Skip to main content

The IO Model of a Simple Economy Without Fossil Fuel

  • Chapter
  • First Online:
A Practical Guide to Industrial Ecology by Input-Output Analysis

Abstract

This chapter delves into the assumptions and concepts of input-output analysis (IO), including input coefficients, the Leontief inverse, the Leontief quantity model, and productive conditions. It begins with a simple one-sector model centered around the production of a single staple and gradually expands to a two-sector model that incorporates livestock production. Environmental extensions of IO analysis are explored, such as GHG emissions, water and land footprints, waste generation, and recycling, including Waste Input-Output analysis (WIO), with numerical examples based on real data. The chapter focuses on an economy that operates without fossil fuels, relying solely on human muscle power as the energy source for production. GHG emissions primarily arise from anaerobic decomposition in organic waste and enteric fermentation in livestock. The chapter endogenizes the supply of human labor by considering the energy required to produce human muscle power, aligning with the Miyazawa model. The initial discussion in the chapter avoids matrix algebra, using simple arithmetic instead to aid readers unfamiliar with matrices. Once the basic concepts are covered, matrix algebra is introduced to reinforce the fundamentals of IO, which can be applied to any number of sectors. Additionally, the chapter introduces the IO model of cost and price as the dual to the quantity model, enhancing the understanding of the IO framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An important cultural by-product of this event was the creation of the novel Frankenstein by Mary Shelley, regarded by many as the best science fiction work ever written.

References

  1. Dazhong, Wen, and David Pimentel. 1986. Seventeenth century organic agriculture in China: I. Cropping systems in Jiaxing region. Human Ecology 14 (1): 1–14.

    Google Scholar 

  2. Dazhong, Wen, and David Pimentel. 1986. Seventeenth century organic agriculture in China: II. Energy flows through an agroecosystem in Jiaxing region. Human Ecology 14 (1): 15–28.

    Article  Google Scholar 

  3. Koopmans, Tialing C. 1951. An analysis of production as an efficient combination of activities (Chap. III). In Activity analysis of production and allocation, ed. Tialing C. Koopmans, 33–97. New York: Wiley.

    Google Scholar 

  4. Heijungs, Reinout, and Sangwon Suh. 2002. The computational structure of life cycle assessment, vol. 11. Springer Science & Business Media.

    Google Scholar 

  5. Hauschild, Michael Z., Ralph K. Rosenbaum, and Stig Irvin Olsen, eds. 2018. Life cycle assessment theory and practice. Springer.

    Google Scholar 

  6. Shephard, Ronald W. 1970. Proof of the law of diminishing returns. Zeitschrift für Nationalökonomie Journal of Economics 30 (1–2): 7–34.

    Google Scholar 

  7. Shephard, Rolf, and Ronald W. Faere. 1973. The law of diminishing returns. Zeitschrift für Nationalökonomie Journal of Economics 34: 69–90.

    Article  Google Scholar 

  8. Calvo, Guiomar, Gavin Mudd, Alicia Valero, and Antonio Valero. 2016. Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources 5 (4): 36.

    Article  Google Scholar 

  9. Tribe, M.A., and R.L.W. Alpine. 1986. Scale economies and the “0.6 rule”. Engineering Costs and Production Economics 10 (4): 271–278.

    Google Scholar 

  10. Salter, W.E.G. 1960. Productivity and technical change. Cambridge University Press.

    Google Scholar 

  11. Johansen, Leif. 1972. Production functions: An integration of micro and macro, short run and long run aspects, vol. 75. North-Holland.

    Google Scholar 

  12. Benestad, Rasmus E. 2017. A mental picture of the greenhouse effect: A pedagogic explanation. Theoretical and Applied Climatology 128 (3–4): 679–688.

    Google Scholar 

  13. Hawkins, David, and Herbert Simon. 1949. Note: Some conditions of macroeconomic stability. Econometrica 13 (2): 556.

    Google Scholar 

  14. Nikaido, Fukukane. 1968. Convex structurers and economic theory. New York: Academic.

    Google Scholar 

  15. Gale, David. 1989. The theory of linear economic models. University of Chicago Press.

    Google Scholar 

  16. Lave, Lester B., Elisa Cobas-Flores, Chris T. Hendrickson, and Francis McMichael. 1995. Using Input-Output Analysis to estimate economy-wide discharges. Environmental Science & Technology 29 (9): 4220–426.

    Google Scholar 

  17. Oppenheimer, Clive. 2003. Climatic, environmental and human con sequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography 27 (2): 230–259.

    Article  Google Scholar 

  18. Diamond, Jared. 2011. Collapse: How societies choose to fail or succeed. Revised edition. Penguin.

    Google Scholar 

  19. Morris, Julian. 2005. Confuse: How jared diamond fails to convince. Energy and Environment 16 (3–4): 395–421.

    Article  Google Scholar 

  20. Gause, Emma. 2014. A critique: Jared diamond’s collapse put in perspective. Papers from the Institute of Archaeology 24 (1): 1–7.

    Google Scholar 

  21. Giampietro, Mario, and David Pimentel. 1990. Assessment of the energetics of human labor. Agriculture, Ecosystems and Environment 32 (3–4): 257–272.

    Article  Google Scholar 

  22. Ming, Xu, Eric Williams, and Braden Allenby. 2010. Assessing environmental impacts embodied in manufacturing and labor input for the China-U.S. trade. Environmental Science and Technology 44 (2): 567–573.

    Google Scholar 

  23. Rugani, Benedetto, Daryna Panasiuk, and Enrico Benetto. 2012. An input-output based framework to evaluate human labour in life cycle assessment. The International Journal of Life Cycle Assessment 17 (6): 795–812.

    Article  Google Scholar 

  24. Murphy, Tom. 2011. MPG of a Human: https://dothemath.ucsd.edu/2011/11/mpg-of-a-human/

  25. Miyazawa, Kenichi. 1968. Input-output analysis and interrelational income multiplier as a matrix. Hitotsubashi Journal of Economics 8 (2): 39–58.

    Google Scholar 

  26. Lewis, Simon L., and Mark A. Maslin. 2015. Defining the anthropocene. Nature 519 (7542): 171.

    Google Scholar 

  27. Harada, Hisatomi, Hitomi Kobayashi, and Hayato Shindo. 2007. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Science and Plant Nutrition 53 (5): 668–677.

    Article  CAS  Google Scholar 

  28. Ono, Yuya, Masaharu Motoshita, and Norihiro Itsubo. 2015. Development of water footprint inventory database on Japanese goods and services distinguishing the types of water resources and the forms of water uses based on input-output analysis. International Journal of Life Cycle Assessment 20 (10): 1456–1467.

    Article  Google Scholar 

  29. Chapagain, Ashok, and Arjen Hoekstra. 2010. The blue, green and grey water footprint of rice from both a production and consumption perspective. Technical Report 40, UNESCO-IHE.

    Google Scholar 

  30. De Baan, Laura, Rob Alkemade, and Thomas Koellner. 2013. Land use impacts on biodiversity in LCA: A global approach. International Journal of Life Cycle Assessment 18 (6): 1216–1230.

    Article  Google Scholar 

  31. Bennett, Joanne M., Janette A. Steets, Jean H. Burns, Laura A. Burkle, Jana C. Vamosi, Marina Wolowski, Gerardo Arceo-Gómez, Martin Burd, Walter Durka, Allan G. Ellis, Leandro Freitas, Junmin Li, James G. Rodger, Valentin Stefan, Jing Xia, Tiffany M. Knight, and Tia Lynn Ashman. 2020. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications 11 (1): 1–6.

    Google Scholar 

  32. Steen-Olsen, Kjartan, Jan Weinzettel, Gemma Cranston, A. Ertug Ercin, and Edgar G. Hertwich. 2012. Carbon, land, and water footprint accounts for the european union: Consumption, production, and displacements through international trade. Environmental Science and Technology 46 (20): 10883–10891.

    Google Scholar 

  33. Bruckner, Martin, Günther. Fischer, Sylvia Tramberend, and Stefan Giljum. 2015. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecological Economics 114: 11–21.

    Article  Google Scholar 

  34. Rose, C., Alison Parker, Bruce Jefferson, and Elise Cartmell. 2015. The characterization of feces and urine: A review of the literature to inform advanced treatment technology. Critical reviews in environmental science and technology 45 (17): 1827–1879.

    Google Scholar 

  35. Hanley, Susan B. 1987. Urban sanitation in preindustrial Japan. The Journal of Interdisciplinary History 18 (1): 1–26.

    Google Scholar 

  36. Ferguson, Dean T. 2014. Nightsoil and the ‘Great Divergence’: Human waste, the urban economy, and economic productivity, 1500–1900. Journal of Global History 9 (3): 379–402.

    Article  Google Scholar 

  37. Nakamura, Shinichiro, and Yasushi Kondo. 2009. Waste input-output analysis. Dordrecht: Springer Science & Business Media.

    Book  Google Scholar 

  38. Muñoz, Ivan, Llorenc i Canals, and Clift Roland. 2008. Consider a spherical man a simple model to include human excretion in life cycle assessment of food products. Journal of Industrial Ecology 12: 521–538.

    Google Scholar 

  39. Harold Farnswprth Gray. 1940. Sewerage in ancient and mediaeval times. Sewage Works Journal 12 (5): 939–946.

    Google Scholar 

  40. Tervahauta, Taina, Sonia Rani, Lucía Hernández Leal, Cees J. N. Buisman, and Grietje Zeeman. 2014. Black water sludge reuse in agriculture: Are heavy metals a problem? Journal of Hazardous Materials 274: 229–236.

    Google Scholar 

  41. Singh, R.P., and Manindra Agrawal. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management 28 (2): 347–358.

    Google Scholar 

  42. Johansson, Kristin, Maria Perzon, Morgan Fröling, Agnes Mossakowska, and Magdalena Svanström. 2008. Sewage sludge handling with phosphorus utilization-life cycle assessment of four alternatives. Journal of Cleaner Production 16 (1): 135–151.

    Article  Google Scholar 

  43. Donatello, Shane, and Christopher R. Cheeseman. 2013. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management 33 (11): 2328–2340.

    Google Scholar 

  44. Aleisa, Esra, Abdalrahman Alsulaili, and Yasmeen Almuzaini. 2021. Recirculating treated sewage sludge for agricultural use: Life cycle assessment for a circular economy. Waste Management 135: 79–89.

    Article  CAS  Google Scholar 

  45. Nakamura, Shinichiro, and Yasushi Kondo. 2002. Input-output analysis of waste management. Journal of Industrial Ecology 6 (1): 39–63.

    Article  Google Scholar 

  46. Yoo, Daekyum, Muhammad Mahboob Ali Hamid, Hanbeen Kim, Joonbeom Moon, Jaeyong Song, Seyoung Lee, and Jakyeom Seo. 2020. Substitution effects of rice for corn grain in total mixed ration on rumen fermentation characteristics and microbial community in vitro. Journal of Animal Science and Technology 62 (5): 638–647.

    Google Scholar 

  47. Scheibler, R.B., J. Schafhäuser, F.A. Rizzo, J.L. Nörnberg, D.P. Vargas, J.L.S. Silva, A.C. Fluck, and V.I. Fioreze. 2015. Replacement of corn grain by brown rice grain in dairy cow rations: Nutritional and productive effects. Animal Feed Science and Technology 208: 214–219.

    Article  CAS  Google Scholar 

  48. Roll, Aline Arassiana Piccini, Edenilse Gopinger, Martha Lopes Schuch De Castro, Jorge Schafhäuser Junior, Victor Fernando Büttow Roll, and Fernando Rutz. 2017. Brown rice, selenium yeast and alpha-tocopherol acetate in chicken’s diet: Effects on meat quality. Semina: Ciencias Agrarias 38 (2): 957–968.

    Google Scholar 

  49. Ito, Y. 1941. The dried sardine and dregs market of Edo. Mita Journal of Economics 35 (11): 1362–1380.

    Google Scholar 

  50. Solow, Robert. 1952. On the structure of linear models. Econometrica 20 (1): 29–46.

    Article  Google Scholar 

  51. Astudillo, Miguel F., Gunnar Thalwitz, and Fritz Vollrath. 2015. Modern analysis of an ancient integrated farming arrangement: Life cycle assessment of a mulberry dyke and pond system. International Journal of Life Cycle Assessment 20 (10): 1387–1398.

    Article  CAS  Google Scholar 

  52. Okishio, Nobuo. 1963. A mathematical note on marxian theorems. Weltwirtschaftliches Archiv 91: 287–299.

    Google Scholar 

  53. WBCSD and WRI. 2012. The Greenhouse Gas Protocol A Corporate Accounting and Reporting Standard. Technical report, WBCSD WRI.

    Google Scholar 

  54. MacLean, Heather L., and Lester B. Lave. 2003. Life cycle assessment of automobile/fuel options. Environmental Science & Technology 37: 5445–5452.

    Google Scholar 

  55. Nguyen, Thu Lan T., John E. Hermansen, and Lisbeth Mogensen. 2011. Environmental Assessment of Danish Pork.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichiro Nakamura .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nakamura, S. (2023). The IO Model of a Simple Economy Without Fossil Fuel. In: A Practical Guide to Industrial Ecology by Input-Output Analysis. Springer, Cham. https://doi.org/10.1007/978-3-031-43684-0_3

Download citation

Publish with us

Policies and ethics