Skip to main content

Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae

  • Chapter
  • First Online:
Vibrio spp. Infections

Abstract

Cholera is a severe diarrheal disease caused by the aquatic bacterium Vibrio cholerae. Interestingly, to date, only one major clade has emerged to cause pandemic disease in humans: the clade that encompasses the strains from the O1 and O139 serogroups. In this chapter, we provide a comprehensive perspective on the virulence factors and mobile genetic elements (MGEs) associated with the emergence of pandemic V. cholerae strains and highlight novel findings such as specific genomic background or interactions between MGEs that explain their confined distribution. Finally, we discuss pandemic cholera dynamics contextualizing them within the evolution of the bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam M, Hasan NA, Sadique A, Bhuiyan NA, Ahmed KU, Nusrin S, Nair GB, Siddique AK, Sack RB, Sack DA, Huq A, Colwell RR (2006) Seasonal cholera caused by Vibrio cholerae serogroups O1 and O139 in the coastal aquatic environment of Bangladesh. Appl Environ Microbiol 72:4096–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro-Moreno S (2022) Thanks, but no thanks: cholera pathogen keeps incoming DNA at bay. Cell Host Microbe 30:877–879

    Article  CAS  PubMed  Google Scholar 

  • Almagro-Moreno S, Boyd EF (2009a) Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Almagro-Moreno S, Boyd EF (2009b) Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun 77:3807–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almagro-Moreno S, Boyd EF (2010) Bacterial catabolism of nonulosonic (sialic) acid and fitness in the gut. Gut Microbes 1:45–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Almagro-Moreno S, Taylor RK (2013) Cholera: environmental reservoirs and impact on disease transmission. Microbiol Spectr 1

    Google Scholar 

  • Almagro-Moreno S, Pruss K, Taylor RK (2015) Intestinal colonization dynamics of Vibrio cholerae. PLoS Pathog 11:e1004787

    Article  PubMed  PubMed Central  Google Scholar 

  • Anyamba A, Chretien JP, Britch SC, Soebiyanto RP, Small JL, Jepsen R, Forshey BM, Sanchez JL, Smith RD, Harris R, Tucker CJ, Karesh WB, Linthicum KJ (2019) Global disease outbreaks associated with the 2015-2016 El Nino event. Sci Rep 9:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold BJ, Huang IT, Hanage WP (2022) Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol 20:206–218

    Article  CAS  PubMed  Google Scholar 

  • Asadgol Z, Badirzadeh A, Niazi S, Mokhayeri Y, Kermani M, Mohammadi H, Gholami M (2020) How climate change can affect cholera incidence and prevalence? A systematic review. Environ Sci Pollut Res Int 27:34906–34926

    Article  CAS  PubMed  Google Scholar 

  • Ayala JC, Silva AJ, Benitez JA (2017) H-NS: an overarching regulator of the Vibrio cholerae life cycle. Res Microbiol 168:16–25

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Oliver JD, Alam M, Ali A, Waldor MK, Qadri F, Martinez-Urtaza J (2018) Vibrio spp. infections. Nat Rev Dis Primers 4:8

    Article  PubMed  Google Scholar 

  • Balasubramanian D, Murcia S, Ogbunugafor CB, Gavilan R, Almagro-Moreno S (2021) Cholera dynamics: lessons from an epidemic. J Med Microbiol 70

    Google Scholar 

  • Balasubramanian D, Lopez-Perez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S (2022) Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 30(9):898–911

    Article  CAS  PubMed  Google Scholar 

  • Barnett R (2019) Cholera. Lancet 393:218

    Article  PubMed  Google Scholar 

  • Barrangou R, Marraffini LA (2014) CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell 54:234–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaber JW, Hochhut B, Waldor MK (2002) Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol 184:4259–4269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC (2010) Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci 35:411–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berche P, Poyart C, Abachin E, Lelievre H, Vandepitte J, Dodin A, Fournier JM (1994) The novel epidemic strain O139 is closely related to the pandemic strain O1 of Vibrio cholerae. J Infect Dis 170:701–704

