Skip to main content

Phanerozoic Life and Mass Extinctions of Species

  • Chapter
Climate, Fire and Human Evolution

Part of the book series: Modern Approaches in Solid Earth Sciences ((MASE,volume 10))

  • 1514 Accesses

Abstract

Early conflicts between uniformitarian and gradual theories of evolution (James Hutton 1726–1797; Charles Lyell 1797–1875) and catastrophic theory (Georges Cuvier 1769–1832) have been progressively resolved by advanced paleontological, sedimentary, volcanic and asteroid impact studies and by paleo-climate studies coupled with precise isotopic age determinations, indicating periods of gradual evolution were interrupted by abrupt events which have transformed the habitat of plants and organisms and resulted in mass extinction of species. Detailed investigations of the carbon, oxygen and sulphur cycles using a range of proxies, including leaf pore stomata, δ13C, δ34S and 87/86Sr isotopes, as well as geochemical mass balance modeling, provide detailed evidence of major trends as well as distinct events in the atmosphere–ocean-land system during the Paleozoic and Mesozoic eras (542–65 Ma), including greenhouse Earth periods (CO2 ~ 2,000–5,000 ppm) and glacial phases (CO2 < 500 ppm), with implications for biological evolution. The Cenozoic era includes four components (A) post K-T impact warming culminating with the Paleocene-Eocene hyperthermal at ~55 Ma; (B) long term cooling ending with a sharp temperature plunge toward formation of the Antarctic ice sheet from 32 Ma; (C) a post-32 Ma era dominated by the Antarctic ice sheet, including limited thermal rises in the end-Oligocene, mid-Miocene and end-Pliocene, and (D) Pleistocene glacial-interglacial cycles. Hominin evolution in Africa occurred during a transition from tropical to dry climates punctuated by alternating periods of extreme orbital forcing-induced glacial-interglacial cycles, suggesting variability selection of Hominins.

Falling Star

For an infinitely long second, nascent

Your tail plots a crescent, a fiery arc

From a star-spangled sky incandescent

To the fast sleeping Earth, in the dark

Your grave for all time.

Who are you, friend or foe, stranger

Fragment fallen by a space highway

Of the asteroid belt, posing danger

Or some orbit-decayed fancy hardware

Of fatal star wars fleets?

Are you a harbinger of good news

Or signal dire distress

For this embattled Earth, in its blues

Will your fleeting torch impress

A new truth?

Will you plunge way beyond yonder

Or fall here, close by my side

On this red desert dune, I wonder

Stranded tonight, wide eyed

In awe, without faith?

(By Andrew Glikson)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extra-terrestrial cause for the cretaceous-tertiary extinction: experimental results and theoretical interpretation. Science 208:1095–1085

    Article  Google Scholar 

  • Alvarez W (2003) Comparing the evidence relevant to impacts and flood basalts at times of major mass extinctions. Astrobiology 3:153–161

    Article  Google Scholar 

  • Bachan A, Van de Schootbrugge B, Fiebig J, McRoberts C, Ciarapica G, Payne J (2012) Carbon cycle dynamics following the end-Triassic mass extinction: constraints from paired δ13Ccarb and δ13Corg. Geochem Geophys Geosyst. doi:10.1029/2012GC004150

    Google Scholar 

  • Balter V et al (2008) Record of climate-driven morphological changes in 376 Ma Devonian fossils. Geology 36:907

    Article  Google Scholar 

  • Beerling DJ (2002a) CO2 and the end-Triassic mass extinction. Nature 415:386–387

    Article  Google Scholar 

  • Beerling DJ (2002b) Low atmospheric CO2 levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids. Proc Natl Acad Sci U S A 99:12567–12571

    Article  Google Scholar 

  • Beerling DJ, Royer D (2011) Convergent cenozoic CO2 history. Nat Geosci 4:418–420

    Article  Google Scholar 

  • Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410:352–354

    Article  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL, Upchurch GR, Kump LR (2002) An atmospheric pCO2 reconstruction across the cretaceous-tertiary boundary from leaf mega fossils. Proc Natl Acad Sci U S A 99:7836–7840

    Article  Google Scholar 

  • Berner RA (2005) The carbon and sulphur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim Cosmochim Acta 69:3211–3217

    Article  Google Scholar 

  • Bodiselitsch B, Montanari A, Koeberl C, Coccioni R (2004) Delayed climate cooling in the late Eocene caused by multiple impacts: high-resolution geochemical studies at Massignano, Italy. Earth Planet Sci Lett 223:283–302

    Article  Google Scholar 

  • Brenchley PJ, Carden GA, Hints L, Kaljo D, Marshall JD, Martma T, Meidla T, Nõlvak J (2003) High-resolution isotope stratigraphy of late Ordovician sequences: constraints on the timing of bio-events and environmental changes associated with mass extinction and glaciation. Geol Soc Am Bull 115:89–104

    Article  Google Scholar 

  • Calver CR (2000) Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide rift complex, South Australia, and the overprint of water column stratification. Precambrian Res 100:121–150

    Article  Google Scholar 

  • Claeys P, Kiessling W, Alvarez W (2002) Distribution of Chicxulub ejecta at the cretaceous-tertiary boundary. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, vol 356. Geological Society of America, Boulder, pp 55–68

    Chapter  Google Scholar 

  • Courtillot VE, Rennes PR (2003) On the ages of flood basalt events. Compt Rendus Geosci 335:113–140

    Article  Google Scholar 

  • Covey C, Morrison D, Toon OB, Turco RP, Zahnle K (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  Google Scholar 

  • Cui Y, Kump LR, Ridgwell AJ, Charles AJ, Junium CK, Diefendorf AF, Freeman KH, Urban NM, Harding IC (2011) Slow release of fossil carbon during the Palaeocene–Eocene thermal maximum. Nat Geosci 4:481–485

    Article  Google Scholar 

  • EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    Article  Google Scholar 

  • Erwin DH (1994) The Permo–Triassic extinction. Nature 367:231–236

    Article  Google Scholar 

  • Erwin DH (2006) Extinction – how life on earth nearly ended 250 million years-ago. Princeton University Press, Princeton/Oxford, 296 pp

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • French BM (1998) Traces of catastrophe. Lunar Planetary Institute, Houston, 954, 120 pp

    Google Scholar 

  • Ganopolski A, Rahmstorf S (2002) Abrupt glacial climate changes due to stochastic resonance. Phys Rev Lett 88:3–6

    Article  Google Scholar 

  • Gardner AF, Gilmour I (2002) An organic geochemical investigation of terrestrial cretaceous–tertiary boundary successions from brownie butte, Montana, and the Raton Basin, New Mexico. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: impacts and beyond, vol 356. Geological Society of America, Boulder, pp 351–362

    Chapter  Google Scholar 

  • Glikson AY (2005) Asteroid/comet impact clusters, flood basalts and mass extinctions: significance of isotopic age overlaps. Earth Planet Sci Lett 236:933–937

    Article  Google Scholar 

  • Glikson AY (2013a) The asteroid impact connection of planetary evolution. Springer Briefs, Dordrecht, 149 pp

    Book  Google Scholar 

  • Glikson AY, Uysal IT, Fitz Gerald JD, Saygin E (2013) Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-East South Australia: tectonic or impact shock metamorphic origin? Tectonophysics 589:57–76

    Article  Google Scholar 

  • Gostin VA, Zbik M (1999) Petrology and microstructure of distal impact ejecta from the flinders ranges Australia. Metor Planet Sci 34:587–592

    Article  Google Scholar 

  • Gostin VA, Haines PW, Jenkins RJF, Compston W, Williams IS (1986) Impact ejecta horizon within late Precambrian shale, Adelaide Geosyncline, South Australia. Science 233:198–200

    Article  Google Scholar 

  • Gradstein FM, Ogg JG (2004) Geologic time scale 2004—why, how, and where next. Lethaia 37:175–181

    Article  Google Scholar 

  • Grasby SE, Sanei H, Beauchamp B (2011) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci 4:104–107

    Article  Google Scholar 

  • Grey K (2005) Ediacaran Palynology of Australia. Association of the Australasian Palaeontologists Memoir 31, Canberra, 439 pp

    Google Scholar 

  • Grey K, Walter MR, Calver CR (2003) Neoproterozoic biotic diversification: snowball earth or aftermath of the Acraman impact? Geology 5:459–462

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford

    Google Scholar 

  • Hames W, McHone JG, Renne P, Ruppel C (2003) The Central Atlantic magmatic province: insights from fragments of Pangea. Geophys Monog Ser 136:267 pp

    Google Scholar 

  • Hansen J, Sato M, Kharecha P, Lea DW, Siddall M (2007) Climate change and trace gases. Phil Trans Roy Soc 365A:1925–1954

    Article  Google Scholar 

  • IPCC (2007) Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html

  • Joachimski MM et al (2012) Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40:195–198

    Article  Google Scholar 

  • Jourdan F, Marzoli A, Bertrand HS, Cirilli S, Tanner LH, Kontak DJ, McHone G, Renne PR, Bellieni G (2009) 40Ar/39Ar ages of CAMP in North America: implications for the Triassic–Jurassic boundary and the 40 K decay constant bias. Lithos 110:167–180

    Article  Google Scholar 

  • Jourdan F, Reimold UW, Deutsch A (2012) Dating terrestrial impact structures. Elements 8:49–53

    Article  Google Scholar 

  • Jouzel (2007) Orbital and millenial Antarctic climate variability over the past 800,000 years. Science 317:793–7

    Article  Google Scholar 

  • Kaiho KY, Kajiwara K, Tazaki M, Ueshima N, Takeda H, Kawahata T, Arinobu R, Ishiwatari A, Hirai MA (1999) Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/tertiary boundary: their decrease, subsequent warming, and recovery. Paleoceanography 14:511–524

    Article  Google Scholar 

  • Kamo SL, Czamanske GK, Amelin Y, Fedorenko VA, Davis DW, Trofmov VR (2003) Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett 214:75–91

    Article  Google Scholar 

  • Keller G (1986) Stepwise mass extinctions and impact events; late Eocene to early Oligocene. Mar Micropaleontol 10:267–293

    Article  Google Scholar 

  • Keller G (2005) Impacts volcanism and mass extinction: random coincidence or cause and effect? Aust J Earth Sci 52:725–757

    Article  Google Scholar 

  • Keller G (2012) The cretaceous-tertiary mass extinction, chicxulub impact, and deccan volcanism. In: Talent JA (ed) Earth and life. Springer, Berlin, pp 759–793

    Chapter  Google Scholar 

  • Korte C, Kozur HW (2010) Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J Asian Earth Sci 39:215–235

    Article  Google Scholar 

  • Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheenan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the late Ordovician. Palaeoclimatol Palaeogeogr Palaeoecol 152:173–187

    Article  Google Scholar 

  • Kurschner WM et al (2008) The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc Natl Acad Sci U S A 105:449–453

    Article  Google Scholar 

  • Liu Z et al (2009) Global cooling during the Eocene-Oligocene climate transition. Science 323:1187–1190

    Article  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  Google Scholar 

  • Marshall JD, Brenchley PJ, Mason P, Wolff GA, Astini RA, Hints L, Meidla T (1997) Global carbon isotopic events associated with mass extinction and glaciation in the late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 132:195–210

    Article  Google Scholar 

  • Maruoka T, Koeberl C, Bohor BF (2007) Carbon isotopic compositions of organic matter across continental Cretaceous-tertiary (K-T) boundary sections: implications for paleoenvironment after the K-T impact event. Earth Planet Sci Lett 253:226–238

    Article  Google Scholar 

  • McCracken MC, Covey C, Thompson SL, Weissman PR (1994) Global climatic effects of atmospheric dust from an asteroid or comet impact on Earth. Glob Planet Change 9:263–273

    Article  Google Scholar 

  • McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:549–557

    Article  Google Scholar 

  • McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390

    Article  Google Scholar 

  • McGhee GR (1996) The late Devonian mass extinction. Columbia University Press, New York

    Google Scholar 

  • Monechi S, Buccianti A, Gardin S (2000) Biotic signals from nannoflora across the iridium anomaly in the upper Eocene of the Massignano section: evidence from statistical analysis. Mar Micropaleontol 39:219–237

    Article  Google Scholar 

  • Mora CI, Driese SG, Colarusso LA (1996) Middle to late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science 271:1105–1107

    Article  Google Scholar 

  • NOAA (2013) Mouna Loa CO2. http://www.esrl.noaa.gov/gmd/ccgg/trends/

  • Olsen PE, Sues HD (1986) Correlation of continental late Triassic and early Jurassic sediments and patterns of the Triassic–Jurassic tetrapod transition. In: Padian K (ed) The beginning of the age of dinosaurs. Cambridge University Press, Cambridge, pp 321–351

    Google Scholar 

  • Panchuk K, Ridgwell A, Kump LR (2008) Sedimentary response to Paleocene-Eocene thermal maximum carbon release: a model-data comparison. Geology 36:315–318

    Article  Google Scholar 

  • Pearson PN, Foster GL, Wade BS (2009) Atmospheric carbon dioxide through the Eocene–Oligocene climate transition. Nature 461:1110–1113

    Article  Google Scholar 

  • Pekar S, Christie-Blick N (2007) Showing a strong link between climatic and pCO2 changes: resolving discrepancies between oceanographic and Antarctic climate records for the oligocene and early miocene (34–16 Ma). University of Nebraska Antarctic Drilling Program. http://digitalcommons.unl.edu/andrillaffiliates/17

  • Petit JR et al (1999) 420,000 years of climate and atmospheric history revealed by the Vostok deep Antarctic ice core. Nature 399:429–436

    Article  Google Scholar 

  • Poag CW (1997) Roadblocks on the kill curve: testing the Raup hypothesis. Palaios 12:582–590

    Article  Google Scholar 

  • Pollard D, DeConto RM (2005) Hysteresis in Cenozoic antarctic ice sheet variations. Glob Planet Chang 45:9–21

    Article  Google Scholar 

  • Pope KO, Baines KH, Ocampo AC, Ivanov BA (1997) Energy volatile production and climatic effects of the Chicxulub Cretaceous/tertiary impact. J Geophys Res 102:21645–21664

    Article  Google Scholar 

  • Racki G (2003) End-Permian mass extinction: oceanographic consequences of double catastrophic volcanism. Lethaia 36:171–173

    Article  Google Scholar 

  • Renne PR, Zhang Z, Richards MA, Black MT, Basu AR (1995) Synchrony and causal relations between Permian – Triassic boundary crises and Siberian flood volcanism. Science 269:1413–1416

    Article  Google Scholar 

  • Ross CA, Ross RP (1995) Permian sequence stratigraphy. In: Scholle PA et al (eds) The Permian of northern Pangea, vol 1. Springer, Berlin, pp 98–123

    Chapter  Google Scholar 

  • Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen nov a Late Devonian gymnosperm with cupulate ovules. Bot Gaz 150:170–189

    Article  Google Scholar 

  • Royer DL (2006) CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta 70:5665–5675

    Article  Google Scholar 

  • Schoene B et al (2015) U-Pb geochronology of the Deccan traps and relation to the end-cretaceous mass extinction. Science 347(6218):182–184

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous- Paleogene boundary. Science 327(5970):1214–1218

    Article  Google Scholar 

  • Sepkoski JJ (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 35–52

    Chapter  Google Scholar 

  • Stephens NP, Sumner DY (2002) Late Devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia. Palaeo 191:203–219

    Article  Google Scholar 

  • Tohver E et al (2012) Geochronological constraints on the age of a Permo-Triassic impact event: U-Pb and 40Ar/39Ar results for the 40 km Araguainha structure of central Brazil. Geochim Cosmochim Acta 86:214–227

    Article  Google Scholar 

  • Twitchett RJ, Looy CV, Morante R, Visscher H, Wignall PB (2001) Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian crisis. Geology 29:351–354

    Article  Google Scholar 

  • Wagner F, Aaby B, Visscher H (2002) Rapid atmospheric CO2 changes associated with the 8,200-years-B.P. cooling event. Proc Natl Acad Sci U S A 99:12011–12014

    Article  Google Scholar 

  • Walter MR, Veevers JJ, Calver CR, Gorjan P, Hill AC (2000) Dating the 840–544 Ma Neoproterozoic interval by isotopes of strontium, carbon, and sulphur in seawater, and some interpretative models. Precambrian Res 100:371–433

    Article  Google Scholar 

  • Ward PD (2007) Under a green sky: global warming, the mass extinctions of the past, and what they can tell us about our future. Harper Collins, New York, 242 pp

    Google Scholar 

  • Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Natl Acad Sci U S A 107(15):6721–6725, pnas.1001706107

    Article  Google Scholar 

  • Wignall PB (2001) Large igneous provinces and mass extinctions. Earth Sci Rev 53:1–33

    Article  Google Scholar 

  • Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    Article  Google Scholar 

  • Williams GE, Gostin VA (2005) The Acraman – Bunyeroo impact event (Ediacaran) South Australia and environmental consequences: 25 years on. Aust J Earth Sci 52:607–620

    Article  Google Scholar 

  • Williams GE, Schmidt PW, Boyd DM (1996) Magnetic signature and morphology of the Acraman impact structure South Australia. Aust Geol Surv Org J Aust Geol Geophys 16:431–442

    Google Scholar 

  • Wolbach SW, Widicus S, Moecker S (1990) Is the soot layer at the KT boundary really global? Lunar and Planetary Science XXIX 1309

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

  • Zachos J, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–283

    Article  Google Scholar 

  • Zeebe RE, Bada JL, Zachos JC, Dickens GR (2009) Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene thermal maximum warming. Nat Geosci 2:576–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Glikson, A.Y., Groves, C. (2016). Phanerozoic Life and Mass Extinctions of Species. In: Climate, Fire and Human Evolution. Modern Approaches in Solid Earth Sciences, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-22512-8_2

Download citation

Publish with us

Policies and ethics