Skip to main content

Climatic Changes Since 1700

  • Chapter
Climatic Changes Since 1700

Part of the book series: Advances in Global Change Research ((AGLO,volume 55))

Abstract

Over the last 300 years, countless climatic variations at different places and times have been witnessed, some affecting millions of people and changing the course of history, some going largely unnoticed. In this chapter, I discuss selected climatic changes in European and global climate history from about 1700, the end of the Little Ice Age, to the present. The 20 events start with the cold Maunder Minimum and end with the global warming hiatus, covering different aspects of the climate system. We will encounter continental-scale temperature dips, hydroclimatic anomalies, perturbations of the stratosphere, and changes in atmospheric composition. Thereby, we will see the mechanisms discussed in Chap. 3 at work: oceanic modes and atmospheric variability, volcanic eruptions, and humans changing their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, the demise of the Greenland Vikings was related to climatic changes already in 1824 (Ehrenheim 1824).

  2. 2.

    Hubert Lamb (1913–1997) was a British climatologist who is known for his work on climate history and for his dynamical perspective of past climate. Lamb was the founder of the Climatic Research Unit (CRU) of the University of East Anglia, Norwich, UK.

  3. 3.

    Emmanuel Le Roy Ladurie, born in 1929, is a French historian, known among other things for his work on climate history. He advocated for the separation of human and climate histories. Le Roy Ladurie is one of the leading figures of the French “Annales” school of historiography, which considers history from the point of view of mentalities.

  4. 4.

    The term “Little Ice Age” was introduced earlier, but referred to a much longer period (the last ca. 5000 years), which is nowadays referred to as the neoglacial (Mann 2002).

  5. 5.

    Climate or weather cycles were a typical, often-criticised perspective of 19th century science. Unlike many contemporaries, Brückner did not see his cycle as an exact, deterministic component; the cycle length of 35 years was an average length and could vary.

  6. 6.

    Although the effects of the Krakatau eruption on the atmosphere and climate were actively discussed at the time Brückner wrote his book, volcanoes were only seen as possible drivers of climatic changes since the 1910s with the work of Humphreys (1913) and others, see Box 3.2, p. 124.

  7. 7.

    Jean-Jacques Rousseau, 1712–1778, was a political philosopher whose work influenced the French revolution and the romantic movement.

  8. 8.

    Horace Bénédict de Saussure, 1740–1799, was a physicist and traveller. He was among the first to study the vertical structure of the atmosphere by climbing Mont Blanc (4,808 m asl) with a barometer.

  9. 9.

    Jakob Samuel Wyttenbach, 1748–1830, was a Bernese priest and natural scientist. Wyttenbach travelled the Alps together with painter Caspar Wolf and published his observations. He was a co-founder of the Bernese and Swiss Natural Sciences Societies.

  10. 10.

    The overestimation of the recent retreat might be due to the fact that the glacier tongue has remained stationary since the 1980s as a block of dead ice in a narrow gorge, buried under rockslides.

  11. 11.

    The sea-surface temperature field used to prescribe the GCM simulations contains atmospheric influences (internal variability). Hence, the resulting response of the atmosphere in the model cannot be addressed solely as an effect of the ocean on the atmosphere.

  12. 12.

    The index of the width of the tropical belt is defined as the distance between the two latitudes with the strongest zonal-mean total ozone gradient in each hemisphere (restricted within 32\(\circ \) and 45\(\circ \) in each hemisphere) in monthly data, averaged for the May–October season (see also Hudson et al. 2006).

  13. 13.

    John Steinbeck, 1902–1968, was an American writer. Also of interest to climatologists is his 1945 novel “Cannery Row”. It describes the boom of sardine fishery in California in the early 1940s, which was followed by rapid demise in the 1950s, both of which have been attributed to the Pacific Decadal Oscillation.

  14. 14.

    Woodie Guthrie, 1912–1967, was an influential singer and songwriter of folk music.

  15. 15.

    Dorothea Lange, 1895–1965, was an American documentary photographer and photojournalist.

  16. 16.

    Brückner participated in an expedition across the U.S. in 1912. He reported on agricultural activities in the semi-arid Great Basin and noted that settlement in the western U.S. during 1870–1890 was facilitated by pluvial conditions, while land was abandoned in the 1890s due to drought.

  17. 17.

    John Tyndall, 1820–1893, was a British physicist known for his work on the interaction between radiation and air.

    Luigi De Marchi, 1857–1936, was an Italian geophysicist.

    Svante Arrhenius, 1859–1927, was a Swedish physicist and physical chemist. He received the Nobel Price in chemistry in 1903.

  18. 18.

    Guy Stewart Callendar, 1898–1964, was a British steam engineer. He wrote several papers on atmospheric carbon dioxide and global temperature.

  19. 19.

    The stagnation ended in the 1970s. Nevertheless, I chose another year for delimitating the last phase of the book—1985, when the ozone hole was discovered.

  20. 20.

    Bert Bolin, 1925–2007, was a Swedish meteorologist. He was one of the founders and first chair of the IPCC.

  21. 21.

    Hans Oeschger, 1927–1998, was a Swiss physicist and climate scientist. Apart from his work on carbon dioxide in the atmosphere, Oeschger pioneered the measurements of trace gas concentrations and climatic changes in polar ice cores.

  22. 22.

    This is because, for a given temperature change, the latent energy response according to the Clausius-Clapeyron relation is very large. Atmospheric circulation becomes overly efficient in transporting energy, which cannot be radiated equally efficiently. Slowing down the atmospheric circulation is the only way to thermodynamically compensate for this discrepancy.

  23. 23.

    The Montreal Protocol was also one of the most effective climate protection measures (Estrada et al. 2013).

  24. 24.

    Hartmut Grassl, *1940, is a German climate scientist who served as a long-term director of the Max-Planck Institute for Meteorology in Hamburg.

  25. 25.

    Wallace Broecker, *1931, is a chemical oceanographer and is most widely known for his work on the global ocean circulation (the “conveyor belt”) and the carbon cycle. He is professor at the Lamont-Doherty Earth Observatory of Columbia University.

References

  • Abram NJ, Mulvaney R, Wolff EW et al (2013) Acceleration of snow melt in an Antarctic Peninsula ice core during the twentieth century. Nat Geosci 6:404–411

    Article  CAS  Google Scholar 

  • Aceituno P, Prieto MR, Solari M et al (2009) The 1877–1878 El Niño episode: associated impacts in South America. Clim Change 92:389–416

    Article  Google Scholar 

  • Ahmed M, Anchukaitis K, Buckley BM et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346

    Article  CAS  Google Scholar 

  • Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354

    Article  CAS  Google Scholar 

  • Allen RJ, Norris JR, Kovilakam M (2014) Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nat Geosci 7:270–274

    Article  CAS  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  CAS  Google Scholar 

  • Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci USA 104:3713–3718

    Article  Google Scholar 

  • Anchukaitis KJ, Breitenmoser P, Briffa KR et al (2012) Tree rings and volcanic cooling. Nat Geosci 5:836–837

    Article  CAS  Google Scholar 

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  CAS  Google Scholar 

  • Anderson DM, Mauk EM, Wahl ER et al (2013) Global warming in an independent record of the past 130 years. Geophys Res Lett 40:189–193

    Article  Google Scholar 

  • Anet JG, Muthers S, Rozanov EV et al (2014) Impact of solar vs. volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Clim Past 10:921–938

    Article  Google Scholar 

  • Arfeuille F, Luo BP, Heckendorn P et al (2013) Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmos Chem Phys 13:11221–11234

    Article  CAS  Google Scholar 

  • Arfeuille F, Weisenstein D, Mack H et al (2014) Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present. Clim Past 10:359–375

    Article  Google Scholar 

  • Arrhenius S (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276

    Article  CAS  Google Scholar 

  • Auchmann R, Brönnimann S, Breda L et al (2012) Extreme climate, not extreme weather: the summer of 1816 in Geneva, Switzerland. Clim Past 8:325–335

    Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A et al (2007) HISTALP–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Austin J, Butchart N, Shine KP (1992) Possibility of an Arctic ozone hole in a doubled-CO2 climate. Nature 360:221–225

    Article  CAS  Google Scholar 

  • Bândă N, Krol M, van Weele M, van Noije T, Röckmann T (2013) Analysis of global methane changes after the 1991 Pinatubo volcanic eruption. Atmos Chem Phys 13:2267–2281

    Article  CAS  Google Scholar 

  • Barnett TP, Graham NE, Cane MA et al (1988) On the prediction of the El Niño of 1986–1987. Science 241:192–196

    Article  CAS  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: Redrawing the temperature record map of Europe. Science 332:220–224

    Article  CAS  Google Scholar 

  • Barrow J (1819) Physikalisch-geografische Nachrichten aus dem nördlichen Polarmeer. Ann Phys 62:157–166

    Google Scholar 

  • Baumgartner A (1950) Niederschlagsschwankungen und Dürregefährdung mit Bezug auf den Waldbau. Forstwissenschaftliches Centralblatt 69:636–662

    Article  Google Scholar 

  • Behringer W (2007) Kulturgeschichte des Klimas: von der Eiszeit bis zur globalen Erwärmung. Beck’sche Reihe, Beck

    Google Scholar 

  • Bhartia PK (2009) Role of satellite measurements in the discovery of stratospheric ozone depletion. In: Twenty years of ozone decline. Springer, pp 183–189

    Google Scholar 

  • Bichet A, Folini D, Wild M, Schär C (2014) Enhanced Central European summer precipitation in the late 19th century: A link to the Tropics. Q J R Meteorol Soc 140:111–123

    Article  Google Scholar 

  • Bindoff NL, Stott PA, AchutaRao KM et al (2013) Detection and attribution of climate change: From global to regional. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/ New York

    Google Scholar 

  • Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10

    Article  Google Scholar 

  • Birkeland BJ (1930) Temperaturvariationen auf Spitzbergen. Meteorol Z 47:2

    Google Scholar 

  • Birner T (2010) Recent widening of the tropical belt from global tropopause statistics: sensitivities. J Geophys Res 115:D23109

    Article  Google Scholar 

  • Black DE, Abahazi MA, Thunell RC et al (2007) An 8-century tropical Atlantic SST record from the Cariaco basin: baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22:PA4204

    Article  Google Scholar 

  • Black E, Sutton R (2007) The influence of oceanic conditions on the hot European summer of 2003. Clim Dyn 28:53–66

    Article  Google Scholar 

  • Blanford HF (1884) On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India. Proc R Soc London 37:3–22

    Article  Google Scholar 

  • Bodenmann T, Brönnimann S, Hadorn GH, Krüger T, Weissert H (2011) Perceiving, explaining, and observing climatic changes: an historical case study of the “year without a summer” 1816. Meteorol Z 20:577–587

    Article  Google Scholar 

  • Böhm R, Jones PD, Hiebl J et al (2010) The early instrumental warm-bias: a solution for long central European temperature series 1760–2007. Clim Change 101:41–67

    Article  Google Scholar 

  • Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484:228–232

    Article  CAS  Google Scholar 

  • Bradley RS, Hughes MK, Diaz HF (2003) Climate in medieval time. Science 302:404–405

    Article  CAS  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312:1755–1756

    Article  CAS  Google Scholar 

  • Braganza K, Gergis JL, Power SB, Risbey JS, Fowler AM (2009) A multiproxy index of the El Niño–Southern Oscillation, AD 1525–1982. J Geophys Res 114:D05106

    Google Scholar 

  • Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe – the state of the art. Clim Change 70:363–430

    Article  Google Scholar 

  • Brázdil R, Dobrovolnỳ P, Trnka M et al (2013) Droughts in the Czech Lands, 1090–2012 AD. Clim Past 9:1985–2002

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455

    Article  CAS  Google Scholar 

  • Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111:D12106

    Article  Google Scholar 

  • Brohan P, Allan R, Freeman JE et al (2009) Marine observations of old weather. Bull Am Meteorol Soc 90:219–230

    Article  Google Scholar 

  • Bromwich DH, Nicolas JP, Monaghan AJ et al (2013) Central West Antarctica among the most rapidly warming regions on Earth. Nat Geosci 6:139–145

    Article  CAS  Google Scholar 

  • Brönnimann S (2007) Impact of El Niño–Southern Oscillation on European climate. Rev Geophys 45:RG3003

    Article  Google Scholar 

  • Brönnimann S (2009) Early twentieth-century warming. Nat Geosci 2:735–736

    Article  CAS  Google Scholar 

  • Brönnimann S, Compo GP (2012) Ozone highs and associated flow features in the first half of the twentieth century in different data sets. Meteorol Z 21:49–59

    Article  Google Scholar 

  • Brönnimann S, Luterbacher J, Staehelin J et al (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974

    Article  CAS  Google Scholar 

  • Brönnimann S, Stickler A, Griesser T et al (2009a) Exceptional atmospheric circulation during the “Dust Bowl”. Geophys Res Lett 36:L08802

    Article  Google Scholar 

  • Brönnimann S, Stickler A, Griesser T et al (2009b) Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorol Z 18:379–396

    Article  Google Scholar 

  • Brönnimann S, Grant AN, Compo GP et al (2012a) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598

    Article  Google Scholar 

  • Brönnimann S, Martius O, von Waldow H et al (2012c) Extreme winds at northern mid-latitudes since 1871. Meteorol Z 21:13–27

    Article  Google Scholar 

  • Brönnimann S, Bhend J, Franke J et al (2013a) A global historical ozone data set and prominent features of stratospheric variability prior to 1979. Atmos Chem Phys 13:9623–9639

    Article  CAS  Google Scholar 

  • Brooks CEP (1922) The evolution of climate [Preface by Simpson, G.C.]. Benn Brothers, London

    Google Scholar 

  • Brown RD, Robinson DA (2011) Northern hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. The Cryosphere 5:219–229

    Article  Google Scholar 

  • Brückner E (1890) Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit. E. D. Hölzel, Wien and Olmütz

    Google Scholar 

  • Bryson RA, Kutzbach JE (1968) Air Pollution. Resource Paper No. 2. ERIC

    Google Scholar 

  • Budyko MI (1974) Change of climate (Izmenenie klimata). Hydrometeoizdat, Leningrad

    Google Scholar 

  • Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, AD 755-2004. J Clim 19:5606–5623

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K et al (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582

    Article  CAS  Google Scholar 

  • Bünti JL (1973) Chronik des Johann Laurentz Bünti, Landamman, 1661–1736. Beiträge zur Geschichte Nidwaldens 34:1–418

    Google Scholar 

  • Cai W, Purich A, Cowan T, van Rensch P, Weller E (2014) Did climate change–induced rainfall trends contribute to the Australian Millennium Drought? J Clim 27:3145–3168

    Article  Google Scholar 

  • Calanca P (2007) Climate change and drought occurrence in the Alpine region: How severe are becoming the extremes? Glob Plan Change 57:151–160

    Article  Google Scholar 

  • Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J R Meteorol Soc 64:223–240

    Article  Google Scholar 

  • Carril AF, Gualdi S, Cherchi A, Navarra A (2008) Heatwaves in Europe: Areas of homogeneous variability and links with the regional to large-scale atmospheric and SSTs anomalies. Clim Dyn 30:77–98

    Article  Google Scholar 

  • Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811

    Article  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880

    Article  Google Scholar 

  • Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J (2007) A European pattern climatology 1766–2000. Clim Dyn 29:791–805

    Article  Google Scholar 

  • CCMVal SPARC, Eyring V, Shepherd T, Waugh D (2010) SPARC report on the evaluation of chemistry–climate models, SPARC Rep. 5, WCRP-132. Tech. rep., SPARC

    Google Scholar 

  • Chang FC, Wallace JM (1987) Meteorological conditions during heat waves and droughts in the United States Great Plains. Mon Weather Rev 115:1253–1269

    Article  Google Scholar 

  • Chen X, Tung KK (2014) Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345:897–903

    Article  CAS  Google Scholar 

  • Chenoweth M (2003) The 18th century climate of Jamaica: derived from the journals of Thomas Thistlewood, 1750–1786. American Philosophical Society, Philadelphia

    Google Scholar 

  • Chenoweth M (2009) Daily synoptic weather map analysis of the New England cold wave and snowstorms of 5 to 11 June 1816. In: Historical climate variability and impacts in North America. Springer, Dordrecht, pp 107–121

    Google Scholar 

  • Chenoweth M, Divine D (2008) A document-based 318-year record of tropical cyclones in the Lesser Antilles, 1690–2007. Geochem Geophys Geosyst 9:Q08013

    Article  Google Scholar 

  • Chenoweth M, Divine D (2012) Tropical cyclones in the lesser antilles: descriptive statistics and historical variability in cyclone energy, 1638–2009. Clim Change 113:583–598

    Article  Google Scholar 

  • Christiansen B, Ljungqvist FC (2012) The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim Past 8:765–786

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007

    Article  Google Scholar 

  • Cohen J, Screen JA, Furtado JC et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  CAS  Google Scholar 

  • Collins M, Knutti R, Arblaster J et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Comiso JC (2012) Large decadal decline of the Arctic multiyear ice cover. J Clim 25:1176–1193

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The Twentieth Century Reanalysis project. Q J R Meteorol Soc 137:1–28

    Article  Google Scholar 

  • Cook BI, Miller RL, Seager R (2008) Dust and sea surface temperature forcing of the 1930s “Dust Bowl” drought. Geophys Res Lett 35:L08710

    Google Scholar 

  • Cook BI, Miller RL, Seager R (2009) Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc Natl Acad Sci USA 106:4997–5001

    Article  CAS  Google Scholar 

  • Cook ER, D’Arrigo RD, Cole JE, Stahle DW, Villalba R (2000) Tree-ring records of past ENSO variability and forcing. In: Diaz HF, Markgraf V (eds) El Niño and the Southern Oscillation: Multiscale variability and global and regional impacts. Cambridge University Press, Cambridge/New York, pp 297–323

    Google Scholar 

  • Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation Index since AD 1400. J Clim 15:1754–1764

    Article  Google Scholar 

  • Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Climatol 23:707–732

    Article  Google Scholar 

  • Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018

    Article  CAS  Google Scholar 

  • Cook ER, Buckley BM, Palmer JG et al (2006) Millennia-long tree-ring records from Tasmania and New Zealand: A basis for modelling climate variability and forcing, past, present and future. J Quat Sci 21:689–699

    Article  Google Scholar 

  • Cook ER, Anchukaitis KJ, Buckley BM et al (2010) Asian Monsoon Failure and Megadrought During the Last Millennium. Science 328:486–489

    Article  CAS  Google Scholar 

  • Cornes RC, Jones PD (2011) An examination of storm activity in the northeast Atlantic region over the 1851–2003 period using the EMULATE gridded MSLP data series. J Geophys Res 116:D16110

    Article  Google Scholar 

  • Cowtan K, Way RG (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q J R Meteorol Soc 140:1935–1944

    Article  Google Scholar 

  • Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277

    Article  CAS  Google Scholar 

  • Crowley TJ, Obrochta SP, Liu J (2014) Recent global temperature “plateau” in the context of a new proxy reconstruction. Earth’s Future 2:281–294

    Article  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77:211–220

    Article  CAS  Google Scholar 

  • Crutzen PJ, Birks JW (1982) Atmosphere after a nuclear war: Twilight at noon. Ambio 11:114–125

    CAS  Google Scholar 

  • Dangendorf S, Müller-Navarra S, Jensen J et al (2014) North Sea storminess from a novel storm surge record since ad 1843. J Clim 27:3582–3595

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Tudhope A (2008) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56

    Article  CAS  Google Scholar 

  • D’Arrigo R, Palmer J, Ummenhofer C, Kyaw NN, Krusic P (2013) Myanmar monsoon drought variability inferred by tree rings over the past 300 years: Oinkages to ENSO. PAGES Newsletter 21:50–51

    Google Scholar 

  • Davis M (2001) Late Victorian holocausts: El Niño famines and the making of the Third World. Verso, London

    Google Scholar 

  • de Jong R, Björck S, Björkman L, Clemmensen LB (2006) Storminess variation during the last 6500 years as reconstructed from an ombrotrophic peat bog in Halland, southwest Sweden. J Quat Sci 21:905–919

    Article  Google Scholar 

  • De Marchi L (1895b) Le cause dell’era glaciale: ricerca teorica delle condizioni che determinano l’attuale distribuzione delle temperature e delle pioggie sulla superficie terrestre e che possono averla modificata nei precedenti periodi geologici. Fusi

    Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112:D15103

    Article  Google Scholar 

  • Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287:2246–2250

    Article  CAS  Google Scholar 

  • Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2:775–779

    Article  Google Scholar 

  • Devereux S (2000) Famine in the twentieth century. IDS Working Paper, vol 105. Institute of Development Studies, Brighton

    Google Scholar 

  • Diatta S, Fink AH (2014) Statistical relationship between remote climate indices and West African monsoon variability. Int J Climatol 34:3348–3367

    Article  Google Scholar 

  • Diaz HF, Trigo R, Hughes MK et al (2011) Spatial and temporal characteristics of climate in medieval times revisited. Bull Am Meteorol Soc 92:1487–1500

    Article  Google Scholar 

  • Digby W (1878) The famine campaign in southern India. Longmans, Green & Co, London

    Google Scholar 

  • Ding Q, Wallace JM, Battisti DS et al (2014) Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509:209–212

    Article  CAS  Google Scholar 

  • Dobrovolnỳ P, Moberg A, Brázdil R et al (2010) Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change 101:69–107

    Article  Google Scholar 

  • Dobrovolnỳ P, Brázdil R, Trnka M, Kotyza O, Valášek H (2015) Precipitation reconstruction for the Czech Lands, AD 1501–2010. Int J Climatol 35:1–14

    Article  Google Scholar 

  • Eddy JA (1976) The maunder minimum. Science 192:1189–1202

    Article  CAS  Google Scholar 

  • Edwards PN (2010) A vast machine: Computer models, climate data, and the politics of global warming. MIT, Cambridge

    Google Scholar 

  • Ehrenheim F (1824) Om climaternes rörlighet. Norstedt

    Google Scholar 

  • Eichler A, Brütsch S, Olivier S, Papina T, Schwikowski M (2009a) A 750 year ice core record of past biogenic emissions from Siberian boreal forests. Geophys Res Lett 36:L18813

    Article  Google Scholar 

  • Eichler A, Olivier S, Henderson K et al (2009b) Temperature response in the Altai region lags solar forcing. Geophys Res Lett 36:L01808

    Google Scholar 

  • Eichler A, Tinner W, Brütsch S et al (2011) An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30:1027–1034

    Article  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating Central Equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J Clim 26:2329–2352

    Google Scholar 

  • England MH, McGregor S, Spence P et al (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295:2250–2253

    Article  CAS  Google Scholar 

  • Estrada F, Perron P, Martínez-López B (2013) Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat Geosci 6:1050–1055

    Article  CAS  Google Scholar 

  • Evan AT, Kossin JP, Ramanathan V et al (2011) Arabian Sea tropical cyclones intensified by emissions of black carbon and other aerosols. Nature 479:94–97

    Article  CAS  Google Scholar 

  • Ewen T, Brönnimann S, Annis J (2008) An extended Pacific–North American index from upper-air historical data back to 1922. J Clim 21:1295–1308

    Article  Google Scholar 

  • Fagan BM (2000) The Little Ice Age: How climate made history, 1300–1850. Basic Books, New York

    Google Scholar 

  • Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210

    Article  CAS  Google Scholar 

  • Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998

    Article  CAS  Google Scholar 

  • Feulner G (2011) Are the most recent estimates for Maunder Minimum solar irradiance in agreement with temperature reconstructions? Geophys Res Lett 38:L16706

    Article  Google Scholar 

  • Fischer EM, Knutti R (2014) Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys Res Lett 41:547–554

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007b) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707

    Google Scholar 

  • Fischer AM, Schraner M, Rozanov E et al (2008) Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a chemistry-climate model. Atmos Chem Phys 8:7755–7777

    Article  CAS  Google Scholar 

  • Fleming J (2007) The Callendar effect: the life and work of Guy Stewart Callendar (1898–1964). Amer Meteor Soc, Boston

    Book  Google Scholar 

  • Fogt RL, Perlwitz J, Monaghan AJ et al (2009) Historical SAM variability. Part II: twentieth-century variability and trends from reconstructions, observations, and the IPCC AR4 Models. J Clim 22:5346–5365

    Article  Google Scholar 

  • Folland CK, Knight J, Linderholm HW et al (2009) The summer North Atlantic Oscillation: Past, present, and future. J Clim 22:1082–1103

    Article  Google Scholar 

  • Forster PM, Thompson DWJ, Baldwin MP et al (2011) Stratospheric changes and climate, chapter 4. In: Scientific Assessment of Ozone Depletion: 2010, Global ozone research and monitoring project-report no. 52, World Meteorological Organization, Geneva

    Google Scholar 

  • Foster G, Rahmstorf S (2011) Global temperature evolution 1979–2010. Env Res Lett 6:044022

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L06801

    Article  Google Scholar 

  • Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26:3298–3310

    Article  Google Scholar 

  • Frank DC, Esper J, Raible CC, Büntgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463:527–532

    Article  CAS  Google Scholar 

  • Frierson DMW, Hwang YT, Fučkar NS et al (2013) Contribution of ocean overturning circulation to tropical rainfall peak in the Northern Hemisphere. Nat Geosci 6:940–944

    Article  CAS  Google Scholar 

  • Fu C, Diaz HF, Dong D, Fletcher JO (1999) Changes in atmospheric circulation over Northern Hemisphere oceans associated with the rapid warming of the 1920s. Int J Climatol 19:581–606

    Article  Google Scholar 

  • Fyfe JC, Gillett NP, Zwiers FW (2013) Overestimated global warming over the past 20 years. Nat Clim Change 3:767–769

    Article  Google Scholar 

  • Gaetani M, Pohl B, Douville H, Fontaine B (2011) West African Monsoon influence on the summer Euro-Atlantic circulation. Geophys Res Lett 38:L09705

    Article  Google Scholar 

  • Galton F (1888) Co-relations and their measurement, chiefly from anthropometric data. Proc R Soc Lond 45:135–145

    Article  Google Scholar 

  • Garrett TJ, Zhao C (2006) Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature 440:787–789

    Article  CAS  Google Scholar 

  • Gergis J, Gallant AJE, Braganza K et al (2012) On the long-term context of the 1997–2009 ‘Big Dry’ in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction. Clim Change 111:923–944

    Article  Google Scholar 

  • Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030

    Article  CAS  Google Scholar 

  • Giannini A, Biasutti M, Verstraete MM (2008) A climate model-based review of drought in the Sahel: desertification, the re-greening and climate change. Glob Plan Change 64:119–128

    Article  Google Scholar 

  • Giese BS, Slowey NC, Ray S et al (2010) The 1918/19 El Niño. Bull Am Meteorol Soc 91:177–183

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275

    Article  CAS  Google Scholar 

  • Gillett NP, Zwiers FW, Weaver AJ, Stott PA (2003) Detection of human influence on sea-level pressure. Nature 422:292–294

    Article  CAS  Google Scholar 

  • Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett 32:L19714

    Article  Google Scholar 

  • Gimmi U, Luterbacher J, Pfister C, Wanner H (2007) A method to reconstruct long precipitation series using systematic descriptive observations in weather diaries: The example of the precipitation series for Bern, Switzerland (1760–2003). Theor Appl Climatol 87:185–199

    Article  Google Scholar 

  • Glaser R (2008) Klimageschichte Mitteleuropas – 1200 Jahre Wetter, Klima, Katastrophen. WBG, Darmstadt

    Google Scholar 

  • Glaser R, Riemann D (2009) A thousand-year record of temperature variations for Germany and Central Europe based on documentary data. J Quat Sci 24:437–449

    Article  Google Scholar 

  • Gleckler PJ, Wigley TML, Santer BD et al (2006) Volcanoes and climate: Krakatoa’s signature persists in the ocean. Nature 439:675–675

    Article  CAS  Google Scholar 

  • Glur L, Wirth SB, Büntgen U et al (2013) Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Sci Rep 3:2770

    Article  Google Scholar 

  • Goldsmith P, Tuck AF, Foot JS, Simmons EL, Newson RL (1973) Nitrogen oxides, nuclear weapon testing, concorde and stratospheric ozone. Nature 244:545–551

    Article  CAS  Google Scholar 

  • Gong DY, Luterbacher J (2008) Variability of the low-level cross-equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies. Geophys Res Lett 35:L01705

    Article  Google Scholar 

  • Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J Geophys Res 117:D01102

    Google Scholar 

  • Graham NE, Hughes MK, Ammann CM et al (2007) Tropical Pacific–mid-latitude teleconnections in medieval times. Clim Change 83:241–285

    Article  Google Scholar 

  • Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2011) Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn 37:1217–1245

    Article  Google Scholar 

  • Grant AN, Brönnimann S, Ewen T, Griesser T, Stickler A (2009) The early twentieth century warm period in the European Arctic. Meteorol Z 18:425–432

    Article  Google Scholar 

  • Grassl H, Klingholz R (1990) Wir Klimamacher. Büchergilde Gutenberg, Frankfurt a. M.

    Google Scholar 

  • Gray ST, Graumlich LJ, Betancourt JL, Pederson GT (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys Res Lett 31:L12205

    Article  Google Scholar 

  • Groissmayr FB (1949) Die grosse säkulare Klimawende um 1940 und das Katastrophenjahr 1947 in Zentraleuropa. Ber. Dt. Wetterdienst. US-Zone, Nr. 10, 39 pp

    Google Scholar 

  • Grütter J, Lehmann S, Auchmann R, Martius O, Brönnimann S (2013) The heatwaves in Switzerland in summer 1947. In: Brönnimann S, Martius O (eds) Weather extremes during the past 140 years, Geographica Bernensia G89, Bern, pp 69–80

    Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC et al (2003) Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science 299:2035–2038

    Article  CAS  Google Scholar 

  • Guevara-Murua A, Williams CA, Hendy EJ, Rust AC, Cashman KV (2014) Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼ 1809 eruption? Clim Past 10:1707–1722

    Google Scholar 

  • Gustafsson Ö, Kruså M, Zencak Z et al (2009) Brown clouds over South Asia: Biomass or fossil fuel combustion? Science 323:495–498

    Article  CAS  Google Scholar 

  • Häkkinen S (1999) A simulation of thermohaline effects of a great salinity anomaly. J Clim 12:1781–1795

    Article  Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic Multidecadal Ocean variability. Science 334:655–659

    Article  CAS  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116

    Article  CAS  Google Scholar 

  • Hammer T (2000) Desertifikation im Sahel Lösungskonzepte der dritten Generation. Geographische Rundschau 52:4–11

    Google Scholar 

  • Hann J (1890) Zur Witterungsgeschichte von Nord-Grönland, Westküste. Meteorol Z 7:109–115

    Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Article  Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004

    Article  Google Scholar 

  • Hao ZX, Zheng JY, Wu GF, Zhang XZ, Ge QS (2010) 1876–1878 severe drought in North China: Facts, impacts and climatic background. Chinese Sci Bull 55:3001–3007

    Article  Google Scholar 

  • Harington CR (1992) The year without a summer? World climate in 1816. Canadian Museum of Nature, Ottawa

    Google Scholar 

  • Hartmann B, Wendler G (2005) The significance of the 1976 Pacific climate shift in the climatology of Alaska. J Clim 18:4824–4839

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Haywood JM, Jones A, Bellouin N, Stephenson D (2013) Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat Clim Change 3:660–665

    Article  CAS  Google Scholar 

  • Heckendorn P, Weisenstein D, Fueglistaler S et al (2009) The impact of geoengineering aerosols on stratospheric temperature and ozone. Env Res Lett 4:045108

    Article  CAS  Google Scholar 

  • Hegerl GC, von Storch H, Hasselmann K et al (1996) Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. J Clim 9:2281–2306

    Article  Google Scholar 

  • Hegerl GC, Crowley TJ, Allen M et al (2007) Detection of human influence on a new, validated 1500-year temperature reconstruction. J Clim 20:650–666

    Article  Google Scholar 

  • Held IM, Delworth TL, Lu J, Findell KL, Knutson TR (2005) Simulation of Sahel drought in the 20th and 21st centuries. Proc Natl Acad Sci USA 102:17891–17896

    Article  CAS  Google Scholar 

  • Helfand HM, Schubert SD (1995) Climatology of the simulated Great Plains low-level jet and its contribution to the continental moisture budget of the United States. J Clim 8:784–806

    Article  Google Scholar 

  • Herceg D, Sobel AH, Sun L (2007) Regional modeling of decadal rainfall variability over the Sahel. Clim Dyn 29:89–99

    Article  Google Scholar 

  • Hiebl J (2006) The early instrumental climate period (1760–1860) in Europe. Evidence from the Alpine region and Southern Scandinavia Diploma thesis, Geogr Inst, University of Vienna

    Google Scholar 

  • Higgins RW, Yao Y, Yarosh ES, Janowiak JE, Mo KC (1997) Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J Clim 10:481–507

    Article  Google Scholar 

  • Hildebrandsson HH (1897) Quelques recherches sur les centres d’action de l’atmosphére. Kongl svenska Vetensk Akad Handl 29, 36 pp

    Google Scholar 

  • Hirschi E, Auchmann R, Martius O, Brönnimann S (2013) The 1945–1949 droughts in Switzerland. In: Brönnimann S, Martius O (eds) Weather extremes during the past 140 years, Geographica Bernensia G89, Bern, pp 81–90

    Google Scholar 

  • Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299:691–694

    Article  CAS  Google Scholar 

  • Holzhauser H (2010) Zur Geschichte des Gornergletschers. Ein Puzzle aus historischen Dokumenten und fossilen Hölzern aus dem Gletchervorland. Geographica Bernensia, G 84, Geographisches Institut der Universität Bern

    Google Scholar 

  • Honda M, Nakamura H, Ukita J, Kousaka I, Takeuchi K (2001) Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J Clim 14:1029–1042

    Google Scholar 

  • Hu Y, Zhou C, Liu J (2011) Observational evidence for poleward expansion of the Hadley circulation. Advances in Atmospheric Sciences 28:33–44

    Article  CAS  Google Scholar 

  • Hu Y, Tao L, Liu J (2013) Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795

    Article  Google Scholar 

  • Hudson RD, Andrade MF, Follette MB, Frolov AD (2006) The total ozone field separated into meteorological regimes–Part II: Northern Hemisphere mid-latitude total ozone trends. Atmos Chem Phys 6:5183–5191

    Article  CAS  Google Scholar 

  • Humphreys WJ (1913) Volcanic dust and other factors in the production of climatic changes, and their possible relation to ice ages. Bull Mount Weather Obs 6:1–34

    Google Scholar 

  • Hurt RD (1981) The Dust Bowl: An agricultural and social history. Nelson-Hall, Chicago

    Google Scholar 

  • Ineson S, Scaife AA (2009) The role of the stratosphere in the European climate response to El Niño. Nat Geosci 2:32–36

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva

    Google Scholar 

  • IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds)]. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds)]. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Jacobeit J, Glaser R, Nonnenmacher M, Stangl H (2004) Mitteleuropäische Hochwasserentwicklung im Kontext atmosphärischer Zirkulationsschwankungen. In: Gönnert G et al (eds) Proc. Klimaänderung und Küstenschutz, pp 31–41

    Google Scholar 

  • Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179

    Article  Google Scholar 

  • Jaiser R, Dethloff K, Handorf D, Rinke A, Cohen J (2012) Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation. Tellus A 64:11595

    Article  Google Scholar 

  • Janicot S, Harzallah A, Fontaine B, Moron V (1998) West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J Clim 11:1874–1882

    Article  Google Scholar 

  • Jansen E, Overpeck J, Briffa KR et al (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW et al (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A 56:328–341

    Article  Google Scholar 

  • Johnston H, Whitten G, Birks J (1973) Effect of nuclear explosions on stratospheric nitric oxide and ozone. J Geophys Res 78:6107–6135

    Article  CAS  Google Scholar 

  • Jones JM, Fogt RL, Widmann M et al (2009a) Historical SAM variability. Part I: Century-length seasonal reconstructions. J Clim 22:5319–5345

    Google Scholar 

  • Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450

    Article  Google Scholar 

  • Jones PD, Lister DH, Osborn TJ et al (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J Geophys Res 117:D05127

    Google Scholar 

  • Jong R, Verbesselt J, Schaepman ME, Bruin S (2012) Trend changes in global greening and browning: contribution of short-term trends to longer-term change. Global Change Biol 18:642–655

    Article  Google Scholar 

  • Jungclaus JH, Koenigk T (2010) Low-frequency variability of the arctic climate: The role of oceanic and atmospheric heat transport variations. Clim Dyn 34:265–279

    Article  Google Scholar 

  • Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954

    Article  CAS  Google Scholar 

  • Kang S, Yang B, Qin C et al (2013) Extreme drought events in the years 1877–1878, and 1928, in the southeast Qilian Mountains and the air–sea coupling system. Quat Int 283:85–92

    Article  Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kellogg WW (1987) Mankind’s impact on climate: The evolution of an awareness. Clim Change 10:113–136

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res 116:D14103

    Google Scholar 

  • Klingaman WK, Klingaman NP (2013) The year without summer: 1816 and the Volcano that Darkened the World and Changed History. St. Martin’s Press, New York, 338 pp

    Google Scholar 

  • Komhyr WD, Barrett EW, Slocum G, Weickmann HK (1971) Physical sciences: atmospheric total ozone increase during the 1960s. Nature 232:390–391

    Article  CAS  Google Scholar 

  • Konare A, Zakey AS, Solmon F et al (2008) A regional climate modeling study of the effect of desert dust on the West African monsoon. J Geophys Res 113,:D12206

    Google Scholar 

  • Köppen W (1881) Über mehrjährige Perioden der Witterung–III. Mehrjährige Änderungen der Temperatur 1841 bis 1875 in den Tropen der nördlichen und südlichen gemässigten Zone, an den Jahresmitteln untersucht. Zeitschrift der Österreichischen Gesellschaft für Meteorologie Bd XVI:141–150

    Google Scholar 

  • Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501:403–407

    Article  CAS  Google Scholar 

  • Kripalani RH, Kulkarni A (1997) Climatic impact of El Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46

    Article  Google Scholar 

  • Krüger T (2013) Discovering the ice ages: international reception and consequences for a historical understanding of climate. Brill, Leiden

    Book  Google Scholar 

  • Kuglitsch FG, Toreti A, Xoplaki E et al (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37:L04802

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian Monsoon and ENSO. Science 284:2156–2159

    Article  CAS  Google Scholar 

  • Lamb H (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37

    Article  Google Scholar 

  • Lamb HH (1969) The new look of climatology. Nature 223:1209–1215

    Article  Google Scholar 

  • Lamb HH (1972) Climate: present, past and future. Fundamentals and climate now, vol 1. Methuen, London

    Google Scholar 

  • Lamb HH (1977) Climate: present, past and future. Climatic history and the future, vol 2. Methuen, London

    Google Scholar 

  • Langematz U, Claussnitzer A, Matthes K, Kunze M (2005) The climate during the Maunder Minimum: a simulation with the Freie Universität Berlin climate middle atmosphere model (FUB-CMAM). J Atmos Sol-Terr Phys 67:55–69

    Article  CAS  Google Scholar 

  • Larkin NK, Harrison D (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705

    Article  Google Scholar 

  • Lau WKM, Kim KM (2012) The 2010 Pakistan flood and Russian heat wave: teleconnection of hydrometeorological extremes. J Hydrometeorol 13:392–403

    Article  Google Scholar 

  • Lauwaet D, Lipzig NPM, Ridder K (2009) The effect of vegetation changes on precipitation and mesoscale convective systems in the Sahel. Clim Dyn 33:521–534

    Article  Google Scholar 

  • Le Roy Ladurie E (1971) Times of feast, times of famine: a history of climate since the year 1000. Doubleday, New York

    Google Scholar 

  • Le Treut H, Somerville R, Cubasch U et al (2007) Historical overview of climate change. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder minimum. Geophys Res Lett 27:2425–2428

    Article  CAS  Google Scholar 

  • Lean JL, Rind DH (2008) How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophys Res Lett 35:L18701

    Article  Google Scholar 

  • Leclercq PW, Oerlemans J (2012) Global and hemispheric temperature reconstruction from glacier length fluctuations. Clim Dyn 38:1065–1079

    Article  Google Scholar 

  • Lehner F, Raible CC, Stocker TF (2012) Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat Sci Rev 45:85–94

    Article  Google Scholar 

  • Lehner F, Born A, Raible CC, Stocker TF (2013) Amplified inception of European Little Ice Age by sea ice-ocean-atmosphere feedbacks. J Clim 26:7586–7602

    Article  Google Scholar 

  • Lejenäs H (1989) The severe winter in Europe 1941–42: the large-scale circulation, cut-off lows, and blocking. Bull Am Meteorol Soc 70:271–281

    Article  Google Scholar 

  • Lelieveld J, Crutzen P, Ramanathan V et al (2001) The Indian Ocean experiment: widespread air pollution from South and Southeast Asia. Science 291:1031–1036

    Article  CAS  Google Scholar 

  • Lenton A, Codron F, Bopp L et al (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36:L12606

    Article  CAS  Google Scholar 

  • Lenton TM (2012) Arctic climate tipping points. Ambio 41:10–22

    Article  Google Scholar 

  • Li J, Xie SP, Cook ER et al (2011) Interdecadal modulation of El Niño amplitude during the past millennium. Nat Clim Change 1:114–118

    Article  CAS  Google Scholar 

  • Lieberman V (2003) Strange parallels: Southeast Asia in global context, c. 800–1830. Integration on the Mainland. Cambridge University Press, New York/Cambridge

    Google Scholar 

  • Liebmann B, Dole RM, Jones C, Bladé I, Allured D (2010) Influence of choice of time period on global surface temperature trend estimates. Bull Am Meteorol Soc 91:1485–1491

    Article  Google Scholar 

  • Loader NJ, Jalkanen R, Mccarroll D, Moberg A (2011) Spring temperature variability in Northern Fennoscandia AD 1693–2011. J Quat Sci 26:566–570

    Article  Google Scholar 

  • Lorrey A, Fauchereau N, Stanton C et al (2013) The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Clim Dyn 42:3039–3060

    Article  Google Scholar 

  • Luterbacher J, Rickli R, Xoplaki E et al (2001) The late Maunder minimum (1675–1715)–a key period forstudying decadal scale climatic change in Europe. Clim Change 49:441–462

    Article  Google Scholar 

  • Luterbacher J, Xoplaki E, Dietrich D et al (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503

    Article  CAS  Google Scholar 

  • Lutz HJ (1956) Ecological effects of forest fires in the interior of Alaska. US Department of Agriculture

    Google Scholar 

  • MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32:L08703

    Article  Google Scholar 

  • Manatsa D, Morioka Y, Behera SK, Yamagata T, Matarira CH (2013) Link between Antarctic ozone depletion and summer warming over Southern Africa. Nat Geosci 6:934–939

    Article  CAS  Google Scholar 

  • Mann ME (2002) Little Ice Age. In: Munn RE (ed) Encyclopedia of global environmental change. The earth system: physical and chemical dimensions of global environmental change, vol 1. Wiley, Chichester/New York, pp 504–509

    Google Scholar 

  • Mann ME, Zhang Z, Hughes MK et al (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257

    Article  CAS  Google Scholar 

  • Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009a) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883

    Article  CAS  Google Scholar 

  • Mann ME, Zhang Z, Rutherford S et al (2009b) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260

    Article  CAS  Google Scholar 

  • Manney GL, Santee ML, Rex M et al (2011) Unprecedented Arctic ozone loss in 2011. Nature 478:469–475

    Article  CAS  Google Scholar 

  • Mantua NJ, Hare SR (2002) The Pacific Decadal Oscillation. J Oceanogr 58:35–44

    Article  Google Scholar 

  • Marshall GJ (2003) Trends in the Southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • Martin-Puertas C, Matthes K, Brauer A et al (2012) Regional atmospheric circulation shifts induced by a grand solar minimum. Nat Geosci 5:397–401

    Article  CAS  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A et al (2013) Information from paleoclimate archives. In: Stocker T, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Matulla C, Schöner W, Alexandersson H, von Storch H, Wang XL (2008) European storminess: late nineteenth century to present. Clim Dyn 31:125–130

    Article  Google Scholar 

  • Mauelshagen F (2010) Klimageschichte der Neuzeit. WBG (Wissenschaftliche Buchgesellschaft)

    Google Scholar 

  • Mayer M, Haimberger L, Balmaseda MA (2014) On the energy exchange between tropical ocean basins related to ENSO. J Clim 27:6393–6403

    Article  Google Scholar 

  • McCabe GJ, Palecki MA, Betancourt JL (2004) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101:4136–4141

    Article  CAS  Google Scholar 

  • McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6:1–17

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th conference on applied climatology, vol 17. American Meteorological Society, Boston, pp 179–183

    Google Scholar 

  • Meadows DH, Meadows DL, Randers J, Behrens III WW (1972) Limits to Growth. Universe Books, New York, 205 pp

    Google Scholar 

  • Meehl GA, Arblaster JM, Fasullo JT, Hu A, Trenberth KE (2011) Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat Clim Change 1:360–364

    Article  Google Scholar 

  • Meier N, Rutishauser T, Pfister C, Wanner H, Luterbacher J (2007) Grape harvest dates as a proxy for Swiss April to August temperature reconstructions back to AD 1480. Geophys Res Lett 34:L20705

    Article  Google Scholar 

  • Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7:21–26

    Article  Google Scholar 

  • Miller GH, Geirsdottir A, Zhong Y et al (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708

    Article  Google Scholar 

  • Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JVG (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349

    Article  CAS  Google Scholar 

  • Moberg A, Alexandersson H, Bergström H, Jones PD (2003) Were Southern Swedish summer temperatures before 1860 as warm as measured? Int J Clim 23:1495–1521

    Article  Google Scholar 

  • Moffa-Sánchez P, Born A, Hall IR, Thornalley DJ, Barker S (2014) Solar forcing of North Atlantic surface temperature and salinity over the past millennium. Nat Geosci 7:275–278

    Article  CAS  Google Scholar 

  • Montzka SA, Krol M, Dlugokencky E et al (2011) Small interannual variability of global atmospheric hydroxyl. Science 331:67–69

    Article  CAS  Google Scholar 

  • Moore GWK, Holdsworth G, Alverson K (2002) Climate change in the North Pacific region over the past three centuries. Nature 420:401–403

    Article  CAS  Google Scholar 

  • Muthers S, Anet JG, Raible CC et al (2014a) Northern hemispheric winter warming pattern after tropical volcanic eruptions: sensitivity to the ozone climatology. J Geophys Res 119:1340–1355

    Article  Google Scholar 

  • Muthers S, Anet JG, Stenke A et al (2014b) The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM. Geosci Model Dev 7:2157–2179

    Article  Google Scholar 

  • Namias J (1982) Anatomy of great plains protracted heat waves (especially the 1980 US summer drought). Mon Weather Rev 110:824–838

    Article  Google Scholar 

  • Neely RR, Toon OB, Solomon S et al (2013) Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys Res Lett 40:999–1004

    Article  CAS  Google Scholar 

  • Neu U (2008) Is recent major hurricane activity normal? Nature 451:E5–E5

    Article  CAS  Google Scholar 

  • Neukom R, Luterbacher J, Villalba R et al (2010) Multi-centennial summer and winter precipitation variability in Southern South America. Geophys Res Lett 37:L14708

    Article  Google Scholar 

  • Neukom R, Gergis J, Karoly DJ et al (2014a) Inter-hemispheric temperature variability over the past millennium. Nat Clim Change 4:362–367

    Article  Google Scholar 

  • Neukom R, Nash DJ, Endfield GH et al (2014b) Multi-proxy summer and winter precipitation reconstruction for Southern Africa over the last 200 years. Clim Dyn 42:2713–2726

    Article  Google Scholar 

  • Nicholls N (2008) Recent trends in the seasonal and temporal behaviour of the El Niño–Southern oscillation. Geophys Res Lett 35:L19703

    Article  Google Scholar 

  • Nicholson S (2000) Land surface processes and Sahel climate. Rev Geophys 38:117–139

    Article  Google Scholar 

  • Nicholson SE (2001) Climatic and environmental change in Africa during the last two centuries. Clim Res 17:123–144

    Article  Google Scholar 

  • Nicolussi K, Patzelt G (2001) Untersuchungen zur holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z Gletscherk Glazialgeol 36:1–87

    Google Scholar 

  • Nordli Ø, Przybylak R, Ogilvie AE, Isaksen K (2014) Long-term temperature trends and variability on Spitsbergen: The extended Svalbard Airport temperature series, 1898–2012. Polar Res 33:21349

    Article  Google Scholar 

  • Norton-Griffiths M, Rydén P (eds) (1989) The IUCN Sahel studies, vol 1. IUCN Regional Office for Eastern Africa, Nairobi

    Google Scholar 

  • Nussbaumer SU, Deline P, Vincent C, Zumbühl HJ (2012) Mer de Glace. Art & science. Atelier ésope, Chamonix

    Google Scholar 

  • Nyberg J, Malmgren BA, Winter A et al (2007) Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature 447:698–701

    Article  CAS  Google Scholar 

  • Oerlemans J (2005) Extracting a climate signal from 169 glacier records. Science 308:675–677

    Article  CAS  Google Scholar 

  • Oglesby RJ (1991) Springtime soil moisture, natural climatic variability, and North American drought as simulated by the NCAR community climate model 1. J Clim 4:890–897

    Article  Google Scholar 

  • Ohmura A, Lang H (1989) Secular variation of global radiation in Europe. In: Lenoble J, Geleyn JF (eds) IRS’88: Current problems in atmospheric radiation, A. Deepak Publishing, Hampton, pp 298–301

    Google Scholar 

  • Ohvril H, Teral H, Neiman L et al (2009) Global dimming and brightening versus atmospheric column transparency, Europe, 1906–2007. J Geophys Res 114:D00D12

    Google Scholar 

  • Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259

    Article  Google Scholar 

  • Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70 N computed from the GFDL data set. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment. Geophysical Monograph Series, vol 85. AGU, Washington, DC, pp 313–325

    Chapter  Google Scholar 

  • Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett 39:L19804

    Article  Google Scholar 

  • Overpeck J, Hughen K, Hardy D et al (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256

    Article  CAS  Google Scholar 

  • Paeth H (2007) Human activity and climate change in Africa. Adv Glob Change Res 33:209–220

    Google Scholar 

  • Paret O (1947) Droht Europa eine Trockenheit? Stuttgarter Rundschau

    Google Scholar 

  • Parker DE, Legg T, Folland CK (1992) A new daily central England temperature series, 1772–1991. Int J Clim 12:317–342

    Article  Google Scholar 

  • Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405

    Article  Google Scholar 

  • Penck A, Brückner E (1909) Die Alpen im Eiszeitalter, vol 3. Tauchnitz Leipzig

    Google Scholar 

  • Pettersson O (1914) Climatic variations in historic and prehistoric time. Ur Svenska Hydrografisk-Biologiska Kommisionens Skrifter 5, 26 pp

    Google Scholar 

  • Pfahl S, Sirocko F, Seelos K et al (2009) A new windstorm proxy from lake sediments: a comparison of geological and meteorological data from Western Germany for the period 1965–2001. J Geophys Res 114:D18106

    Article  Google Scholar 

  • Pfister C (1982) An analysis of the Little Ice Age climate in Switzerland and its consequences for agricultural production. In: Wigley TML, Ingram MJ, Farmer G (eds.): Climate and history. Studies in past climates and their impact on man. Cambridge University Press, New York, pp 297–323

    Google Scholar 

  • Pfister C (1995) Das 1950er Syndrom: Der Weg in die Konsumgesellschaft. Haupt, Bern

    Google Scholar 

  • Pfister C (1999) Wetternachhersage: 500 Jahre Klimavariationen und Naturkatastrophen (1496–1995). Haupt, Bern

    Google Scholar 

  • Pfister C (2009) Die “Katastrophenlüke” des 20. Jahrhunderts und der Verlust traditionalen Risikobewusstseins. Gaia 18:239–246

    Google Scholar 

  • Pfister C, Brändli D (1999) Rodungen im Gerbirge - Überschwemmungen im Vorland: Ein Deutungsmuster macht Karriere. In: Sieferle RP, Breuninger H (eds) Natur-Bilder. Wahrnehmungen von Natur und Umwelt in der Geschichte, Campus Verlag, Frankfurt/Main and New York, pp 297–323

    Google Scholar 

  • Pictet MA (1818) Résumé des observations météorologiques faites ă l’Observatoire de Paris en 1817. Bibliothèque Universelle, Sciences et Arts 3:83–95

    Google Scholar 

  • Pithan F, Mauritsen T (2014) Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat Geosci 7:181–184

    Article  CAS  Google Scholar 

  • Plass GN (1956) The carbon dioxide theory of climatic change. Tellus 8:140–154

    Article  Google Scholar 

  • Polyakov IV, Alekseev GV, Bekryaev RV et al (2003) Long-term ice variability in Arctic marginal seas. J Clim 16:2078–2085

    Article  Google Scholar 

  • Polyakov IV, Alekseev GV, Timokhov LA et al (2004) Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years. J Clim 17:4485–4497

    Article  Google Scholar 

  • Polyakov IV, Bhatt US, Walsh JE et al (2013) Recent oceanic changes in the Arctic in the context of long-term observations. Ecol Appl 23:1745–1764

    Article  Google Scholar 

  • Power SB, Kociuba G (2011) What caused the observed twentieth-century weakening of the Walker circulation? J Clim 24:6501–6514

    Article  Google Scholar 

  • Ramanathan V, Crutzen P (2003) New directions: atmospheric brown “clouds”. Atmos Environ 37:4033–4035

    Article  CAS  Google Scholar 

  • Ramanathan V, Ramana MV, Roberts G et al (2007) Warming trends in Asia amplified by brown cloud solar absorption. Nature 448:575–578

    Article  CAS  Google Scholar 

  • Ramella Pralungo L, Haimberger L (2014) A “Global Radiosonde and tracked-balloon Archive on Sixteen Pressure levels” (GRASP) going back to 1905 – Part 2: homogeneity adjustments for pilot balloon and radiosonde wind data. Earth Syst Sci Data 6:297–316

    Article  Google Scholar 

  • Rasmusson EM (1967) Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon Weather Rev 95:403–426

    Article  Google Scholar 

  • Rasool SI, Schneider SH (1971) Atmospheric carbon dioxide and aerosols: effects of large increases on global climate. Science 173:138–141

    Article  CAS  Google Scholar 

  • Revelle R, Suess HE (1957) Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus 9:18–27

    Article  CAS  Google Scholar 

  • Ridley JK, Lowe JA, Hewitt HT (2012) How reversible is sea ice loss? The Cryosphere 6:193–198

    Article  Google Scholar 

  • Risbey JS, Lewandowsky S, Langlais C et al (2014) Well-estimated global surface warming in climate projections selected for ENSO phase. Nat Clim Change 4:835–840

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Q J R Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Rodysill JR, Russell JM, Crausbay SD et al (2013) A severe drought during the last millennium in East Java, Indonesia. Quat Sci Rev 80:102–111

    Article  Google Scholar 

  • Rogers JC (1985) Atmospheric circulation changes associated with the warming over the Northern North Atlantic in the 1920s. J Clim Appl Meteorol 24:1303–1310

    Article  Google Scholar 

  • Rohde R, Muller R, Jacobson R et al (2013) Berkeley earth temperature averaging process. Geoinform Geostat: Overv 1:2

    Google Scholar 

  • Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15:2103–2116

    Article  Google Scholar 

  • Ruchirawat M, Autrup H, Barregard L et al (2008) Impacts of atmospheric brown clouds on human health, Part III. In: Atmospheric brown clouds: regional assessment report with focus on Asia, United Nations Environment Programme, Nairobi

    Google Scholar 

  • Sabeerali CT, Rao SA, Ajayamohan RS, Murtugudde R (2012) On the relationship between Indian summer monsoon withdrawal and Indo-Pacific SST anomalies before and after 1976/1977 climate shift. Clim Dyn 39:841–859

    Article  Google Scholar 

  • Sachs JP, Sachse D, Smittenberg RH et al (2009) Southward movement of the Pacific intertropical convergence zone AD 1400–1850. Nat Geosci 2:519–525

    Article  CAS  Google Scholar 

  • Santer BD, Bonfils C, Painter JF et al (2014) Volcanic contribution to decadal changes in tropospheric temperature. Nat Geosci 7:185–189

    Article  CAS  Google Scholar 

  • Scaife AA, Kucharski F, Folland CK et al (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33:603–614

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D et al (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  CAS  Google Scholar 

  • Scherhag R (1939a) Die Erwärmung des Polargebiets. Annalen der Hydrographie und maritimen Meteorologie 67:57–67

    Google Scholar 

  • Scherhag R (1939b) Die gegenwärtige Milderung der Winter und ihre Ursachen. Annalen der Hydrographie und maritimen Meteorologie 67:292–302

    Google Scholar 

  • Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726

    Article  Google Scholar 

  • Schmauss A (1948) Droht Europa eine Trockenheit. Allg Forstz 3:33–36

    Google Scholar 

  • Schmocker-Fackel P, Naef F (2010a) Changes in flood frequencies in Switzerland since 1500. Hydrol Earth Syst Sci 14:1581–1594

    Article  Google Scholar 

  • Schmocker-Fackel P, Naef F (2010b) More frequent flooding? Changes in flood frequency in Switzerland since 1850. J Hydrol 381:1–8

    Article  Google Scholar 

  • Schneider T, O’Gorman PA, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001

    Article  Google Scholar 

  • Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Bruno Rudolf B (2014b) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40

    Article  Google Scholar 

  • Schraner M, Rozanov E, Schnadt Poberaj C et al (2008) Technical note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes. Atmos Chem Phys 8:5957–5974

    Article  CAS  Google Scholar 

  • van der Schrier G, Barkmeijer J (2007) North American 1818–1824 drought and 1825–1840 pluvial and their possible relation to the atmospheric circulation. J Geophys Res 112:D13102

    Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004a) Causes of long-term drought in the US great plains. J Clim 17:485–503

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004b) On the cause of the 1930s Dust Bowl. Science 303:1855–1859

    Article  CAS  Google Scholar 

  • Schurer AP, Hegerl GC, Mann ME, Tett SF, Phipps SJ (2013) Separating forced from chaotic climate variability over the past millennium. J Clim 26:6954–6973

    Article  Google Scholar 

  • Schurer AP, Tett SF, Hegerl GC (2014) Small influence of solar variability on climate over the past millennium. Nat Geosci 7:104–108

    Article  CAS  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464:1334–1337

    Article  CAS  Google Scholar 

  • Seager R (2007) The turn of the century North American drought: global context, dynamics, and past analogs. J Clim 20:5527–5552

    Article  Google Scholar 

  • Seager R, Burgman R (2011) Medieval hydroclimate revisited. PAGES Newsl 19:10–11

    Google Scholar 

  • Seaquist JW, Hickler T, Eklundh L, Ardö J, Heumann BW (2009) Disentangling the effects of climate and people on Sahel vegetation dynamics. Biogeosciences 6:469–477

    Article  Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    CAS  Google Scholar 

  • Semenov VA, Bengtsson L (2003) Modes of the wintertime Arctic temperature variability. Geophys Res Lett 30:1781

    Article  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. The Cryosphere 3:11–19

    Article  Google Scholar 

  • Shanahan TM, Overpeck JT, Anchukaitis KJ et al (2009) Atlantic forcing of persistent drought in West Africa. Science 324:377–380

    Article  CAS  Google Scholar 

  • Shapiro AI, Schmutz W, Rozanov E et al (2011) A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing. Astron Astrophys 529:A67

    Article  CAS  Google Scholar 

  • Shaw WN (1905) The pulse of the atmospheric circulation. Nature 73:175–177

    Article  Google Scholar 

  • Sheets H (1974) Disaster in the desert: Failures of international relief in the West African drought. Carnegie endowment for international peace. Humanitarian policy studies. Special report, Carnegie Endowment for International Peace

    Google Scholar 

  • Sheffield J, Andreadis KM, Wood EF, Lettenmaier DP (2009) Global and continental drought in the second half of the twentieth century: severity-area-duration analysis and temporal variability of large-scale events. J Clim 22:1962–1981

    Article  Google Scholar 

  • Shepherd TG, Plummer DA, Scinocca JF et al (2014) Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nat Geosci 7:443–449

    Article  CAS  Google Scholar 

  • Shindell DT, Faluvegi G (2002) An exploration of ozone changes and their radiative forcing prior to the chlorofluorocarbon era. Atmos Chem Phys 2:363–374

    Article  CAS  Google Scholar 

  • Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder minimum. Science 294:2149–2152

    Article  CAS  Google Scholar 

  • Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199:388–395

    Article  CAS  Google Scholar 

  • Slingo J, Sutton R (2007) Sea-ice decline due to more than warming alone. Nature 450:27–27

    Article  CAS  Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 296:727–730

    Article  CAS  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: A review of concepts and history. Rev Geophys 37:275–316

    Article  CAS  Google Scholar 

  • Solomon S, Rosenlof KH, Portmann RW et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  CAS  Google Scholar 

  • Solomon S, Daniel J, Neely R et al (2011) The persistently variable “background” stratospheric aerosol layer and global climate change. Science 333:866–870

    Article  CAS  Google Scholar 

  • Sonklar K (1858) Über den Zusammenhang der Gletscherschwankungen mit den meteorologischen Verhältnissen. Sitzber Akad Wiss Wien 32, 169–206

    Google Scholar 

  • Stehr N, von Storch H (eds) (2000) Eduard Brückner – the sources and consequences of climate change and climate variability in historical times. Kluwer Academic, Dordrecht

    Google Scholar 

  • Steig EJ, Schneider DP, Rutherford SD et al (2009) Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 457:459–462

    Article  CAS  Google Scholar 

  • Steig EJ, Ding Q, White JW et al (2013) Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years. Nat Geosci 6:372–375

    Article  CAS  Google Scholar 

  • Steiner D, Pauling A, Nussbaumer SU et al (2008) Sensitivity of European glaciers to precipitation and temperature–two case studies. Clim Change 90:413–441

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704

    Article  Google Scholar 

  • Steinhilber F, Abreu JA, Beer J et al (2012) 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci USA 109:5967–5971

    Article  CAS  Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V et al (2009) Volcanic signals in oceans. J Geophys Res 114:D16104

    Article  Google Scholar 

  • Stewart MM, Grosjean M, Kuglitsch FG, Nussbaumer SU, von Gunten L (2011) Reconstructions of late Holocene paleofloods and glacier length changes in the Upper Engadine, Switzerland (ca. 1450 BC–AD 420). Palaeogeogr Palaeoclimatol 311:215–223

    Article  Google Scholar 

  • Stickler A, Brönnimann S (2011) Significant bias of the NCEP/NCAR and twentieth-century reanalyses relative to pilot balloon observations over the West African Monsoon region (1940–1957). Q J R Meteorol Soc 137:1400–1416

    Article  Google Scholar 

  • Stickler A, Grant AN, Ewen T et al (2010) The comprehensive historical upper-air network. Bull Am Meteorol Soc 91:741–751

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner GK et al (2013) Technical summary. In: Stocker TF, Qin D, Plattner GK et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Stommel H, Stommel E (1979) The year without a summer. Sci Am 240:176–186

    Article  Google Scholar 

  • von Storch H, Stehr N (2000) Climate change in perspective. Nature 405:615

    Article  CAS  Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198

    Article  CAS  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Article  Google Scholar 

  • Stroeve JC, Kattsov V, Barrett A et al (2012) Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett 39:L16502

    Article  Google Scholar 

  • Stucki P, Rickli R, Brönnimann S et al (2012) Weather patterns and hydro-climatological precursors of extreme floods in Switzerland since 1868. Meteorol Z 21:531–550

    Article  Google Scholar 

  • Stucki P, Brönnimann S, Martius O et al (2014) A catalog of high-impact windstorms in Switzerland since 1859. Nat Hazards Earth Syst Sci 14:2867–2882

    Article  Google Scholar 

  • Sutton RT, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci 5:788–792

    Article  CAS  Google Scholar 

  • Sutton RT, Hodson DLR (2005) Atlantic ocean forcing of North American and European summer climate. Science 309:115–118

    Article  CAS  Google Scholar 

  • Tacconi L (2003) Fires in Indonesia: causes, costs and policy implications. CIFOR Occasional Paper No. 38, p 22

    Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899

    Article  CAS  Google Scholar 

  • Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453:646–649

    Article  CAS  Google Scholar 

  • Thompson DWJ, Wallace JM, Kennedy JJ, Jones PD (2010) An abrupt drop in Northern Hemisphere sea surface temperature around 1970. Nature 467:444–447

    Article  CAS  Google Scholar 

  • Thompson DW, Solomon S, Kushner PJ et al (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749

    Article  CAS  Google Scholar 

  • Thompson DWJ, Seidel DJ, Randel WJ et al (2012) The mystery of recent stratospheric temperature trends. Nature 491:692–697

    Article  CAS  Google Scholar 

  • Thompson DM, Cole JE, Shen GT, Tudhope AW, Meehl GA (2015) Early 20th century warming linked to tropical Pacific wind strength. Nat Geosci. 8:117–121

    Article  CAS  Google Scholar 

  • Trachsel M, Kamenik C, Grosjean M et al (2012) Multi-archive summer temperature reconstruction for the European Alps, AD 1053–1996. Quat Sci Rev 46:66–79

    Article  Google Scholar 

  • Trenberth KE, Dai A (2007) Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering. Geophys Res Lett 34:L15702

    Article  Google Scholar 

  • Trigo RM, Vaquero JM, Alcoforado MJ et al (2009) Iberia in 1816, the year without a summer. Int J Climatol 29:99–115

    Article  Google Scholar 

  • Trouet V, Taylor AH (2010) Multi-century variability in the Pacific North American circulation pattern reconstructed from tree rings. Clim Dyn 35:953–963

    Article  Google Scholar 

  • Turco RP, Toon OB, Ackerman TP, Pollack JB, Sagan C (1983) Nuclear winter: Global consequences of multple nuclear explosions. Science 222:1283–1292

    Article  CAS  Google Scholar 

  • Tyrlis E, Lelieveld J, Steil B (2013) The summer circulation over the Eastern Mediterranean and the middle east: Influence of the South Asian monsoon. Clim Dyn 40:1103–1123

    Article  Google Scholar 

  • Vecchi GA, Knutson TR (2008) On estimates of historical north Atlantic tropical cyclone activity. J Clim 21:3580–3600

    Article  Google Scholar 

  • Vecchi GA, Knutson TR (2011) Estimating annual numbers of Atlantic hurricanes missing from the HURDAT database (1878–1965) using ship track density. J Clim 24:1736–1746

    Article  Google Scholar 

  • Vecchi GA, Soden BJ, Wittenberg AT et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76

    Article  CAS  Google Scholar 

  • Venetz I (1830) Sur l’ancienne extension des glaciers et sur leur retraite dans leur limites actuelles. In: Actes de la Société Helvétique des Sciences Naturelles. Quinzieme Réunion Annuelle á l’Hospice du Grand-Saint-Bernard les 21, 22 et 23 juillet 1829, vol 15, p 31

    Google Scholar 

  • Verdon-Kidd DC, Kiem AS (2009) Nature and causes of protracted droughts in Southeast Australia: comparison between the federation, WWII, and big dry droughts. Geophys Res Lett 36:L22707

    Article  Google Scholar 

  • Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the Southern Andes: 20th-century variations in the context of the past 400 years. Climatic Change 59:177–232

    Article  Google Scholar 

  • Vimont DJ, Kossin JP (2007) The Atlantic meridional mode and hurricane activity. Geophys Res Lett 34:L07709

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P et al (2008) Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci Rev 89:79–96

    Article  Google Scholar 

  • Wagner A (1940) Klimaänderungen und Klimaschwankungen, Die Wissenschaft, vol 92. Vieweg+Teubner Verlag

    Google Scholar 

  • Wahl ER, Smerdon JE (2012) Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noise-only predictors. Geophys Res Lett 39:L06703

    Google Scholar 

  • Walker GT (1909) Correlation in seasonal variation of climate, II. Mem India Met Dept 20:22–45

    Google Scholar 

  • Walker GT (1924) Correlation in seasonal variation of weather IX: A further study of world weather. Mem India Met Dept 25:275–332

    Google Scholar 

  • Walker GT, Bliss EW (1932) World weather V. Mem R Meteorol Soc 4:53–84

    Google Scholar 

  • Wallace JM, Held IM, Thompson DW, Trenberth KE, Walsh JE (2014) Global warming and winter weather. Science 343:729–730

    Article  CAS  Google Scholar 

  • Wang G, Eltahir EAB (2000) Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour Res 36:1013–1021

    Article  Google Scholar 

  • Wang X, Zwiers FW, Swail VR, Feng Y (2009b) Trends and variability of storminess in the Northeast Atlantic region, 1874–2007. Clim Dyn 33:1179–1195

    Article  Google Scholar 

  • Wang XL, Wan H, Zwiers FW et al (2011) Trends and low-frequency variability of storminess over western Europe, 1878–2007. Clim Dyn 37:2355–2371

    Article  Google Scholar 

  • Wang Y, Lee KH, Lin Y, Levy M, Zhang R (2014) Distinct effects of anthropogenic aerosols on tropical cyclones. Nat Clim Change 4:368–373

    Article  CAS  Google Scholar 

  • Weart SR (2008) The discovery of global warming: Revised and expanded edition. Cambridge, Harvard University Press

    Book  Google Scholar 

  • Wegmann M, Brönnimann S, Bhend J et al (2014) Volcanic influence on European summer precipitation through monsoons: possible cause for “years without summer”. J Clim 27:3683–3691

    Article  Google Scholar 

  • Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life cycle of the winter storm ‘Lothar’(24–26 December 1999). Q J R Meteorol Soc 128:405–429

    Article  Google Scholar 

  • Wetter O, Pfister C, Weingartner R et al (2011) The largest floods in the high Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol Sci J 56:733–758

    Article  Google Scholar 

  • Weusthoff T (2011) Weather type classification at MeteoSwiss: Introduction of new automatic classification schemes. Arbeitsbericht MeteoSchweiz Nr. 235, Bundesamt für Meteorologie und Klimatologie, MeteoSchweiz, Zürich

    Google Scholar 

  • Wexler H (1958) Modifying weather on a large scale: Science 128:1059–1063

    Google Scholar 

  • Wigley TML, Ammann CM, Santer BD, Raper SCB (2005) Effect of climate sensitivity on the response to volcanic forcing. J Geophys Res 110:D09107

    Google Scholar 

  • Wild M (2009) Global dimming and brightening: A review. J Geophys Res 114:D00D16

    Google Scholar 

  • Wild M, Gilgen H, Roesch A et al (2005) From dimming to brightening: Decadal changes in solar radiation at earth’s surface. Science 308:847–850

    Article  CAS  Google Scholar 

  • Wilson R, Tudhope A, Brohan P et al (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111:C10007

    Article  Google Scholar 

  • Wilson R, D’Arrigo R, Buckley B et al (2007) A matter of divergence: Tracking recent warming at hemispheric scales using tree ring data. J Geophys Res 112:D17103

    Article  Google Scholar 

  • WMO (2011) Scientific Assessment of Ozone Depletion: 2010. WMO Global Ozone Research and Monitoring Project. Report No. 52. WMO, Geneva

    Google Scholar 

  • WMO (2014) Scientific Assessment of Ozone Depletion: 2014. WMO Global Ozone Research and Monitoring Project. Report No. 55. WMO, Geneva

    Google Scholar 

  • Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol 30:1269–1279

    Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714

    Article  Google Scholar 

  • Worster D (1979) Dust Bowl: the Southern High Plains in the 1930s. Oxford University Press, Oxford

    Google Scholar 

  • Wu B, Wang J, Walsh JE (2006) Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J Clim 19:210–225

    Article  Google Scholar 

  • Xoplaki E, Luterbacher J, Paeth H et al (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713

    Article  Google Scholar 

  • Zhang D, Liang Y (2010) A long lasting and extensive drought event over China in 1876–1878. Adv Clim Change Res 1:91–99

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712

    Article  Google Scholar 

  • Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett 34:L02709

    Google Scholar 

  • Zhang X, He J, Zhang J et al (2013) Enhanced poleward moisture transport and amplified Northern high-latitude wetting trend. Nat Clim Change 3:47–51

    Article  CAS  Google Scholar 

  • Zhou T, Brönnimann S, Griesser T, Fischer AM, Zou L (2010) A reconstructed dynamic Indian monsoon index extended back to 1880. Clim Dyn 34:573–585

    Article  Google Scholar 

  • Zorita E, von Storch H, Gonzalez-Rouco FJ et al (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Z 13:271–289

    Article  Google Scholar 

  • Zumbühl HJ (1980) Die Schwankungen der Grindelwaldgletscher in den historischen Bild- und Schriftquellen des 12. bis 19. Jahrhunderts: ein Beitrag zur Gletschergeschichte und Erforschung des Alpenraumes. Birkhäuser

    Google Scholar 

  • Zumbühl HJ (2009) Der Berge wachsend Eis… Die Entdeckung der Alpen und ihrer Gletscher durch Albrecht von Haller und Caspar Wolf. Mitteilungen der Naturforschenden Gesellschaft in Bern 66:105–132

    Google Scholar 

  • Zumbühl HJ, Messerli B, Pfister C (1983) Die kleine Eiszeit: Gletschergeschichte im Spiegel der Kunst. Katalog zur Sonderausstellung des Schweizerischen Alpinen Museums Bern und des Gletschergarten-Museums Luzern vom 9.6.-14.8.1983 (Luzern), 24.8.-16.10.1983 (Bern)

    Google Scholar 

  • Zumbühl HJ, Steiner D, Nussbaumer SU (2008) 19th century glacier representations and fluctuations in the central and Western European Alps: An interdisciplinary approach. Glob Plan Change 60:42–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brönnimann, S. (2015). Climatic Changes Since 1700. In: Climatic Changes Since 1700. Advances in Global Change Research, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-319-19042-6_4

Download citation

Publish with us

Policies and ethics