    Article  CAS  PubMed  Google Scholar 

  • Bhandare S, Colom J, Baig A, Ritchie JM, Bukhari H, Shah MA, Sarkar BL, Su J, Wren B, Barrow P, Atterbury RJ (2019) Reviving phage therapy for the treatment of cholera. J Infect Dis 219:786–794

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Bhattacharya MK, Nair GB, Dutta D, Deb A, Ramamurthy T, Garg S, Saha PK, Dutta P, Moitra A et al (1993) Clinical profile of acute diarrhoea cases infected with the new epidemic strain of Vibrio cholerae O139: designation of the disease as cholera. J Infect 27:11–15

    Article  CAS  PubMed  Google Scholar 

  • Botelho J, Mourao J, Roberts AP, Peixe L (2020) Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Microb Genom 6

    Google Scholar 

  • Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio 2

    Google Scholar 

  • Box AM, Mcguffie MJ, O’Hara BJ, Seed KD (2016) Functional analysis of bacteriophage immunity through a Type I-E CRISPR-Cas system in Vibrio cholerae and its application in bacteriophage genome engineering. J Bacteriol 198:578–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd EF, Moyer KE, Shi L, Waldor MK (2000) Infectious CTXø and the Vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd EF, Almagro-Moreno S, Parent MA (2009) Genomic islands are dynamic, ancient integrative elements in bacterial evolution. Trends Microbiol 17:47–53

    Article  CAS  PubMed  Google Scholar 

  • Brumfield KD, Usmani M, Chen KM, Gangwar M, Jutla AS, Huq A, Colwell RR (2021) Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp. Environ Microbiol 23:7314–7340

    Article  CAS  PubMed  Google Scholar 

  • Burrus V, Marrero J, Waldor MK (2006) The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 55:173–183

    Article  CAS  PubMed  Google Scholar 

  • Caro F, Caro JA, Place NM, Mekalanos JJ (2020) Transcriptional silencing by TsrA in the evolution of pathogenic Vibrio cholerae biotypes. mBio 11

    Google Scholar 

  • Carpenter MR, Rozovsky S, Boyd EF (2015) Pathogenicity island cross talk mediated by recombination directionality factors facilitates excision from the chromosome. J Bacteriol 198:766–776

    Article  PubMed  Google Scholar 

  • Chen Y, Johnson JA, Pusch GD, Morris JG Jr, Stine OC (2007) The genome of non-O1 Vibrio cholerae NRT36S demonstrates the presence of pathogenic mechanisms that are distinct from those of O1 Vibrio cholerae. Infect Immun 75:2645–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin CS, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, Bullard J, Webster DR, Kasarskis A, Peluso P, Paxinos EE, Yamaichi Y, Calderwood SB, Mekalanos JJ, Schadt EE, Waldor MK (2011) The origin of the Haitian cholera outbreak strain. N Engl J Med 364:33–42

    Article  CAS  PubMed  Google Scholar 

  • Cholera Working Group (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet 342:387–390

    Article  Google Scholar 

  • Christensen-Dalsgaard M, Gerdes K (2006) Two higBA loci in the Vibrio cholerae superintegron encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 62:397–411

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RR (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci U S A 106:15442–15447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen D, Melamed S, Millman A, Shulman G, Oppenheimer-Shaanan Y, Kacen A, Doron S, Amitai G, Sorek R (2019) Cyclic GMP-AMP signalling protects bacteria against viral infection. Nature 574:691–695

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR, Kaper J, Joseph SW (1977) Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396

    CAS  PubMed  Google Scholar 

  • Comstock LE, Maneval D Jr, Panigrahi P, Joseph A, Levine MM, Kaper JB, Morris JG Jr, Johnson JA (1995) The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun 63:317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford JA, Kaper JB, Dirita VJ (1998) Analysis of ToxR-dependent transcription activation of ompU, the gene encoding a major envelope protein in Vibrio cholerae. Mol Microbiol 29:235–246

    Article  CAS  PubMed  Google Scholar 

  • Crawford JA, Krukonis ES, Dirita VJ (2003) Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol Microbiol 47:1459–1473

    Article  CAS  PubMed  Google Scholar 

  • Das B, Bischerour J, Val ME, Barre FX (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci U S A 107:4377–4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies BW, Bogard RW, Young TS, Mekalanos JJ (2012) Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BM, Kimsey HH, Kane AV, Waldor MK (2002) A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J 21:4240–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirita VJ, Mekalanos JJ (1991) Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64:29–37

    Article  CAS  PubMed  Google Scholar 

  • Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G, Morales-Espinosa R, Grimont PAD, Lizarraga-Partida ML, Bouchier C, Aanensen DM, Kuri-Morales P, Tarr CL, Dougan G, Parkhill J, Campos J, Cravioto A, Weill FX, Thomson NR (2017) Integrated view of Vibrio cholerae in the Americas. Science 358:789–793

    Article  CAS  PubMed  Google Scholar 

  • Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ (2002) Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99:1556–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ (2005) Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci U S A 102:3465–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emch M, Feldacker C, Islam MS, ALI, M. (2008) Seasonality of cholera from 1974 to 2005: a review of global patterns. Int J Health Geogr 7:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Ahmed KM, Siddique AK, Zaman K, Alim AR, Albert MJ (1997) Molecular analysis of toxigenic Vibrio cholerae O139 Bengal strains isolated in Bangladesh between 1993 and 1996: evidence for emergence of a new clone of the Bengal vibrios. J Clin Microbiol 35:2299–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Siddique AK, Saha MN, Asadulghani, Rahman MM, Zaman K, Albert MJ, Sack DA, Sack RB (1999) Molecular characterization of a new ribotype of Vibrio cholerae O139 Bengal associated with an outbreak of cholera in Bangladesh. J Clin Microbiol 37:1313–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Asadulghani, Rahman MM, Waldor MK, Sack DA (2000) Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect Immun 68:4795–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM, Sack DA, Sack RB, Colwell RR, Takeda Y, Nair GB (2003) Emergence and evolution of Vibrio cholerae O139. Proc Natl Acad Sci U S A 100:1304–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field M, Fromm D, Al-Awqati Q, Greenough WB 3rd (1972) Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J Clin Invest 51:796–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grim CJ, Choi J, Chun J, Jeon YS, Taviani E, Hasan NA, Haley B, Huq A, Colwell RR (2010) Occurrence of the Vibrio cholerae seventh pandemic VSP-I island and a new variant. Omics 14:1–7

    Article  CAS  PubMed  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, Gill SR, Nelson KE, Read TD, Tettelin H, Richardson D, Ermolaeva MD, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, Mcdonald L, Utterback T, Fleishmann RD, Nierman WC, White O, Salzberg SL, Smith HO, Colwell RR, Mekalanos JJ, Venter JC, Fraser CM (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochhut B, Waldor MK (1999) Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32:99–110

    Article  CAS  PubMed  Google Scholar 

  • Hochhut B, Marrero J, Waldor MK (2000) Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol 182:2043–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochhut B, Beaber JW, Woodgate R, Waldor MK (2001) Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J Bacteriol 183:1124–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hochhut B, Dobrindt U, Hacker J (2005) Pathogenicity islands and their role in bacterial virulence and survival. Contrib Microbiol 12:234–254

    Article  CAS  PubMed  Google Scholar 

  • Holmgren J, Lonnroth I, Svennerholm L (1973) Fixation and inactivation of cholera toxin by GM1 ganglioside. Scand J Infect Dis 5:77–78

    Article  CAS  PubMed  Google Scholar 

  • Hsueh BY, Waters CM (2019) Combating cholera. F1000Res 8

    Google Scholar 

  • Hsueh BY, Severin GB, Elg CA, Waldron EJ, Kant A, Wessel AJ, Dover JA, Rhoades CR, Ridenhour BJ, Parent KN, Neiditch MB, Ravi J, Top EM, Waters CM (2022) Phage defence by deaminase-mediated depletion of deoxynucleotides in bacteria. Nat Microbiol 7(8):1210–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ (2005) Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–674

    Article  CAS  PubMed  Google Scholar 

  • Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Ross AG, Sleigh AC, Chowdhury F, Khan AI, Mcmillan NA, Qadri F (2022) A blueprint for eliminating cholera by 2030. Nat Med 28(9):1747–1749

    Article  CAS  PubMed  Google Scholar 

  • Jaskolska M, Adams DW, Blokesch M (2022) Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 604:323–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jermyn WS, Boyd EF (2002) Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology (Reading) 148:3681–3693

    Article  CAS  PubMed  Google Scholar 

  • Jermyn WS, Boyd EF (2005) Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates. Microbiology (Reading) 151:311–322

    Article  CAS  PubMed  Google Scholar 

  • Johnson JA, Salles CA, Panigrahi P, Albert MJ, Wright AC, Johnson RJ, Morris JG Jr (1994) Vibrio cholerae O139 synonym Bengal is closely related to Vibrio cholerae El Tor but has important differences. Infect Immun 62:2108–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jutla A, Whitcombe E, Hasan N, Haley B, Akanda A, Huq A, Alam M, Sack RB, Colwell R (2013) Environmental factors influencing epidemic cholera. Am J Trop Med Hyg 89:597–607

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamp HD, Patimalla-Dipali B, Lazinski DW, Wallace-Gadsden F, Camilli A (2013) Gene fitness landscapes of Vibrio cholerae at important stages of its life cycle. PLoS Pathog 9:e1003800

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S (2022) Cholera. Lancet 399:1429–1440

    Article  PubMed  Google Scholar 

  • Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95:3134–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karaolis DK, Lan R, Kaper JB, Reeves PR (2001) Comparison of Vibrio cholerae pathogenicity islands in sixth and seventh pandemic strains. Infect Immun 69:1947–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimsey HH, Waldor MK (1998) CTXphi immunity: application in the development of cholera vaccines. Proc Natl Acad Sci U S A 95:7035–7039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koelle K (2009) The impact of climate on the disease dynamics of cholera. Clin Microbiol Infect 15(Suppl 1):29–31

    Article  PubMed  Google Scholar 

  • Kovach ME, Shaffer MD, Peterson KM (1996) A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology (Reading) 142(Pt 8):2165–2174

    Article  CAS  PubMed  Google Scholar 

  • Kovacikova G, Skorupski K (2001) Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 41:393–407

    Article  CAS  PubMed  Google Scholar 

  • Kreuzer KN, Brister JR (2010) Initiation of bacteriophage T4 DNA replication and replication fork dynamics: a review in the Virology Journal series on bacteriophage T4 and its relatives. Virol J 7:358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krukonis ES, Yu RR, Dirita VJ (2000) The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 38:67–84

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Das B, Kumar N (2020) Vibrio pathogenicity island-1: the master determinant of cholera pathogenesis. Front Cell Infect Microbiol 10:561296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770

    Article  PubMed  PubMed Central  Google Scholar 

  • Longini IM Jr, Yunus M, Zaman K, Siddique AK, Sack RB, Nizam A (2002) Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J Infect Dis 186:246–251

    Article  PubMed  Google Scholar 

  • Mandlik A, Livny J, Robins WP, Ritchie JM, Mekalanos JJ, Waldor MK (2011) RNA-Seq-based monitoring of infection-linked changes in Vibrio cholerae gene expression. Cell Host Microbe 10:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin MA, Vicente AC (2013) Architecture of the superintegron in Vibrio cholerae: identification of core and unique genes. F1000Res 2:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazel D (2006) Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620

    Article  CAS  PubMed  Google Scholar 

  • Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608

    Article  CAS  PubMed  Google Scholar 

  • Mcdonald ND, Regmi A, Morreale DP, Borowski JD, Boyd EF (2019) CRISPR-Cas systems are present predominantly on mobile genetic elements in Vibrio species. BMC Genomics 20:105

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekalanos JJ (1983) Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:253–263

    Article  CAS  PubMed  Google Scholar 

  • Mitra R, Basu A, Dutta D, Nair GB, Takeda Y (1996) Resurgence of Vibrio cholerae O139 Bengal with altered antibiogram in Calcutta, India. Lancet 348:1181

    Article  CAS  PubMed  Google Scholar 

  • Mooi FR, Bik EM (1997) The evolution of epidemic Vibrio cholerae strains. Trends Microbiol 5:161–165

    Article  CAS  PubMed  Google Scholar 

  • Morris JG Jr (1990) Non-O group 1 Vibrio cholerae: a look at the epidemiology of an occasional pathogen. Epidemiol Rev 12:179–191

    Article  PubMed  Google Scholar 

  • Morris JG Jr (2003) Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis 37:272–280

    Article  PubMed  Google Scholar 

  • Morris JG Jr, Losonsky GE, Johnson JA, Tacket CO, Nataro JP, Panigrahi P, Levin MM (1995) Clinical and immunologic characteristics of Vibrio cholerae O139 Bengal infection in North American volunteers. J Infect Dis 171:903–908

    Article  PubMed  Google Scholar 

  • Murphy RA, Boyd EF (2008) Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 190:636–647

    Article  CAS  PubMed  Google Scholar 

  • Murphy SG, Alvarez L, Adams MC, Liu S, Chappie JS, Cava F, Dorr T (2019) Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response. mBio 10

    Google Scholar 

  • Murphy SG, Johnson BA, Ledoux CM, Dorr T (2021) Vibrio cholerae’s mysterious seventh pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and cell congregation. PLoS Genet 17:e1009624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, Croucher NJ, Choi SY, Harris SR, Lebens M, Niyogi SK, Kim EJ, Ramamurthy T, Chun J, Wood JL, Clemens JD, Czerkinsky C, Nair GB, Holmgren J, Parkhill J, Dougan G (2011) Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477:462–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M (2011) Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol 2:260

    PubMed  Google Scholar 

  • Nair GB, Bhattacharya SK, DEB, B. C. (1994) Vibrio cholerae O139 Bengal: the eighth pandemic strain of cholera. Indian J Public Health 38:33–36

    CAS  PubMed  Google Scholar 

  • Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA (2002) New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:3296–3299

    Article  PubMed  PubMed Central  Google Scholar 

  • Nye MB, Pfau JD, Skorupski K, Taylor RK (2000) Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 182:4295–4303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivier V, Haines GK 3rd, Tan Y, Satchell KJ (2007) Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 75:5035–5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orata FD, Keim PS, Boucher Y (2014) The 2010 cholera outbreak in Haiti: how science solved a controversy. PLoS Pathog 10:e1003967

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Shea YA, Boyd EF (2002) Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol Lett 214:153–157

    Article  PubMed  Google Scholar 

  • O’Shea YA, Finnan S, Reen FJ, Morrissey JP, O’Gara F, Boyd EF (2004a) The Vibrio seventh pandemic island-II is a 26.9 kb genomic island present in Vibrio cholerae El Tor and O139 serogroup isolates that shows homology to a 43.4 kb genomic island in V. vulnificus. Microbiology (Reading) 150:4053–4063

    Article  PubMed  Google Scholar 

  • O’Shea YA, Reen FJ, Quirke AM, Boyd EF (2004b) Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 42:4657–4671

    Article  PubMed  PubMed Central  Google Scholar 

  • Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31

    Google Scholar 

  • Pascual M, Rodo X, Ellner SP, Colwell R, Bouma MJ (2000) Cholera dynamics and El Nino-Southern Oscillation. Science 289:1766–1769

    Article  CAS  PubMed  Google Scholar 

  • Pearson GD, Woods A, Chiang SL, Mekalanos JJ (1993) CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci U S A 90:3750–3754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirier MJ, Izurieta R, Malavade SS, Mcdonald MD (2012) Re-emergence of cholera in the Americas: risks, susceptibility, and ecology. J Glob Infect Dis 4:162–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Provenzano D, Lauriano CM, Klose KE (2001) Characterization of the role of the ToxR-modulated outer membrane porins OmpU and OmpT in Vibrio cholerae virulence. J Bacteriol 183:3652–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Rajanna C, Wang J, Zhang D, Xu Z, Ali A, Hou YM, Karaolis DK (2003) The Vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J Bacteriol 185:6893–6901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamurthy T, Sharma NC (2014) Cholera outbreaks in India. Curr Top Microbiol Immunol 379:49–85

    PubMed  Google Scholar 

  • Reddi G, Pruss K, Cottingham KL, Taylor RK, Almagro-Moreno S (2018) Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS One 13:e0201383

    Article  PubMed  PubMed Central  Google Scholar 

  • Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187:3551–3555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivera-Chavez F, Mekalanos JJ (2019) Cholera toxin promotes pathogen acquisition of host-derived nutrients. Nature 572:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robins WP, Mekalanos JJ (2014) Genomic science in understanding cholera outbreaks and evolution of Vibrio cholerae as a human pathogen. Curr Top Microbiol Immunol 379:211–229

    PubMed  PubMed Central  Google Scholar 

  • Rossati A (2017) Global warming and its health impact. Int J Occup Environ Med 8:7–20

    Article  PubMed  Google Scholar 

  • Rowe-Magnus DA, Guerout AM, Biskri L, Bouige P, Mazel D (2003) Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. Genome Res 13:428–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MP, Armshaw P, Pembroke JT (2016) SXT/R391 integrative and conjugative elements (ICEs) encode a novel ‘trap-door’ strategy for mobile element escape. Front Microbiol 7:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Sack RB, Siddique AK, Longini IM Jr, Nizam A, Yunus M, Islam MS, Morris JG Jr, Ali A, Huq A, Nair GB, Qadri F, Faruque SM, Sack DA, Colwell RR (2003) A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 187:96–101

    Article  PubMed  Google Scholar 

  • Schwartz K, Hammerl JA, Gollner C, Strauch E (2019) Environmental and clinical strains of Vibrio cholerae non-O1, non-O139 from Germany possess similar virulence gene profiles. Front Microbiol 10:733

    Article  PubMed  PubMed Central  Google Scholar 

  • Semenza JC, Rocklov J, Ebi KL (2022) Climate change and cascading risks from infectious disease. Infect Dis Ther 11:1371–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Shapiro BJ, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S (2016) Origins of pandemic Vibrio cholerae from environmental gene pools. Nat Microbiol 2:16240

    Article  PubMed  Google Scholar 

  • Sheng Y, Fan F, Jensen O, Zhong Z, Kan B, Wang H, Zhu J (2015) Dual zinc transporter systems in Vibrio cholerae promote competitive advantages over gut microbiome. Infect Immun 83:3902–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh K, Milstein JN, Navarre WW (2016) Xenogeneic silencing and its impact on bacterial genomes. Annu Rev Microbiol 70:199–213

    Article  CAS  PubMed  Google Scholar 

  • Sperandio V, Giron JA, Silveira WD, Kaper JB (1995) The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect Immun 63:4433–4438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroeher UH, Parasivam G, Dredge BK, Manning PA (1997) Novel Vibrio cholerae O139 genes involved in lipopolysaccharide biosynthesis. J Bacteriol 179:2740–2747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svab D, Balint B, Maroti G, Toth I (2015) A novel transducible chimeric phage from Escherichia coli O157:H7 Sakai strain encoding Stx1 production. Infect Genet Evol 29:42–47

    Article  CAS  PubMed  Google Scholar 

  • Taviani E, Grim CJ, Choi J, Chun J, Haley B, Hasan NA, Huq A, Colwell RR (2010) Discovery of novel Vibrio cholerae VSP-II genomic islands using comparative genomic analysis. FEMS Microbiol Lett 308:130–137

    CAS  PubMed  Google Scholar 

  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84:2833–2837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heyningen WE, Carpenter CC, Pierce NF, Greenough WB 3rd (1971) Deactivation of cholera toxin by ganglioside. J Infect Dis 124:415–418

    Article  PubMed  Google Scholar 

  • Vezzulli L, Grande C, Reid PC, Helaouet P, Edwards M, Hofle MG, Brettar I, Colwell RR, Pruzzo C (2016) Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc Natl Acad Sci U S A 113:E5062–E5071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezzulli L, Baker-Austin C, Kirschner A, Pruzzo C, Martinez-Urtaza J (2020) Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ Microbiol 22:4342–4355

    Article  CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1994) Vibrio cholerae O139 specific gene sequences. Lancet 343:1366

    Article  CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    Article  CAS  PubMed  Google Scholar 

  • Waldor MK, Colwell R, Mekalanos JJ (1994) The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci U S A 91:11388–11392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Villeneuve S, Zhang J, Lei P, Miller CE, Lafaye P, Nato F, SZU SC, Karpas A, Bystricky S, Robbins JB, Kovac P, Fournier JM, Glaudemans CP (1998) On the antigenic determinants of the lipopolysaccharides of Vibrio cholerae O:1, serotypes Ogawa and Inaba. J Biol Chem 273:2777–2783

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ayala JC, Silva AJ, Benitez JA (2012) The histone-like nucleoid structuring protein (H-NS) is a repressor of Vibrio cholerae exopolysaccharide biosynthesis (vps) genes. Appl Environ Microbiol 78:2482–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Ayala JC, Benitez JA, Silva AJ (2015) RNA-seq analysis identifies new genes regulated by the histone-like nucleoid structuring protein (H-NS) affecting Vibrio cholerae virulence, stress response and chemotaxis. PLoS One 10:e0118295

    Article  PubMed  PubMed Central  Google Scholar 

  • Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, Keddy KH, Salje H, Moore S, Mukhopadhyay AK, Bercion R, Luquero FJ, Ngandjio A, Dosso M, Monakhova E, Garin B, Bouchier C, Pazzani C, Mutreja A, Grunow R, Sidikou F, Bonte L, Breurec S, Damian M, Njanpop-Lafourcade BM, Sapriel G, Page AL, Hamze M, Henkens M, Chowdhury G, Mengel M, Koeck JL, Fournier JM, Dougan G, Grimont PAD, Parkhill J, Holt KE, Piarroux R, Ramamurthy T, Quilici ML, Thomson NR (2017) Genomic history of the seventh pandemic of cholera in Africa. Science 358:785–789

    Article  CAS  PubMed  Google Scholar 

  • Weill FX, Domman D, Njamkepo E, Almesbahi AA, Naji M, Nasher SS, Rakesh A, Assiri AM, Sharma NC, Kariuki S, Pourshafie MR, Rauzier J, Abubakar A, Carter JY, Wamala JF, Seguin C, Bouchier C, Malliavin T, Bakhshi B, Abulmaali HHN, Kumar D, Njoroge SM, Malik MR, Kiiru J, Luquero FJ, Azman AS, Ramamurthy T, Thomson NR, Quilici ML (2019) Genomic insights into the 2016-2017 cholera epidemic in Yemen. Nature 565:230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirtz C, Witte W, Wolz C, Goerke C (2009) Transcription of the phage-encoded Panton-Valentine leukocidin of Staphylococcus aureus is dependent on the phage life-cycle and on the host background. Microbiology (Reading) 155:3491–3499

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Shimizu T, Hoshino K, Ho ST, Shimada T, Nair GB, Takeda Y (1999) The genes responsible for O-antigen synthesis of Vibrio cholerae O139 are closely related to those of Vibrio cholerae O22. Gene 237:321–332

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation CAREER award (#2045671) and a Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease award (#1021977) to S.A.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Almagro-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramanian, D., López-Pérez, M., Almagro-Moreno, S. (2023). Cholera Dynamics and the Emergence of Pandemic Vibrio cholerae. In: Almagro-Moreno, S., Pukatzki, S. (eds) Vibrio spp. Infections. Advances in Experimental Medicine and Biology, vol 1404. Springer, Cham. https://doi.org/10.1007/978-3-031-22997-8_7

Download citation

Publish with us

Policies and ethics