa-Calatrava M, Tchoreloff P (2018) Development and pre-clinical evaluation in the swine model of a mucosal vaccine tablet for human influenza viruses: a proof-of-concept study. Int J Pharm 538:87–96. https://doi.org/10.1016/j.ijpharm.2018.01.021

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Sun J, Wertz N, Sinkora M (2006) Antibody repertoire development in swine. Dev Comp Immunol 30:199–221

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Lager K, Splichal I, Francis D, Kacskovics I, Sinkora M, Wertz N, Sun J, Zhao Y, Brown W et al (2009) The piglet as a model for B cell and immune system development. Vet Immunol Immunopathol 128:147–170. https://doi.org/10.1016/j.vetimm.2008.10.321

    Article  CAS  PubMed  Google Scholar 

  • Buyssens L, De Clerck L, Schelstraete W, Dhaenens M, Deforce D, Ayuso M, Van Ginneken C, Van Cruchten S (2021) Hepatic cytochrome P450 abundance and activity in the developing and adult Göttingen minipig: pivotal data for PBPK modeling. Front Pharmacol 12:665644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caminita F, Van Der Merwe M, Hance B, Krishnan R, Miller S, Buddington K, Buddington RK (2015) A preterm pig model of lung immaturity and spontaneous infant respiratory distress syndrome. Am J Physiol Cell Mol Physiol 308:L118–L129. https://doi.org/10.1152/ajplung.00173.2014

    Article  CAS  Google Scholar 

  • Colleton C, Brewster D, Chater A et al (2016) The use of minipigs for preclinical safety assessment by the pharmaceutical industry: results of an IQ DruSafe minipig survey. Toxicol Pathol 44:458–466

    Article  CAS  PubMed  Google Scholar 

  • Comstock SS, Reznikov EA, Contractor N, Donovan SM (2014) Dietary bovine lactoferrin alters mucosal and systemic immune cell responses in neonatal piglets. J Nutr 144:525–532

    Article  CAS  PubMed  Google Scholar 

  • Cone SG, Warren PB, Fisher MB (2017) Rise of the pigs: utilization of the porcine model to study musculoskeletal biomechanics and tissue engineering during skeletal growth. Tissue Eng Part C Methods 23:763–780. https://doi.org/10.1089/ten.tec.2017.0227

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalgaard L (2015) Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods 74:80–92

    Article  CAS  PubMed  Google Scholar 

  • Dhondt L, Croubels S, De Paepe P, Wallis SC, Pandey S, Roberts JA, Lipman J, De Cock P, Devreese M (2020) Conventional pig as animal model for human renal drug excretion processes: unravelling the porcine renal function by use of a cocktail of exogenous markers. Front Pharmacol 11

    Google Scholar 

  • Dias N, Stein C (2002) Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther 1

    Google Scholar 

  • Diehl KH, Hull R, Morton D, Pfister R et al (2001) A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol 21(1):15–23. https://doi.org/10.1002/jat.727

    Article  CAS  PubMed  Google Scholar 

  • Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes, September 22, 2010

    Google Scholar 

  • Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83. https://doi.org/10.1016/0378-3782(79)90022-7

    Article  CAS  PubMed  Google Scholar 

  • EFSA (2017) Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age

    Google Scholar 

  • European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/presentation/presentation-pre-clinical-requirements-support-development-paediatric-medicines-janina-karres_en.pdf. Accessed 2 Nov 2020

  • European Medicines Agency (2020) ICH guideline S11

    Google Scholar 

  • FDA (2006) Guidance for industry nonclinical safety evaluation of pediatric drug products

    Google Scholar 

  • Forster R, Bode G, Ellegaard L et al (2010) The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations. J Pharmacol Toxicol Methods 62:236–242

    Article  CAS  PubMed  Google Scholar 

  • Frazier KS (2014) Antisense oligonucleotide therapies. Toxicol Pathol 43:78–89. https://doi.org/10.1177/0192623314551840

    Article  CAS  PubMed  Google Scholar 

  • Gala RP, Popescu C, Knipp GT, McCain RR, Ubale RV, Addo R, Bhowmik T, Kulczar CD, D’Souza MJ (2016) Physicochemical and preclinical evaluation of a novel buccal measles vaccine. AAPS Pharm Sci Tech 18:283–292. https://doi.org/10.1208/s12249-016-0566-3

    Article  CAS  Google Scholar 

  • Gasthuys E, Vandecasteele T, De Bruyne P, Walle JV, De Backer P, Cornillie P, Devreese M, Croubels S (2016) The potential use of piglets as human pediatric surrogate for preclinical pharmacokinetic and pharmacodynamic drug testing. Curr Pharm Des 22:4069–4085

    Article  CAS  PubMed  Google Scholar 

  • Gasthuys E, Vermeulen A, Croubels S, Millecam J, Schauvliege S, Van Bergen T, De Bruyne P, Walle JV, Devreese M (2018) Population pharmacokinetic modeling of a desmopressin oral lyophilisate in growing piglets as a model for the pediatric population. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00041

  • Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51. https://doi.org/10.1016/j.addr.2015.01.008

    Article  CAS  PubMed  Google Scholar 

  • Gortner L, Shen J, Tutdibi E (2013) Sexual dimorphism of neonatal lung development. Klin Pädiatrie 225:64–69

    Article  CAS  Google Scholar 

  • Grand N, Haagensen A, Skytte C, Makin A, Sørensen D (2012) The adjusted holeboard discrimination test and development of a visual discrimination test for evaluating learning and memory in juvenile minipigs. Poster presentation, Society of Toxicology’s 51st annual meeting, San Francisco, USA

    Google Scholar 

  • Heckel T, Schmucki R, Berrera M, Ringshandl S, Badi L, Steiner G, Ravon M, Küng E, Kuhn B, Kratochwil NA et al (2015) Functional analysis and transcriptional output of the Göttingen minipig genome. BMC Genomics 16:932

    Article  PubMed  PubMed Central  Google Scholar 

  • Helke KL, Nelson KN, Sargeant AM, Jacob B, McKeag S, Haruna J, Vemireddi V, Greeley M, Brocksmith D, Navratil D (2016) Background pathological changes in minipigs: a comparison of the incidence and nature among different breeds and populations of minipigs. Toxicol Pathol 44:325–337

    Article  CAS  PubMed  Google Scholar 

  • Hinderer C, Katz N, Buza EL, Dyer C, Goode T, Bell P, Richman LK, Wilson JM (2018) Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther 29:285–298. https://doi.org/10.1089/hum.2018.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu SX (2016) Age-related change of hepatic uridine diphosphate glucuronosyltransferase and sulfotransferase activities in male chickens and pigs. J Vet Pharmacol Ther 40:270–278. https://doi.org/10.1111/jvp.12355

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen G, Skydsgaard M (2015) Spontaneous background pathology in Göttingen minipigs. Toxicol Pathol 43:257–266

    Article  CAS  PubMed  Google Scholar 

  • Judge EP, Hughes JML, Egan JJ, Maguire M, Molloy EL, O’Dea S (2014) Anatomy and bronchoscopy of the porcine lung. a model for translational respiratory medicine. Am J Respir Cell Mol Biol 51:334–343

    Article  CAS  PubMed  Google Scholar 

  • Kajimoto M, Atkinson DB, Ledee DR, Kayser E-B, Morgan PG, Sedensky MM, Isern NG, Rosiers CD, Portman M (2014) Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex. Br J Pharmacol 34:514–521. https://doi.org/10.1038/jcbfm.2013.229

    Article  CAS  Google Scholar 

  • Kuper CF, Van Bilsen JHM, Cnossen H, Houben G, Garthoff J, Wolterbeek A (2016) Development of immune organs and functioning in humans and test animals: implications for immune intervention studies. Reprod Toxicol 64:180–190. https://doi.org/10.1016/j.reprotox.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-Independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690. https://doi.org/10.1128/aem.68.2.673-690.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Rosenbaum S (2014) Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther 19:262–276. https://doi.org/10.5863/1551-6776-19.4.262

    Article  PubMed  PubMed Central  Google Scholar 

  • Lunney JK, Goor AV, Walker KE et al (2021) Importance of the pig as a human biomedical model, eabd5758. Sci Transl Med 13

    Google Scholar 

  • M3(R2) (2009) ICH EIMR. Guidance on non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. In: Proceedings of the international conference on harmonisation.

    Google Scholar 

  • Makin A, Mortensen JT, Brock B (2012) Dermal toxicity studies: skin architecture, metabolism, penetration and toxicological and pharmacological methods. In: McAnulty PA et al (eds) The minipig in biomedical research. CRC Press

    Google Scholar 

  • Makin A, Worsøe P, Skytte C, Jensen JT (2017) Juvenile development of minipigs over the first 16 weeks. Poster presentation, Society of Toxicology’s 56th annual meeting, Baltimore, USA

    Google Scholar 

  • McAnulty PA, Dayan AD, Ganderup N-C, Hastings KL (eds) (2012) The minipig in biomedical research. CRC Press

    Google Scholar 

  • Millecam J, De Clerck L, Govaert E, Devreese M, Gasthuys E, Schelstraete W, Deforce D, De Bock L, Van Bocxlaer J, Sys S et al (2018) The ontogeny of cytochrome P450 enzyme activity and protein abundance in conventional pigs in support of preclinical pediatric drug research. Front Pharmacol 9:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Millecam J, De Baere S, Croubels S, Devreese M (2019a) In vivo metabolism of ibuprofen in growing conventional pigs: a pharmacokinetic approach. Front Pharmacol 10. https://doi.org/10.3389/fphar.2019.00712

  • Millecam J, Van Bergen T, Schauvliege S, Antonissen G, Martens A, Chiers K, Gehring R, Gasthuys E, Walle JV, Croubels S et al (2019b) Developmental pharmacokinetics and safety of ibuprofen and its enantiomers in the conventional pig as potential pediatric animal model. Front Pharmacol 10:505. https://doi.org/10.3389/fphar.2019.00505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monticello TM, Haschek WM (2016) Swine in translational research and drug development. Toxicol Pathol 44:297–298

    Article  CAS  PubMed  Google Scholar 

  • Mudd AT, Dilger R (2017) Early-life nutrition and neurodevelopment: use of the piglet as a translational model. Adv Nutr 8:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Óvilo C, Gonzalez-Bulnes A, Benítez R, Ayuso M, Barbero A, Pérez-Solana ML, Barragán C, Astiz S, Fernández A, López-Bote C (2014) Prenatal programming in an obese swine model: sex-related effects of maternal energy restriction on morphology, metabolism and hypothalamic gene expression. Br J Nutr 111:735–746

    Article  PubMed  Google Scholar 

  • Pabst R (2020) The pig as a model for immunology research. Cell Tissue Res 380(2):287–304. https://doi.org/10.1007/s00441-020-03206-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedersen HD, Mikkelsen LF (2019) Göttingen minipigs as large animal model in toxicology. In: Biomarkers in toxicology, 2nd edn. Elsevier

    Google Scholar 

  • Penard L, Flenet T, Eynard C, Bouillon C, Bory C, Baudet S, Marsden E (2021) Implementation of cardiorespiratory monitoring in the juvenile minipig using a noninvasive jacketed telemetry system. Poster presentation, Society for Birth Defects Research and Prevention annual meeting, virtual

    Google Scholar 

  • Rai A, Bhalla S, Rebello SS, Kastrissios H, Gulati A (2005) Disposition of morphine in plasma and cerebrospinal fluid varies during neonatal development in pigs. J Pharm Pharmacol 57:981–985. https://doi.org/10.1211/0022357056505

    Article  CAS  PubMed  Google Scholar 

  • Rajao DS, Vincent A (2015) Swine as a model for Influenza A virus infection and immunity. ILAR J 56:44–52. https://doi.org/10.1093/ilar/ilv002

    Article  CAS  PubMed  Google Scholar 

  • Ramos L, Obregon-Henao A, Henao-Tamayo M, Bowen R, Izzo A, Lunney JK, Gonzalez-Juarrero M (2019) Minipigs as a neonatal animal model for tuberculosis vaccine efficacy testing. Vet Immunol Immunopathol 215:109884. https://doi.org/10.1016/j.vetimm.2019.109884

    Article  CAS  PubMed  Google Scholar 

  • Roth WJ, Kissinger CB, McCain RR, Cooper BR, Marchant-Forde JN, Vreeman RC, Hannou S, Knipp GT (2013) Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS J 15:763–774. https://doi.org/10.1208/s12248-013-9482-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MC, Sherman P, Rowland LM, Wijtenburg SA, Acheson A, Fieremans E, Veraart J, Novikov DS, Hong LE, Sladky J et al (2018) Miniature pig model of human adolescent brain white matter development. J Neurosci Methods 296:99–108. https://doi.org/10.1016/j.jneumeth.2017.12.017

    Article  PubMed  Google Scholar 

  • Shim KS (2015) Pubertal growth and epiphyseal fusion. Ann Pediatr Endocrinol Metab 20:8–12. https://doi.org/10.6065/apem.2015.20.1.8

    Article  PubMed  PubMed Central  Google Scholar 

  • Simianer H, Köhn F (2010) Genetic management of the Göttingen minipigs population. J Pharmacol Toxicol Methods 62:221–226

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Hubrecht R (2001) Good practice guidelines. The selection of non-rodent species for pharmaceutical toxicology. Laboratory Science Association (LASA), UK

    Google Scholar 

  • Spengler D, Rintz N, Krause MF (2019) An unsettled promise: the newborn piglet model of Neonatal Acute Respiratory Distress Syndrome (NARDS). Physiologic data and systematic review. Front Physiol 10

    Google Scholar 

  • Srinivasan SK, Tewary HK, Iversen PL (1995) Characterization of binding sites, extent of binding, and drug interactions of oligonucleotides with albumin. Antisense Res Dev 5:131–139. https://doi.org/10.1089/ard.1995.5.131

    Article  CAS  PubMed  Google Scholar 

  • Starbæk SMR, Brogaard L, Dawson HD, Smith AD, Heegaard PMH, Larsen LE, Jungersen G, Skovgaard K (2018) Animal models for Influenza A virus infection incorporating the involvement of innate host defenses: enhanced translational value of the porcine model. ILAR J 59:323–337. https://doi.org/10.1093/ilar/ily009

    Article  CAS  PubMed  Google Scholar 

  • Swindle M, Makin A, Herron A, Clubb F Jr, Frazier K (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  • Thygesen P, Andersen HS, Behrens C, Fels JJ, Nørskov-Lauritsen L, Rischel C, Johansen NL (2017) Nonclinical pharmacokinetic and pharmacodynamic characterisation of somapacitan: a reversible non-covalent albumin-binding growth hormone. Growth Hormon IGF Res 35:8–16. https://doi.org/10.1016/j.ghir.2017.05.006

    Article  CAS  Google Scholar 

  • Ulrich P, Blaich G, Baumann A, Fagg R, Hey A, Kiessling A, Kronenberg S, Lindecrona RH, Mohl S, Richter WF et al (2018) Biotherapeutics in non-clinical development: strengthening the interface between safety, pharmacokinetics-pharmacodynamics and manufacturing. Regul Toxicol Pharmacol 94:91–100. https://doi.org/10.1016/j.yrtph.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  • Upreti VV, Wahlstrom JL (2015) Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J Clin Pharmacol 56:266–283. https://doi.org/10.1002/jcph.585

    Article  CAS  PubMed  Google Scholar 

  • Valent D, Yeste N, Hernández-Castellano LE, Arroyo L, Wu W, García-Contreras C, Vazquez-Gomez M, González-Bulnes A, Bendixen E, Bassols A (2019) SWATH-MS quantitative proteomic investigation of intrauterine growth restriction in a porcine model reveals sex differences in hippocampus development. J Proteome 204:103391

    Article  CAS  Google Scholar 

  • Valenzuela A, Tardiveau C, Ayuso M, Buyssens L, Bars C, Van Ginneken C, Fant P, Leconte I, Braendii-Baiocco A, Parrott N, Schmitt G, Tessier Y, Barrow P, Van Cruchten S (2021) Pharmaceutics 13(9):1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vamathevan J, Hall MD, Hasan S, Woollard P, Xu M, Yang Y, Li X, Wang X, Kenny S, Brown JR et al (2013) Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development. Toxicol Appl Pharmacol 270:149–157. https://doi.org/10.1016/j.taap.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  • Van der Laan JW, Brightwell J, McAnulty P et al (2010) Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J Pharmacol Toxicol Methods 62:184–195

    Article  PubMed  Google Scholar 

  • Van Peer EM, Verbueken E, Saad M, Casteleyn C, Van Ginneken CJ, Van Cruchten S (2013) Ontogeny of CYP3A and P-glycoprotein in the liver and the small intestine of the Göttingen Minipig: an immunohistochemical evaluation. Basic Clin Pharmacol Toxicol 114:387–394. https://doi.org/10.1111/bcpt.12173

    Article  CAS  PubMed  Google Scholar 

  • Van Peer E, Jacobs F, Snoeys J, Van Houdt J, Pijpers I, Casteleyn C, Van Ginneken C, Van Cruchten S (2017) In vitro phase I-and phase II-drug metabolism in the liver of juvenile and adult Göttingen Minipigs. Pharm Res 34:750–764

    Article  PubMed  Google Scholar 

  • Ward WE, Atkinson SA (1999) Growth hormone and insulin-like growth factor-I therapy promote protein deposition and growth in dexamethasone-treated piglets. J Pediatr Gastroenterol Nutr 28:404–410. https://doi.org/10.1097/00005176-199904000-00011

    Article  CAS  PubMed  Google Scholar 

  • Ward WE, Donovan SM, Atkinson SA (1998) Dexamethasone-induced abnormalities in growth and bone metabolism in piglets are partially attenuated by growth hormone with no synergistic effect of insulin-like growth factor-I. Pediatr Res 44:215–221. https://doi.org/10.1203/00006450-199808000-00013

    Article  CAS  PubMed  Google Scholar 

  • Weaver ML, Grossi AB, Schützsack J et al (2016) Vehicle systems and excipients used in minipig drug development studies. Toxicol Pathol 44:367–372

    Article  CAS  PubMed  Google Scholar 

  • Whitaker EE, Zheng CZ, Bissonnette B, Miller AD, Koppert TL, Tobias JD, Pierson CR, Christofi FL (2017) Use of a piglet model for the study of anesthetic-induced developmental neurotoxicity (AIDN): a translational neuroscience approach. J Vis Exp:e55193

    Google Scholar 

  • White PJ, Anastasopoulos F, Pouton CW, Boyd BJ (2009) Overcoming biological barriers to in vivo efficacy of antisense oligonucleotides. Expert Rev Mol Med 11:e10. https://doi.org/10.1017/s1462399409001021

    Article  PubMed  Google Scholar 

  • Ziegler AL, Gonzalez L, Blikslager AT (2016) Large animal models: the key to translational discovery in digestive disease research. Cell Mol Gastroenterol Hepatol 2:716–724

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Friis Mikkelsen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mikkelsen, L.F., Van Cruchten, S., Makin, A. (2023). The Use of Göttingen Minipigs in Juvenile Studies. In: Hock, F.J., Gralinski, M.R., Pugsley, M.K. (eds) Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. Springer, Cham. https://doi.org/10.1007/978-3-030-73317-9_80-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73317-9_80-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73317-9

  • Online ISBN: 978-3-030-73317-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics