Skip to main content

Flora of the Late Triassic

  • Chapter
  • First Online:
The Late Triassic World

Part of the book series: Topics in Geobiology ((TGBI,volume 46))

Abstract

The Triassic was a time of diversification of the global floras following the mass-extinction event at the close of the Permian, with floras of low-diversity and somewhat uniform aspect in the Early Triassic developing into complex vegetation by the Late Triassic. The Earth experienced generally hothouse conditions with low equator-to-pole temperature gradients through the Late Triassic. This was also the time of peak amalgamation of the continents to form Pangea. Consequently, many plant families and genera were widely distributed in the Late Triassic. Nevertheless, two major floristic provinces are recognizable during this interval—one in the Southern Hemisphere (Gondwana) and another in the Northern Hemisphere (Laurussia); these being largely separated by the Tethys Ocean and a palaeotropical arid belt. Regional variations in topography, climate and light regime imposed further constraints on the distribution of plant groups in the Late Triassic such that two floristic sub-provinces are recognizable within Gondwana, and nine within Laurussia based on the plant macrofossil and dispersed spore-pollen records. In a broad sense, the Late Triassic saw the diversification of several plant groups that would become important components of younger Mesozoic floras (e.g., Bennettitales, Czekanowskiales, Gnetales and several modern fern and conifer families). The representation of these groups varied not only geographically, but waxed and waned through time in response to climatic pulses, such as the Carnian Pluvial Event. Significant turnovers are apparent in both macrofossil- and palyno-floras across the Triassic–Jurassic boundary, especially in the North Atlantic and Gondwanan regions. The geographic and temporal variations in the floras have necessitated the establishment of numerous regional palynozonation schemes that are tentatively correlated in this study. Major plant macrofossil assemblages of the Late Triassic world are also placed in a stratigraphic context for the first time. The Late Triassic floras also record the re-diversification of insect faunas based on a broad array of damage types preserved on leaves and wood. By the Late Triassic, all modern terrestrial arthropod functional feeding groups were established, and several very specialized feeding traits and egg-laying strategies had developed. Although age constraints on various fossil assemblages need to be improved, this study provides the first global overview of the temporal and geographic distributions of Late Triassic floras, and establishes a basis for future targeted research on Triassic phytogeography and phytostratigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achilles H (1981) Die Rhaetische and Liassische Microflora Frankens. Palaeontographica B 179:1–86

    Google Scholar 

  • Adami-Rodrigues K, Gnaedinger S, Gallego OF (2008) Registro de interações inseto-planta do grupo El Tranquilo (Triássico Superior) Provincia de Santa Cruz, Patagonia Argentina [Abstract 1]. In: Boardman DR (ed) Simpósio Brasileiro de Paleobotânica e Palinologia Boletim de Resumos. Florianópolis, Asociación Latinoamericana de Paleobotánica y Palinología 1:482

    Google Scholar 

  • Akagi T (1954) On the Triassic Plants from the Homgay Coalfield, in Tonkin, Indo–China. Natural Science Report, Oehanomizu Univ 5(1):153–174

    Google Scholar 

  • Akikuni K, Hori R, Vajda V et al (2010) Stratigraphy of Triassic–Jurassic boundary sequences from the Kawhia coast and Awakino gorge, Murihiku Terrane, New Zealand. Stratigraphy 7:7–24

    Google Scholar 

  • Anderson JM, Anderson HM (1983) Palaeoflora of southern Africa, Molteno Formation (Triassic) 1. (Part 1. Introduction; Part 2. Dicroidium). A.A. Balkema, Rotterdam

    Google Scholar 

  • Anderson JM, Anderson HM (1985) Palaeoflora of southern Africa. Prodromus of South African megafloras Devonian to Lower Cretaceous. A.A. Balkema, Rotterdam

    Google Scholar 

  • Anderson JM, Anderson HM (1989) Palaeoflora of southern Africa, Molteno Formation (Triassic) 2. Gymnosperms (excluding Dicroidium). A.A Balkema, Rotterdam

    Google Scholar 

  • Anderson JM, Anderson HM (2003) Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Strelitzia 15:1–398

    Google Scholar 

  • Anderson HM, Anderson JM (2008) Molteno ferns: Late Triassic biodiversity in southern Africa. South African National Biodiversity Institute, Pretoria. Strelitzia 21:1–258

    Google Scholar 

  • Anderson HM, Anderson JM (in press) Molteno sphenophytes: Late Triassic biodiversity in southern Africa. Paleontologia Africana

    Google Scholar 

  • Anderson HM, Anderson JM, Cruickshank ARI (1998) Late Triassic ecosystems of the Molteno/Lower Elliot biome of southern Africa. Palaeontology 41:387–421

    Google Scholar 

  • Anderson JM, Anderson HM, Archangelsky S et al (1999) Patterns of Gondwana plant colonisation and diversification. J Afr Earth Sci 28:145–167

    Article  Google Scholar 

  • Archangelsky S (1968) Studies on Triassic fossil plants from Argentina. IV. The leaf genus Dicroidium and its possible relation to Rhexoxylon stems. Palaeontology 11:500–512

    Google Scholar 

  • Archangelsky S, Brett DW (1961) Studies on Triassic fossil plants from Argentina. I. Rhexoxylon from the Ischigualasto Formation. Phil Trans R Soc Lond B 244:1–19

    Article  Google Scholar 

  • Arche A, Lopez-Gomez JL (2014) The Carnian Pluvial Event in Western Europe: new data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth-Sci Rev 128:196–231

    Article  Google Scholar 

  • Artabe AE, Morel EM, Spalletti LA (2003) Caracterización de las provincias fitogeográficas triásicas del Gondwana extratropical. Ameghiniana 40:387–405

    Google Scholar 

  • Ash SR (1969) Ferns from the Chinle Formation (Upper Triassic) in the Fort Wingate area, New Mexico. U.S. Geol Surv Prof Paper 613D:1–40

    Google Scholar 

  • Ash SR (1975) Zamites powelli and its distribution in the Upper Triassic of North America. Palaeontographica 149B:139–152

    Google Scholar 

  • Ash SR (1986) First record of the Gondwana plant Schizoneura (Equisetales) in the Upper Triassic of North America. In: Weber R (ed) 3d Congreso Latinoamericano Paleontologia, Simposio sobre flores del Triasico Tardio su fitogeografia y paleoecologia. Universidad Nacional. Autonoma Mexico, Instituto Geologia, Memoria, pp 59–65

    Google Scholar 

  • Ash SR (1989) A catalog of Upper Triassic plant megafossils of the western United States through 1988. In: Lucas SG, Hunt AP (eds) Dawn of the age of dinosaurs in the American Southwest. New Mexico Museum of Natural History, Albuquerque, pp 189–222

    Google Scholar 

  • Ash SR (1997) Evidence of arthropod-plant interactions in the Upper Triassic of the southeastern United States. Lethaia 29:237–248

    Article  Google Scholar 

  • Ash SR (1999) An Upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. Int J Plant Sci 160:208–215

    Article  Google Scholar 

  • Ash SR (2000) Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona. J Paleontol 74:1065–1071

    Article  Google Scholar 

  • Ash SR (2001) New cycadophytes from the Upper Triassic Chinle Formation in the southwestern United States. PaleoBios 21:15–28

    Google Scholar 

  • Ash SR (2005) A new Upper Triassic flora and associated invertebrate fossils from the basal beds of the Chinle Formation, near Cameron, Arizona. PaleoBios 25:17–34

    Google Scholar 

  • Ash SR (2011) Anomalous occurrence of the Gondwanan winged seed Fraxinopsis in a new Late Triassic (Norian) flora from west Texas, USA. Rev Palaeobot Palynol 166:94–106

    Article  Google Scholar 

  • Ash SR (2014) Contributions to the Upper Triassic Chinle flora in the American southwest. Palaeobiogeogr Palaeoclimatol Palaeoecol 94:279–294

    Google Scholar 

  • Ash SR, Basinger JF (1991) A high latitude Upper Triassic flora from the Heiberg Formation, Sverdrup Basin, Arctic Archipelago. Contrib Can Paleont Geol Surv Canada Bull 412:101–131

    Google Scholar 

  • Ash SR, Hasiotis ST (2013) New occurrences of the controversial Late Triassic plant fossil Sanmiguelia Brown and associated ichnofossils in the Chinle Formation of Arizona and Utah. N Jb Geol Paläont Abh 268(1):65–82

    Article  Google Scholar 

  • Ash SR, Savidge RA (2004) The bark of the Late Triassic Araucarioxylon arizonicum tree from the Petrified Forest National Park, Arizona. IAWA J 25:349–368

    Article  Google Scholar 

  • Ash SR, Litwin R, Traverse AT (1982) The Upper Triassic fern Phlebopteris smithii (Daugherty) Arnold and its spores. Palynology 6:203–219

    Article  Google Scholar 

  • Axsmith B (1989) Upper Triassic Dinophyton Zone plant fossils from the Stockton Formation in southeastern Pennsylvania. The Mosasaur. J Delaware Valley Paleont Soc 4:45–47

    Google Scholar 

  • Axsmith B, Taylor TN, Delevoryas T et al (1995) A new species of Eoginkgoites from the Upper Triassic of North Carolina, USA. Rev Palaeobot Palynol 85:189–198

    Article  Google Scholar 

  • Axsmith B, Taylor TN, Fraser NC et al (1997) An occurrence of the Gondwanan plant Fraxinopsis in the Upper Triassic of eastern North America. Mod Geol 21:299–308

    Google Scholar 

  • Axsmith B, Krings M, Taylor TN (2001) A filmy fern from the Upper Triassic of North Carolina (USA). Am J Bot 88:1558–1567

    Article  Google Scholar 

  • Axsmith B, Fraser NC, Corso T (2013) A Triassic seed with an angiosperm-like wind dispersal mechanism. Palaeontology 56:1173–1177

    Google Scholar 

  • Barbacka M (1991) Lepidopteris ottonis (Goepp.) Schimp. and Peltaspermum rotula Harris from the Rhaetian of Poland. Acta Palaeobot 31:23–47

    Google Scholar 

  • Barbacka M, Pacyna G, Ziaja J et al (2012) The new type of Late Triassic ovulate scales associated with Brachyphyllum-like leaves. In: Nishida H, Saito T, Takahara H (eds) 13th International Palynological Congress, 9th International Organisation of Palaeobotany Conference, Japanese Journal of Palynology, 58(special volume):11

    Google Scholar 

  • Barboni R, Dutra TL (2015) First record of Ginkgo-related fertile organs (Hamshawvia, Stachyopitys) and leaves (Baiera, Sphenobaiera) in the Triassic of Brazil, Santa Maria formation. J South Am Earth Sci 63:417–435

    Article  Google Scholar 

  • Barboni R, Dutra TL, Faccini UF (2016) Xylopteris (Frenguelli) Stipanicic and Bonetti in the Middle–Upper Triassic (Santa Maria Formation) of Brazil. Ameghiniana 53:599–622

    Article  Google Scholar 

  • Barone-Nugent E, McLoughlin S, Drinnan AN (2003) Two new species of Rochipteris from Upper Triassic (Carnian–Norian) strata of the Leigh Creek and Ipswich basins, Australia. Rev Palaeobot Palynol 123:273–287

    Article  Google Scholar 

  • Barth G, Franz M, Heunisch C et al (2014) Late Triassic (Norian–Rhaetian) brackish to fresh water habitats at a fluvial–dominated delta plain (Seinstedt, Lower Saxony, Germany). Palaeobiodiv Palaeoenviron 94:495–528

    Article  Google Scholar 

  • Batten DJ, Koppelhus EB (1996) Biostratigraphic significance of uppermost Triassic and Jurassic miospores in Northwest Europe. In: Jansonius J, McGregor DC (eds) Palynology: principles and applications. Amer Assoc Strat Palynol Found 2:7957806

    Google Scholar 

  • Berra F, Jadoul F, Anelli A (2010) Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: coupling sea level and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 290:138–150

    Article  Google Scholar 

  • Bock W (1969) The American Triassic flora and global distribution. Geol Center Res Ser 3/4:1–406

    Google Scholar 

  • Boersma M, Van Konijnenburg–van Cittert JHA (1991) Late Triassic plant megafossils from Aghdarband (NE Iran). In: Rutter AW (ed) The Triassic of Aghdarband (Agharband) NE–Iran, and its pre–Triassic Frame. Abh Geol Bundesanst 38:223–252

    Google Scholar 

  • Bolotov SN, Panov DI, Yaroshenko OP (2004) New data on palynological characteristics of Triassic and Liassic of Bordak river Basin (Mountain Crimea). Bull Moscow Nat Soc Geol Sect 29(3):13–19. (in Russian)

    Google Scholar 

  • Bomfleur B, Pott C, Kerp H (2011a) Plant assemblages from the Shafer Peak Formation (Lower Jurassic), North Victoria Land, Transantarctic Mountains. Antarct Sci 23:188–208

    Article  Google Scholar 

  • Bomfleur B, Taylor EL, Taylor TN et al (2011b) Systematics and paleoecology of a new peltaspermalean seed fern from the Triassic polar vegetation of Gondwana. Int J Plant Sci 172:807–835

    Article  Google Scholar 

  • Bomfleur B, Escapa IH, Taylor EL et al (2012) Modified basal elements in Dicroidium fronds (Corystospermales). Rev Palaeobot Palynol 170:15–26

    Article  Google Scholar 

  • Bomfleur B, Decombeix A-L, Escapa IH et al (2013a) Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. Int J Plant Sci 174:425–444

    Article  Google Scholar 

  • Bomfleur B, Escapa IH, Taylor EL, Taylor TN (2013b) A reappraisal of Neocalamites and Schizoneura (fossil Equisetales) based on material from the Triassic of East Antarctica. Alcheringa 37:1–17

    Article  Google Scholar 

  • Bomfleur B, Decombeix A-L, Schwendemann AB et al (2014a) Habit and ecology of the Petriellales, an unusual group of seed plants from the Triassic of Gondwana. Int J Plant Sci 175:1062–1075

    Article  Google Scholar 

  • Bomfleur B, Klymiuk AA, Taylor EL et al (2014b) Diverse bryophyte mesofossils from the Triassic of Antarctica. Lethaia 47:120–132

    Article  Google Scholar 

  • Bonetti MIR (1963) Contribución al conocimiento de la flora fósil de Barreal. Dpto de Calingasta (provincial de San Juan), Facultad de Ciencias Exactas Fisicas y Naturales, Universidad de Buenos Aires

    Google Scholar 

  • Bonis NR, Kürschner WM, Krystyn L (2009a) A detailed palynological study of the Triassic-Jurassic transition from key sections in the Eiberg Basin (Northern Calcareous Alps, Austria). Rev Palaeobot Palynol 156:376–400

    Article  Google Scholar 

  • Bonis NR, Ruhl M, Kürschner WM (2009b) Climate change driven black shale deposition during the end-Triassic in the western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 290(1–4):151–159

    Google Scholar 

  • Bonis NR, Kürschner WM, Van Konijnenburg-van Cittert JHA (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr Palaeoclimatol Palaeoecol 295:146–161

    Article  Google Scholar 

  • Bose MN (1974) Triassic floras. In: Surange KR, Lakhanpal RN, Bharadwaj DC (eds) Aspects and appraisal of Indian palaeobotany. Birbal Sahni Institute of Palaeobotany, Lucknow, pp 258–293

    Google Scholar 

  • Boureau E (1954) Découverte du genre Homoxylon Sahni dans les terrains secondaires de la Nouvelle Calédonie. Mém Mus Natn Hist Nat Sér C 3(2):129–143

    Google Scholar 

  • Boureau E (1955) Etude paléoxylogique de la Nouvelle Calédonie.1. Sur un Homoxylon australe n.sp., bois fossile du Marais de Mara. Bull Mus Nat Hist Nat Sér 2, 27(4):341–346

    Google Scholar 

  • Boureau E (1957) Sur certaines espèces homoxylées à ponctuations aréolées scalariformes des flores vivantes et fossiles du Mésozoïque de Nouvelle Calédonie. Proc Eighth Pacific Sci Congr 4:346–347

    Google Scholar 

  • Breda A, Preto N, Roghi G et al (2009) The Carnian Pluvial Event in the Tofane área (Cortina d’Ampezzo, Dolomites, Italy). Geo Alp 6:80–115

    Google Scholar 

  • Brenner W (1986) Bemerkungen zur Palynostratigraphy der Rhaet-Lias Grenze in SW Deutschland. N Jb Geol Pal Abh 173(131):166

    Google Scholar 

  • Brick MI (1936) The first finding of the Lower Triassic flora in Middle Asia. Trans Geol Inst USSR Acad Sci 5:161–174. (in Russian)

    Google Scholar 

  • Brick MI (1941) Mezozojskaja flora Kamysh-Bashi (mezhdurech’e Isfara-Soh) (The Mesozoic flora of Kamyshbashy (the interfluve Isfara and Sokh)). UzGIZ, Tashkent. (in Russian)

    Google Scholar 

  • Brick MI (1952) Iskopaemaja flora i stratigrafija nizhnemezozojskih otlozhenij bassejna srednego techenija r. Ilek v Zapadnom Kazahstane (The fossil flora and the stratigraphy of the Lower Mesozoic sediments of the middle stream of the Ilek River Basin in western Kazakhstan). Gosgeoltechizdat, Moscow. (in Russian)

    Google Scholar 

  • Bromfield K, Burrett CF, Leslie RA, Meffre S (2007) Jurassic volcaniclastic—basaltic andesite—dolerite sequence in Tasmania: new age constraints for fossil plants from Lune River. Austr J Earth Sci 54:965–974

    Article  Google Scholar 

  • Bronn HG (1858) Beiträge zur triasischen Fauna und Flora der bituminösen Schiefer von Raibl, nebst Anhang über die Kurr’sche Sippe Chiropteris aus dem Lettenkohlen-Sandsteine. E. Schweitzerbart’sche Verlagshandlung und Druckerei, Stuttgart

    Google Scholar 

  • Brüggen J (1918) Informe sobre el carbón de La Ternera (Copiapó). Soci Nac Minería, bol 29, Serie 3:486–496

    Google Scholar 

  • Budai T, Császá RG, