Skip to main content

Therapeutic Angiogenesis: Translational and Clinical Experience

  • Living reference work entry
  • First Online:
Vascularization for Tissue Engineering and Regenerative Medicine

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 66 Accesses

Abstract

Therapeutic angiogenesis aims to target major public health issues, such as coronary artery disease and peripheral artery disease. Angiogenesis is often induced by gene therapy-derived transgene overexpression. Myriad of preclinical studies have been published during the last three decades, and over two thousand clinical trials have been concluded. Despite of the great enthusiasm on the research field, evolution to clinical applications has been slow. This chapter will discuss the accomplishments and challenges encountered on the path from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Airenne KJ, Hiltunen MO, Turunen MP, Turunen AM, Laitinen OH, Kulomaa MS, Ylä-Herttuala S (2000) Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther 7(17):1499–1504. https://doi.org/10.1038/sj.gt.3301269

    Article  Google Scholar 

  • Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, Nakamura T, Kaneda Y, Higaki J, Ogihara T (2000) Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, Ets. Gene Ther 7(5):417–427. https://doi.org/10.1038/sj.gt.3301104

    Article  Google Scholar 

  • Baumgartner C, Brandl J, Münch G, Ungerer M (2016) Rabbit models to study atherosclerosis and its complications – transgenic vascular protein expression in vivo. Prog Biophys Mol Biol 121(2):131–141. https://doi.org/10.1016/j.pbiomolbio.2016.05.001. Elsevier Ltd.

    Article  Google Scholar 

  • Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM (1998) Constitutive expression of PhVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97(12):1114–1123. https://doi.org/10.1161/01.CIR.97.12.1114

    Article  Google Scholar 

  • Belch J, Hiatt WR, Baumgartner I, Driver IV, Nikol S, Norgren L, Van Belle E (2011) Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb Ischaemia. Lancet 377(9781):1929–1937. https://doi.org/10.1016/S0140-6736(11)60394-2

    Article  Google Scholar 

  • Bellera N, Barba I, Rodriguez-Sinovas A, Ferret E, Asín MA, Gonzalez-Alujas MT, Pérez-Rodon J et al (2014) Single intracoronary injection of encapsulated Antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc 3(5). https://doi.org/10.1161/JAHA.114.000946

  • Bellomo D, Headrick JP, Silins GU, Paterson CA, Thomas PS, Gartside M, Mould A et al (2000) Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 86(2). https://doi.org/10.1161/01.RES.86.2.e29

  • Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, Wilson JM, Sweeney HL (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19(12):1359–1368. https://doi.org/10.1089/hum.2008.123

    Article  Google Scholar 

  • Bjarnegård M, Enge M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A, Takemoto M, Gustafsson E, Fässler R, Betsholtz C (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131(8):1847–1857. https://doi.org/10.1242/dev.01080.

    Article  Google Scholar 

  • Boekstegers P, Von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C, Steinbeck G et al (2000) Myocardial gene transfer by selective pressure-regulated Retroinfusion of coronary veins. Gene Ther 7(3):232–240. https://doi.org/10.1038/sj.gt.3301079

    Article  Google Scholar 

  • Bozo IY, Deev RV, Plaksa IL, Mzhavanadze ND, Chervyakov YV, Staroverov IN, Voronov DA, Kalinin KE, Isaev AA (2015) 186. Long-term results of PCMV-Vegf165 intramuscular gene transfer in patients with chronic lower limb ischemia. Mol Ther 23(May):S74–S75. https://doi.org/10.1016/s1525-0016(16)33791-1

    Article  Google Scholar 

  • Braga L, Ali H, Secco I, Giacca M (2020) Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res:1–20. https://doi.org/10.1093/cvr/cvaa071

  • Bry M, Kivelä R, Holopainen T, Anisimov A, Tammela T, Soronen J, Silvola J et al (2010) Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation 122(17):1725–1733. https://doi.org/10.1161/CIRCULATIONAHA.110.957332

    Article  Google Scholar 

  • Cao R, Bråkenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9(5):604–613. https://doi.org/10.1038/nm848

    Article  Google Scholar 

  • Cardiol RJ (2014) 2013 ESC guidelines on the management of stable coronary artery disease: the task force on the management of stable coronary artery disease of the European Society of Cardiology. Russ J Cardiol 111(7):7–79. https://doi.org/10.1093/eurheartj/eht296.

    Article  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380(6573):435–439. https://doi.org/10.1038/380435a0

    Article  Google Scholar 

  • Caron A, Michelet S, Caron A, Sordello S, Ivanov MA, Delaère P, Branellec D, Schwartz B, Emmanuel F (2004) Human FGF-1 gene transfer promotes the formation of collateral vessels and arterioles in ischemic muscles of Hypercholesterolemic hamsters. J Gene Med 6(9):1033–1045. https://doi.org/10.1002/jgm.594

    Article  Google Scholar 

  • Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura J, Leri A, Anversa P (2001) Oxidative stress–mediated cardiac cell death is a major determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. Circ Res 89(3):279–286. https://doi.org/10.1161/hh1501.094115

    Article  Google Scholar 

  • Comerota AJ, Throm RC, Miller KA, Henry T, Chronos N, Laird J, Sequeira R et al (2002) Naked plasmid DNA encoding fibroblast growth factor type 1 for the treatment of end-stage Unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 35(5):930–936. https://doi.org/10.1067/mva.2002.123677

    Article  Google Scholar 

  • Corautus Genetics Inc (n.d.) Announces Final Efficacy Results Of GENASIS Phase IIb Clinical Trial|BioSpace.” Accessed 23 May 2020. https://www.biospace.com/article/releases/corautus-genetics-inc-announces-final-efficacy-results-of-genasis-phase-iib-clinical-trial−/.

  • Criqui MH, Aboyans V (2015) Epidemiology of peripheral artery disease. Circ Res 116(9):1509–1526. https://doi.org/10.1161/CIRCRESAHA.116.303849

    Article  Google Scholar 

  • Deev R, Plaksa I, Bozo I, Isaev A (2017) Results of an international postmarketing surveillance study of Pl-VEGF165 safety and efficacy in 210 patients with peripheral arterial disease. Am J Cardiovasc Drugs 17(3):235–242. https://doi.org/10.1007/s40256-016-0210-3

    Article  Google Scholar 

  • Deev R, Plaksa I, Bozo I, Mzhavanadze N, Suchkov I, Chervyakov Y, Staroverov I, Kalinin R, Isaev A (2018) Results of 5-year follow-up study in patients with peripheral artery disease treated with PL-VEGF165 for intermittent claudication. Ther Adv Cardiovasc Dis 12(9):237–246. https://doi.org/10.1177/1753944718786926

    Article  Google Scholar 

  • Deev RV, Bozo IY, Mzhavanadze ND, Voronov DA, Gavrilenko AV, Chervyakov YV, Staroverov IN, Kalinin RE, Shvalb PG, Isaev AA (2015) PCMV- Vegf165 intramuscular gene transfer is an effective method of treatment for patients with chronic lower limb ischemia. J Cardiovasc Pharmacol Ther 20(5):473–482. https://doi.org/10.1177/1074248415574336

    Article  Google Scholar 

  • Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2(3):262–271. https://doi.org/10.1161/CIRCHEARTFAILURE.108.814459

    Article  Google Scholar 

  • Van Der Donckt C, Van Herck JL, Schrijvers DM, Vanhoutte G, Verhoye M, Blockx I, Van Der Linden A et al (2015) Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J 36(17):1049–1058. https://doi.org/10.1093/eurheartj/ehu041

    Article  Google Scholar 

  • Dor Y, Valentin D, Rinat A, Ahuva I, Fishman GI, Peter C, Gadi G, Eli K (2002) Conditional Switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO Journal 21(8):1939–47. https://doi.org/10.1093/emboj/21.8.1939

  • Du L, Kido M, Lee DV, Rabinowitz JE, Samulski RJ, Jamieson SW, Weitzman MD, Thistlethwaite PA (2004) Differential myocardial gene delivery by recombinant serotype-specific adeno-associated viral vectors. Mol Ther 10(3):604–608. https://doi.org/10.1016/j.ymthe.2004.06.110

    Article  Google Scholar 

  • Emani SM, Shah AS, Bowman MK, Emani S, Wilson K, Glower DD, Koch WJ (2003) Catheter-based intracoronary myocardial adenoviral gene delivery: importance of intraluminal seal and infusion flow rate. Mol Ther 8(2):306–313. https://doi.org/10.1016/S1525-0016(03)00149-7

    Article  Google Scholar 

  • Favaloro L, Diez M, Mendiz O, Janavel GV, Valdivieso L, Ratto R, Garelli G et al (2013) High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (genesis-I). A phase I, open-label, two-year follow-up trial. Catheter Cardiovasc Interv 82(6):899–906. https://doi.org/10.1002/ccd.24555

    Article  Google Scholar 

  • Forster R, Liew A, Bhattacharya V, Shaw J, Stansby G (2018) Gene therapy for peripheral arterial diseases. Cochrane Database Syst Rev 10. https://doi.org/10.1002/14651858.CD012058.pub2

  • Fortuin, F. David, Peter Vale, Douglas W. Losordo, James Symes, Giacomo A. DeLaria, J. Jeffrey Tyner, Gary L. Schaer, et al. 2003. “One-year follow-up of direct myocardial gene transfer of vascular endothelial growth Factor-2 using naked plasmid deoxyribonucleic acid by way of thoracotomy in no-option patients.” Am J Cardiol 92 (4): 436–439. https://doi.org/10.1016/S0002-9149(03)00661-1.

  • Fuchs S, Nabil Dib BM, Cohen PO, Diethrich EB, Campbell A, Macko J et al (2006) A randomized, double-blind, placebo-controlled, multicenter, pilot study of the safety and feasibility of catheter-based intramyocardial injection of AdVEGF121 in patients with refractory advanced coronary artery disease. Catheter Cardiovasc Interv 68(3):372–378. https://doi.org/10.1002/ccd.20859

    Article  Google Scholar 

  • Gálvez-Montón C, Prat-Vidal C, Díaz-Güemes I, Crisóstomo V, Soler-Botija C, Roura S, Llucià-Valldeperas A, Perea-Gil I, Sánchez-Margallo FM, Bayes-Genis A (2014) Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J Transl Med 12(1):137. https://doi.org/10.1186/1479-5876-12-137

    Article  Google Scholar 

  • Giacca M, Zacchigna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19(6):622–629. https://doi.org/10.1038/gt.2012.17

    Article  Google Scholar 

  • Giordano FJ, Ping P, Dan Mckirnan M, Nozaki S, DeMaria AN, Dillmann WH, Mathieu-Costello O, Kirk Hammond H (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2(5):534–539. https://doi.org/10.1038/nm0596-534

    Article  Google Scholar 

  • Giusti II, Rodrigues CG, Salles FB, Sant’Anna RT, Eibel B, Han SW, Ludwig E et al (2013) High doses of vascular endothelial growth factor 165 safely, but transiently, improve myocardial perfusion in no-option ischemic disease. Hum Gene Ther Methods 24(5):298–306. https://doi.org/10.1089/hgtb.2012.221

    Article  Google Scholar 

  • Gowdak, Luis Henrique W., Lioubov Poliakova, Xiaotong Wang, Imre Kovesdi, Kenneth W. Fishbein, Antonella Zacheo, Roberta Palumbo, et al. 2000. “Adenovirus-mediated VEGF121 gene transfer stimulates angiogenesis in normoperfused skeletal muscle and preserves tissue perfusion after induction of ischemia.” Circulation 102 (5): 565–571. https://doi.org/10.1161/01.CIR.102.5.565.

  • Greenberg B, Butler J, Michael Felker G, Ponikowski P, Voors AA, Desai AS, Barnard D et al (2016) Calcium Upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet 387(10024):1178–1186. https://doi.org/10.1016/S0140-6736(16)00082-9

    Article  Google Scholar 

  • Grines CL, Watkins MW, Mahmarian JJ, Iskandrian AE, Rade JJ, Marrott P, Pratt C, Kleiman N (2003) A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol 42(8):1339–1347. https://doi.org/10.1016/S0735-1097(03)00988-4

    Article  Google Scholar 

  • Gruchala M, Bhardwaj S, Pajusola K, Roy H, Rissanen TT, Kokina I et al (2004) Gene transfer into rabbit arteries with adeno-associated virus and adenovirus vectors. J Gene Med 6:545–554

    Article  Google Scholar 

  • Gu Y, Cui S, Qi W, Liu C, Bi J, Guo W, Liu C et al (2019) A randomized, double-blind, placebo-controlled phase II study of hepatocyte growth factor in the treatment of critical limb ischemia. Mol Ther 27(12):2158–2165. https://doi.org/10.1016/j.ymthe.2019.10.017

    Article  Google Scholar 

  • Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I et al (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256. https://doi.org/10.1056/NEJM200301163480314

    Article  Google Scholar 

  • Hagberg CE, Falkevall A, Wang X, Larsson E, Huusko J, Nilsson I, Van Meeteren LA et al (2010) Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464(7290):917–921. https://doi.org/10.1038/nature08945

    Article  Google Scholar 

  • Hahn W, Pyun W-B, Kim D-S, Yoo W-S, Lee S-D, Won J-H, Shin GJ, Kim J-M, Kim S (2011) Enhanced cardioprotective effects by Coexpression of two isoforms of hepatocyte growth factor from naked plasmid DNA in a rat ischemic heart disease model. J Gene Med 13(10):549–555. https://doi.org/10.1002/jgm.1603

    Article  Google Scholar 

  • Hartikainen J, Hassinen I, Hedman A, Kivelä A, Saraste A, Knuuti J, Husso M et al (2017) Adenoviral intramyocardial VEGF-DDNDC gene transfer increasesmyocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx352

  • Hedman M et al (2009) Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther 16:629–634. https://doi.org/10.1038/gt.2009.4

    Article  Google Scholar 

  • Hedman M, Hartikainen J, Syvanne M, Stjernvall J, Hedman A, Kivela A, Vanninen E et al (2003) Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the … safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of Pos. Circulation 107(21):2677–2683. https://doi.org/10.1161/01.CIR.0000070540.80780.92.

    Article  Google Scholar 

  • Henry TD, Grines CL, Watkins MW, Dib N, Barbeau G, Moreadith R, Andrasfay T, Engler RL (2007) Effects of Ad5FGF-4 in patients with angina. An analysis of pooled data from the AGENT-3 and AGENT-4 trials. J Am Coll Cardiol 50(11):1038–1046. https://doi.org/10.1016/j.jacc.2007.06.010

    Article  Google Scholar 

  • Hinkel R, Lebherz C, Fydanaki M, Wuchrer A, El-Aouni C, Thormann M, Thein E, Kupatt C, Boekstegers P (2012) Angiogenetic potential of Ad2/Hif-1α/Vp16 after regional application in a preclinical pig model of chronic ischemia. Curr Vasc Pharmacol 11(1):29–37. https://doi.org/10.2174/157016113804547601

    Article  Google Scholar 

  • Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Quan Fu X, Baloch E et al (2013) Inhibition of MicroRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation 128(10):1066–1075. https://doi.org/10.1161/CIRCULATIONAHA.113.001904

    Article  Google Scholar 

  • Horvath KA, Doukas J, Lu CYJ, Belkind N, Greene R, Pierce GF, Fullerton DA (2002) Myocardial functional recovery after fibroblast growth factor 2 gene therapy as assessed by echocardiography and magnetic resonance imaging. Ann Thorac Surg 74(2):481–487. https://doi.org/10.1016/S0003-4975(02)03736-0

    Article  Google Scholar 

  • Houser, Steven R., Kenneth B. Margulies, Anne M Murphy, Francis G Spinale, Gary S Francis, Sumanth D Prabhu, Howard A. Rockman, et al. 2012. “Animal models of heart failure.” Circ Res 111 (1): 131–150. https://doi.org/10.1161/res.0b013e3182582523.

  • Hurttila H, Koponen JK, Kansanen E, Jyrkkänen HK, Kivelä A, Kylätie R, Ylä-Herttuala S, Levonen AL (2008) Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Therapy 15(18):1271–79. https://doi.org/10.1038/gt.2008.75

  • Husso T, Ylä-Herttuala S, Turunen MP (2014) A new gene therapy approach for cardiovascular disease by non-coding RNAs acting in the nucleus. Mol Ther Nucleic Acids. https://doi.org/10.1038/mtna.2014.48. Nature Publishing Group.

  • Huusko J, Lottonen L, Merentie M, Gurzeler E, Anisimov A, Miyanohara A, Alitalo K, Tavi P, Ylä-Herttuala S (2012) AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther 20(12):2212–2221. https://doi.org/10.1038/mt.2012.145

    Article  Google Scholar 

  • Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Investig 93(5):1885–1893. https://doi.org/10.1172/JCI117179

    Article  Google Scholar 

  • Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes JF (1996) Clinical evidence of angiogenesis after arterial gene transfer of PhVEGF165 in patient with Ischaemic limb. Lancet 348(9024):370–374. https://doi.org/10.1016/S0140-6736(96)03361-2

    Article  Google Scholar 

  • Kalil RAK, de Salles FB, Giusti II, Rodrigues CG, Han SW, Sant’anna RT, Ludwig E et al (2010) Terapia Gênica Com VEGF Para Angiogênese Na Angina Refratária: Ensaio Clínico Fase I/II. Braz J Cardiovasc Surg 25(3):311–321. https://doi.org/10.1590/S0102-76382010000300006

    Article  Google Scholar 

  • Kaminsky SM, Quach L, Chen S, Pierre-Destine L, Van de Graaf B, Monette S, Rosenberg JB et al (2013) Safety of direct cardiac administration of AdVEGF-All6A+, a replication-deficient adenovirus vector CDNA/genomic hybrid expressing all three major isoforms of human vascular endothelial growth factor, to the ischemic myocardium of rats. Hum Gene Ther Clin Dev 24(1):38–46. https://doi.org/10.1089/humc.2013.054

    Article  Google Scholar 

  • Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajusola K, Bueler H et al (2001) A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 98(22):12677–12682. https://doi.org/10.1073/pnas.221449198

    Article  Google Scholar 

  • Karpanen T, Maija Bry HM, Ollila TS-L, Liimatta E, Leskinen H, Kivelä R et al (2008) Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res 103(9):1018–1026. https://doi.org/10.1161/CIRCRESAHA.108.178459

    Article  Google Scholar 

  • Kaski JC, Consuegra-Sanchez L (2013) Evaluation of ASPIRE trial: a phase III pivotal registration trial, using intracoronary administration of Generx (Ad5FGF4) to treat patients with recurrent angina pectoris. Expert Opin Biol Ther 13(12):1749–1753. https://doi.org/10.1517/14712598.2013.827656

    Article  Google Scholar 

  • Kastrup J, Jørgensen E, Fuchs S, Nikol S, Bøtker HE, Gyöngyösi M, Glogar D, Kornowski R (2011) A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. Euro Intervention 6(7):813–818. https://doi.org/10.4244/EIJV6I7A140

    Article  Google Scholar 

  • Kastrup J, Jørgensen E, Rück A, Tägil K, Glogar D, Ruzyllo W, Bøtker HE et al (2005) Direct intramyocardial plasmid vascular endothelial growth factor-a 165 gene therapy in patients with stable severe angina pectoris: a randomized double-blind placebo-controlled study: the Euroinject one trial. J Am Coll Cardiol 45(7):982–988. https://doi.org/10.1016/j.jacc.2004.12.068

    Article  Google Scholar 

  • Kawamoto A, Murayama T, Kusano K, Ii M, Tkebuchava T, Shintani S, Iwakura A et al (2004) Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation 110(11):1398–1405. https://doi.org/10.1161/01.CIR.0000141563.71410.64

    Article  Google Scholar 

  • Kaye DM, Preovolos A, Marshall T, Byrne M, Hoshijima M, Hajjar R, Mariani JA, Pepe S, Chien KR, Power JM (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50(3):253–260. https://doi.org/10.1016/j.jacc.2007.03.047

    Article  Google Scholar 

  • Kibbe MR, Hirsch AT, Mendelsohn FO, Davies MG, Pham H, Saucedo J, Marston W et al (2016) Safety and efficacy of plasmid DNA expressing two isoforms of hepatocyte growth factor in patients with critical limb ischemia. Gene Ther 23(3):306–312. https://doi.org/10.1038/gt.2015.110

    Article  Google Scholar 

  • Kilian EG, Sadoni S, Vicol C, Kelly R, van Hulst K, Schwaiger M, Kupatt C et al (2010) Myocardial transfection of hypoxia inducible factor-1α via an adenoviral vector during coronary artery bypass grafting - a multicenter phase I and safety study. Circ J 74(5):916–924. https://doi.org/10.1253/circj.CJ-09-0594.

    Article  Google Scholar 

  • Koponen JK, Kekarainen T, Heinonen SE, Laitinen A, Nystedt J, Laine J, Ylä-Herttuala S (2007) Umbilical cord blood-derived progenitor cells enhance muscle regeneration in mouse Hindlimb ischemia model. Mol Ther 15(12):2172–2177. https://doi.org/10.1038/sj.mt.6300302

    Article  Google Scholar 

  • Kornowski R, Leon MB, Fuchs S, Vodovotz Y, Flynn MA, Gordon DA, Pierre A, Kovesdi I, Keiser JA, Epstein SE (2000) Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. J Am Coll Cardiol 35(4):1031–1039. https://doi.org/10.1016/S0735-1097(99)00642-7

    Article  Google Scholar 

  • Korpisalo P, Henna Karvinen TT, Rissanen JK, Marjomäki V, Baluk P, McDonald DM et al (2008) Vascular endothelial growth factor-a and platelet-derived growth factor-B combination gene therapy prolongs angiogenic effects via recruitment of interstitial mononuclear cells and paracrine effects rather than improved pericyte coverage of angiogenic Ves. Circ Res 103(10):1092–1099. https://doi.org/10.1161/CIRCRESAHA.108.182287

    Article  Google Scholar 

  • Korpisalo P, Yla-Herttuala S (2010) Stimulation of functional vessel growth by gene therapy. Integr Biol. https://doi.org/10.1039/b921869f. Oxford Academic

  • Kukuła K, Chojnowska L, Da̧browski M, Witkowski A, Chmielak Z, Skwarek M, Ka̧dziela J et al (2011) Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J 161(3):581–589. https://doi.org/10.1016/j.ahj.2010.11.023

  • Kusumanto YH, Van Weel V, Mulder NH, Smit AJ, Van Den Dungen JJAM, Hooymans JMM, Sluiter WJ et al (2006) Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther 17(6):683–691. https://doi.org/10.1089/hum.2006.17.683

    Article  Google Scholar 

  • Lähteenvuo JE, Lähteenvuo MT, Kivelä A, Rosenlew C, Falkevall A, Klar J, Heikura T, Rissanen TT et al (2009) Vascular endothelial growth factor-B induces myocardium-specific angiogenesis and Arteriogenesis via vascular endothelial growth factor receptor-1– and neuropilin receptor-1–dependent mechanisms. Circulation 119(6):845. http://circ.ahajournals.org/content/119/6/845.abstract

    Article  Google Scholar 

  • Lähteenvuo J, Hätinen OP, Kuivanen A, Huusko J, Paananen J, Lähteenvuo M, Nurro J et al (2020) Susceptibility to cardiac arrhythmias and sympathetic nerve growth in VEGF-B overexpressing myocardium. Mol Ther. https://doi.org/10.1016/j.ymthe.2020.03.011

  • Lähteenvuo J, Ylä-Herttuala S (2017) Advances and challenges in cardiovascular gene therapy. Hum Gene Ther 28(11):1024–1032. https://doi.org/10.1089/hum.2017.129

    Article  Google Scholar 

  • Laitinen M (1997a) VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum Gene Ther 8(15):1737–1744. https://doi.org/10.1089/hum.1997.8.15-1737

    Article  Google Scholar 

  • Laitinen M (1997b) Gene transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the plasmid-liposome complexes, retroviruses, pseudotyped retroviruses, and adenoviruses. Hum Gene Ther 8(14):1645–1650. https://doi.org/10.1089/hum.1997.8.14-1645

    Article  Google Scholar 

  • Laitinen, Marja, Timo Pakkanen, Elena Donetti, Roberta Baetta, Jukka Luoma, Pauliina Lehtolainen, Helena Viita, Reitu Agrawal, Atsushi Miyanohara, and Seppo Yla-herttuala. 1997. Transfer into the carotid artery using an adventitial collar: comparison of the effectiveness of the complexes, retroviruses, pseudotyped adenoviruses retroviruses, and THEODORE FRIEDMANN, ^ W E” 1650: 1645–1650

    Google Scholar 

  • Lathi KG, Vale PR, Losordo DW, Cespedes RM, Symes JF, Esakof DD, Maysky M, Isner JM (2001) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease: anesthetic management and results. Anesth Analg 92(1):19–25. https://doi.org/10.1097/00000539-200101000-00005

    Article  Google Scholar 

  • Lazarous DF, Shou M, Stiber JA, Hodge E, Thirumurti V, Gonçalves L, Unger EF (1999) Adenoviral-mediated gene transfer induces sustained pericardial VEGF expression in dogs: effect on myocardial angiogenesis. Cardiovasc Res 44(2):294–302. https://doi.org/10.1016/S0008-6363(99)00203-5

    Article  Google Scholar 

  • Lazarous DF, Unger EF, Epstein SE, Stine A, Arevalo JL, Chew EY, Quyyumi AA (2000) Basic fibroblast growth factor in patients with intermittent claudication: results of a phase I trial. J Am Coll Cardiol 36(4):1239–1244. https://doi.org/10.1016/S0735-1097(00)00882-2

    Article  Google Scholar 

  • Levanon K, Varda-Bloom N, Greenberger S, Barshack I, Goldberg I, Orenstein A, Breitbart E, Shaish A, Harats D (2006) Vascular Wall maturation and prolonged angiogenic effect by endothelial-specific platelet-derived growth factor expression. Pathobiology 73(3):149–158. https://doi.org/10.1159/000095561

    Article  Google Scholar 

  • Li X, Tjwa M, Van Hove I, Enholm B, Neven E, Paavonen K, Jeltsch M et al (2008) Reevaluation of the role of VEGF-B suggests a restricted role in the revascularization of the ischemic myocardium. Arterioscler Thromb Vasc Biol 28(9):1614–1620. https://doi.org/10.1161/ATVBAHA.107.158725

    Article  Google Scholar 

  • Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of PhVEGF165 as sole therapy for myocardial ischemia. Circulation 98(25):2800–2804. https://doi.org/10.1161/01.CIR.98.25.2800

    Article  Google Scholar 

  • Lucerna M, Zernecke A, De Nooijer R, De Jager SC, Bot I, Van Der Lans C, Kholova I et al (2007) Vascular endothelial growth factor-a induces plaque expansion in ApoE Knock-out mice by promoting de novo leukocyte recruitment. Blood 109(1):122–129. https://doi.org/10.1182/blood-2006-07-031773

    Article  Google Scholar 

  • Mack CA, Magovern CJ, Budenbender KT, Patel SR, Schwarz EA, Zanzonico P, Ferris B et al (1998a) Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion. J Vasc Surg 27(4):699–709. https://doi.org/10.1016/S0741-5214(98)70236-8

    Article  Google Scholar 

  • Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux RB et al (1998b) Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 115(1):168–177. https://doi.org/10.1016/S0022-5223(98)70455-6

    Article  Google Scholar 

  • Mäkinen K, Mannine H, Hedman M, Matsi P, Mussalo H, Alhava E, Ylä-Herttuala S (2002) Increased vascularity detected by digital subtraction angiography after VEGF gene transfer to human lower limb artery: a randomized, placebo-controlled, double-blinded phase II study. Mol Ther 6(1):127–133. https://doi.org/10.1006/mthe.2002.0638

    Article  Google Scholar 

  • Mei HG, Chin Lai N, Dan Mckirnan M, Roth DA, Rubanyi GM, Dalton N, Roth DM, Kirk Hammond H (2004) Increased regional function and perfusion after intracoronary delivery of adenovirus encoding fibroblast growth factor 4: report of preclinical data. Hum Gene Ther 15(6):574–587. https://doi.org/10.1089/104303404323142024

    Article  Google Scholar 

  • Merentie M, Lottonen-Raikaslehto L, Parviainen V, Huusko J, Pikkarainen S, Mendel M, Laham-Karam N et al (2016) Efficacy and safety of myocardial gene transfer of adenovirus, adeno-associated virus and Lentivirus vectors in the mouse heart. Gene Ther 23(3):296–305. https://doi.org/10.1038/gt.2015.114

    Article  Google Scholar 

  • Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, Yazicioglu M et al (2013) Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 5(194):194ra92-194ra92. https://doi.org/10.1126/scitranslmed.3005795

    Article  Google Scholar 

  • Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. https://doi.org/10.1182/blood-2013-01-306647. American Society of Hematology.

  • Monnet E, Chachques JC (2005) Animal models of heart failure: what is new? Ann ThoracSurg. https://doi.org/10.1016/j.athoracsur.2004.04.002. Elsevier USA

  • Morishita R, Nakamura S, Hayashi S-i, Taniyama Y, Moriguchi A, Nagano T, Taiji M et al (1999) Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy. Hypertension 33(6):1379–1384. https://doi.org/10.1161/01.HYP.33.6.1379

    Article  Google Scholar 

  • Morishita R, Sakaki M, Yamamoto K, Iguchi S, Aoki M, Yamasaki K, Matsumoto K et al (2002) Impairment of collateral formation in lipoprotein(a) transgenic mice. Circulation 105(12):1491–1496. https://doi.org/10.1161/01.CIR.0000012146.07240.FD

    Article  Google Scholar 

  • Mühlhauser J, Pili R, Merrill MJ, Maeda H, Passaniti A, Crystal RG, Capogrossi MC (1995) In vivo angiogenesis induced by recombinant adenovirus vectors coding either for secreted or nonsecreted forms of acidic fibroblast growth factor. Hum Gene Ther 6(11):1457–1465. https://doi.org/10.1089/hum.1995.6.11-1457

    Article  Google Scholar 

  • Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166. https://doi.org/10.1016/j.smim.2009.05.006.

    Article  Google Scholar 

  • Nabel EG, Plautz G, Nabel GJ (1990) Site-specific gene expression in vivo by direct gene transfer into the Arterial Wall. Science 249(4974):1285–1288. https://doi.org/10.1126/science.2119055

    Article  Google Scholar 

  • Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, Aboyans V et al (2017) Global, regional, and national age-sex specifc mortality for 264 causes of death, 1980-2016: a systematic analysis for the global burden of disease study 2016. Lancet 390(10100):1151–1210. https://doi.org/10.1016/S0140-6736(17)32152-9

    Article  Google Scholar 

  • Niemi H, Honkonen K, Korpisalo P, Huusko J, Kansanen E, Merentie M, Rissanen TT et al (2014) HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Investig 44(10):989–999. https://doi.org/10.1111/eci.12333

    Article  Google Scholar 

  • Nikol S, Baumgartner I, Van Belle E, Diehm C, Visoná A, Capogrossi MC, Ferreira-Maldent N et al (2008) Therapeutic angiogenesis with intramuscular NV1FGF improves amputation-free survival in patients with critical limb ischemia. Mol Ther 16(5):972–978. https://doi.org/10.1038/mt.2008.33

    Article  Google Scholar 

  • Nurro J, Halonen PJ, Kuivanen A, Tarkia M, Saraste A, Honkonen K, Lähteenvuo J, Rissanen TT, Knuuti J, Ylä-Herttuala S (2016) AdVEGF-B186 and AdVEGF-DΔNΔC induce angiogenesis and increase perfusion in porcine myocardium. Heart 102(21):1716–1720. https://doi.org/10.1136/heartjnl-2016-309373

    Article  Google Scholar 

  • Pajusola K, Künnapuu J, Vuorikoski S, Soronen J, André H, Pereira T, Korpisalo P, Ylä-Herttuala S, Poellinger L, Alitalo K (2005) Stabilized HIF-1α is superior to VEGF for angiogenesis in skeletal muscle via Adeno-associated virus gene transfer. FASEB J 19(10):1365–1367. https://doi.org/10.1096/fj.05-3720fje

    Article  Google Scholar 

  • Pelisek J, Fuchs A, Engelmann MG, Shimizu M, Golda A, Mekkaoui C, Rolland PH, Nikol S (2003) Vascular endothelial growth factor response in porcine coronary and peripheral arteries using nonsurgical occlusion model, local delivery, and liposome-mediated gene transfer. Endothelium 10(4–5):247–255. https://doi.org/10.1080/10623320390246414

    Article  Google Scholar 

  • Pepe M, Mamdani M, Zentilin L, Csiszar A, Qanud K, Zacchigna S, Ungvari Z et al (2010) Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 106(12):1893–1903. https://doi.org/10.1161/CIRCRESAHA.110.220855

    Article  Google Scholar 

  • Powell RJ, Goodney P, Mendelsohn FO, Moen EK, Annex BH (2010) Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg 52(6):1525–1530. https://doi.org/10.1016/j.jvs.2010.07.044

    Article  Google Scholar 

  • Powell RJ, Simons M, Mendelsohn FO, Daniel G, Henry TD, Koga M, Morishita R, Annex BH (2008) Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation 118(1):58–65. https://doi.org/10.1161/CIRCULATIONAHA.107.727347

    Article  Google Scholar 

  • Prasad KMR, Xu Y, Yang Z, Acton ST, French BA (2011) Robust Cardiomyocyte-specific gene expression following systemic injection of AAV: in vivo gene delivery follows a Poisson distribution. Gene Ther 18(1):43–52. https://doi.org/10.1038/gt.2010.105

    Article  Google Scholar 

  • Pyun WB, Hahn W, Kim DS, Yoo WS, Lee SD, Won JH, Rho BS, Park ZY, Kim JM, Kim S (2010) Naked DNA expressing two isoforms of hepatocyte growth factor induces collateral artery augmentation in a rabbit model of limb ischemia. Gene Ther 17(12):1442–1452. https://doi.org/10.1038/gt.2010.101

    Article  Google Scholar 

  • Raake P, Von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S, Andrees M, Kupatt C, Schuler G, Boekstegers P (2004) Myocardial gene transfer by selective pressure-regulated Retroinfusion of coronary veins: comparison with surgical and percutaneous Intramyocardial gene delivery. J Am Coll Cardiol 44(5):1124–1129. https://doi.org/10.1016/j.jacc.2004.05.074.

    Article  Google Scholar 

  • Raissadati A, Jokinen JJ, Syrjälä SO, Keränen MAI, Krebs R, Tuuminen R, Arnaudova R et al (2013) Ex vivo intracoronary gene transfer of Adeno-associated virus 2 leads to superior transduction over serotypes 8 and 9 in rat heart transplants. Transpl Int 26(11):1126–1137. https://doi.org/10.1111/tri.12182

    Article  Google Scholar 

  • Ripa RS, Wang Y, Jørgensen E, Johnsen HE, Hesse B, Kastrup J (2006) Intramyocardial injection of vascular endothelial growth factor-a 165 plasmid followed by granulocyte-Colony stimulating factor to induce angiogenesis in patients with severe chronic Ischaemic heart disease. Eur Heart J. https://doi.org/10.1093/eurheartj/ehl117

  • Rissanen TT, Markkanen JE, Arve K, Juha Rutanen MI, Kettunen IV, Jauhiainen S et al (2003a) Fibroblast growth factor 4 induces vascular permeability, angiogenesis and Arteriogenesis in a rabbit Hindlimb ischemia model. The FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology 17(1):100–102. https://doi.org/10.1096/fj.02-0377fje.

    Article  Google Scholar 

  • Rissanen TT, Markkanen JE, Gruchala M, Heikura T, Puranen A, Kettunen MI, Kholová I et al (2003b) VEGF-D is the strongest Angiogenic and Lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92(10):1098–1106. https://doi.org/10.1161/01.RES.0000073584.46059.E3

    Article  Google Scholar 

  • Rissanen TT, Nurro J, Halonen PJ, Tarkia M, Saraste A, Rannankari M, Honkonen K et al (2013) The bottleneck stent model for chronic myocardial ischemia and heart failure in pigs. Am J Phys Heart Circ Phys 305(9):H1297–H1308. https://doi.org/10.1152/ajpheart.00561.2013

    Article  Google Scholar 

  • Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJG, Fuster V, Ibáñez B, Bernal JA (2015) Induction of sustained hypercholesterolemia by single Adeno-associated virus-mediated gene transfer of mutant HPCSK9. Arterioscler Thromb Vasc Biol 35(1):50–59. https://doi.org/10.1161/ATVBAHA.114.303617

    Article  Google Scholar 

  • Rosengart TK, Lee LY, Patel SR, Kligfield PD, Okin PM, Hackett NR, Wayne Isom O, Crystal RG (1999) Six-month assessment of a phase I trial of Angiogenic gene therapy for the treatment of coronary artery disease using direct Intramyocardial Administration of an Adenovirus Vector Expressing the VEGF121 CDNA. Ann Surg 230:466–472. https://doi.org/10.1097/00000658-199910000-00002

    Article  Google Scholar 

  • Rutanen J, Rissanen TT, Markkanen JE, Gruchala M, Silvennoinen P, Kivelä A, Hedman A et al (2004) Adenoviral catheter-mediated Intramyocardial gene transfer using the mature form of vascular endothelial growth factor-D induces Transmural angiogenesis in porcine heart. Circulation 109(8):1029–1035. https://doi.org/10.1161/01.CIR.0000115519.03688.A2

    Article  Google Scholar 

  • Sarcar S, Tulalamba W, Rincon MY, Tipanee J, Pham HQ, Evens H, Boon D et al (2019) Next-generation muscle-directed gene therapy by in Silico vector design. Nat Commun 10(1):1–16. https://doi.org/10.1038/s41467-018-08283-7

    Article  Google Scholar 

  • Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, Kloner RA (2000) Evaluation of the effects of Intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat-angiogenesis and Angioma formation. J Am Coll Cardiol 35(5):1323–1330. https://doi.org/10.1016/S0735-1097(00)00522-2

    Article  Google Scholar 

  • Serpi R, Tolonen AM, Huusko J, Rys J, Tenhunen O, Ylä-Herttuala S, Ruskoaho H (2011) Vascular endothelial growth factor-B gene transfer prevents angiotensin II-induced diastolic dysfunction via proliferation and capillary dilatation in rats. Cardiovasc Res 89(1):204–213. https://doi.org/10.1093/cvr/cvq267

    Article  Google Scholar 

  • Shigematsu H, Yasuda K, Iwai T, Sasajima T, Ishimaru S, Ohashi Y, Yamaguchi T, Ogihara T, Morishita R (2010) Randomized, double-blind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther 17(9):1152–1161. https://doi.org/10.1038/gt.2010.51

    Article  Google Scholar 

  • Shima N, Tsuda E, Goto M, Yano K, Hayasaka H, Ueda M, Higashio K (1994) Hepatocyte growth factor and its variant with a deletion of five amino acids are distinguishable in their biological activity and tertiary structure. Biochem Biophys Res Commun 200(2):808–815. https://doi.org/10.1006/bbrc.1994.1523

    Article  Google Scholar 

  • Shyu KG, Chang H, Wang BW, Kuan P (2003) Intramuscular vascular endothelial growth factor gene therapy in patients with chronic critical leg ischemia. Am J Med 114(2):85–92. https://doi.org/10.1016/S0002-9343(02)01392-X

    Article  Google Scholar 

  • Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD (1995) Basic fibroblast growth factor Upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Circulation 92(1):11–14. https://doi.org/10.1161/01.CIR.92.1.11

    Article  Google Scholar 

  • Stewart DJ, Hilton JD, Arnold JMO, Gregoire J, Rivard A, Archer SL, Charbonneau F et al (2006) Angiogenic gene therapy in patients with Nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF121 (AdVEGF121) versus maximum medical treatment. Gene Ther 13(21):1503–1511. https://doi.org/10.1038/sj.gt.3302802

    Article  Google Scholar 

  • Stewart DJ, Kutryk MJB, Fitchett D, Freeman M, Camack N, Yinghua S, Siega AD et al (2009) VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 17(6):1109–1115. https://doi.org/10.1038/mt.2009.70

    Article  Google Scholar 

  • Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356. https://doi.org/10.1177/0300985811402846

    Article  Google Scholar 

  • Tabata H, Silver M, Isner JM (1997) Arterial gene transfer of acidic fibroblast growth factor for therapeutic angiogenesis in vivo: critical role of secretion signal in use of naked DNA. Cardiovasc Res. https://doi.org/10.1016/S0008-6363(97)00152-1

  • Tafuro S, Eduard A, Serena Z, Lorena Z, Silvia M, Franca D, Mauro G (2009) Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovascular Research 83(4):663–71. https://doi.org/10.1093/cvr/cvp152

  • Takeshita S, Weir L, Chen D, Zheng LP, Riessen R, Bauters C, Symes JF, Ferrara N, Isner JM (1996) Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of Hindlimb ischemia. Biochem Biophys Res Commun 227(2):628–635. https://doi.org/10.1006/bbrc.1996.1556

    Article  Google Scholar 

  • Taniyama Y, Morishita R, Aoki M, Nakagami H, Yamamoto K, Yamazaki K, Matsumoto K, Nakamura T, Kaneda Y, Ogihara T (2001) Therapeutic angiogenesis induced by human hepatocyte growth factor gene in rat and rabbit Hindlimb ischemia models: preclinical study for treatment of peripheral arterial disease. Gene Ther 8(3):181–189. https://doi.org/10.1038/sj.gt.3301379

    Article  Google Scholar 

  • Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M, Esakof DD, Isner JM, Symes JF (1999) Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 10(18):2953–2960. https://doi.org/10.1089/10430349950016366

    Article  Google Scholar 

  • Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J, Horowitz JR, Symes JF, Isner JM (1996) Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 94(12):3281–3290. https://doi.org/10.1161/01.CIR.94.12.3281

    Article  Google Scholar 

  • Turunen MP, Husso T, Musthafa H, Laidinen S, Dragneva G, Laham-Karam N, Honkanen S et al (2014) Epigenetic Upregulation of endogenous VEGF-A reduces myocardial infarct size in mice. PLoS One 9(2):e89979. https://doi.org/10.1371/journal.pone.0089979

    Article  Google Scholar 

  • Vale PR, Losordo DW, Milliken CE, Maysky M, Esakof DD, Symes JF, Isner JM (2000) Left ventricular electromechanical mapping to assess efficacy of PhVEGF165 gene transfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation 102(9):965–974. https://doi.org/10.1161/01.CIR.102.9.965

    Article  Google Scholar 

  • Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM (2001) Randomized, single-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103(17):2138–2143. https://doi.org/10.1161/01.CIR.103.17.2138

    Article  Google Scholar 

  • Watanabe Y (1980) Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Incidence and development of atherosclerosis and Xanthoma. Atherosclerosis 36(2):261–268. https://doi.org/10.1016/0021-9150(80)90234-8

    Article  Google Scholar 

  • Whitlock PR, Hackett NR, Leopold PL, Rosengart TK, Crystal RG (2004) Adenovirus-mediated transfer of a Minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF CDNAs. Mol Ther 9(1):67–75. https://doi.org/10.1016/j.ymthe.2003.09.014

    Article  Google Scholar 

  • Wickham TJ (2000) Targeting adenovirus. Gene Ther. https://doi.org/10.1038/sj.gt.3301115. Nature Publishing Group

  • Willard JE, Landau C, Glamann DB, Burns D, Jessen ME, Pirwitz MJ, Gerard RD, Meidell RS (1994) Genetic modification of the vessel wall. Comparison of surgical and catheter-based techniques for delivery of recombinant adenovirus. Circulation 89(5):2190–2197. https://doi.org/10.1161/01.CIR.89.5.2190

    Article  Google Scholar 

  • Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525(2):162–169. https://doi.org/10.1016/j.gene.2013.03.137

    Article  Google Scholar 

  • Witzenbichler B, Mahfoudi A, Soubrier F, Le Roux A, Branellec D, Schultheiss HP, Isner JM (2006) Intramuscular gene transfer of fibroblast growth Factor-1 using improved PCOR plasmid design stimulates collateral formation in a rabbit ischemic Hindlimb model. J Mol Med 84(6):491–502. https://doi.org/10.1007/s00109-005-0031-3

    Article  Google Scholar 

  • Wright MJ, Wightman LML, Latchman DS, Marber MS (2001) In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Ther 8(24):1833–1839. https://doi.org/10.1038/sj.gt.3301614

    Article  Google Scholar 

  • Yang ZJ, Zhang YR, Bo C, Zhang SL, En ZJ, Wang LS, Zhu TB et al (2009) Phase i clinical trial on intracoronary administration of ad-HHGF treating severe coronary artery disease. Mol Biol Rep 36(6):1323–1329. https://doi.org/10.1007/s11033-008-9315-3

    Article  Google Scholar 

  • Ylä-Herttuala S, Baker AH (2017) Cardiovascular gene therapy: past, present, and future. Mol Ther 25(5):1095–1106. https://doi.org/10.1016/j.ymthe.2017.03.027

    Article  Google Scholar 

  • Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P (2017) Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J 38(18):1365–1371. https://doi.org/10.1093/eurheartj/ehw547

    Article  Google Scholar 

  • Ylä-Herttuala S, Martin JF (2000) Cardiovascular gene therapy. Lancet 355(9199):213–222. https://doi.org/10.1007/978-1-4614-6705-2_44

    Article  Google Scholar 

  • Zacchigna S, Tasciotti E, Kusmic C, Arsic N, Sorace O, Marini C, Marzullo P et al (2007) In vivo imaging shows abnormal function of vascular endothelial growth factor-induced vasculature. Hum Gene Ther 18(6):515–524. https://doi.org/10.1089/hum.2006.162

    Article  Google Scholar 

  • Zentilin L, Puligadda U, Lionetti V, Zacchigna S, Collesi C, Pattarini L, Ruozi G et al (2010) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24(5):1467–1478. https://doi.org/10.1096/fj.09-143180

    Article  Google Scholar 

  • Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P et al (2009) VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci U S A 106(15):6152–6157. https://doi.org/10.1073/pnas.0813061106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo Ylä-Herttuala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Korpela, H., Lampela, J., Nurro, J., Pajula, J., Ylä-Herttuala, S. (2021). Therapeutic Angiogenesis: Translational and Clinical Experience. In: Holnthoner, W., Banfi, A., Kirkpatrick, J., Redl, H. (eds) Vascularization for Tissue Engineering and Regenerative Medicine. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-21056-8_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21056-8_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21056-8

  • Online ISBN: 978-3-319-21056-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics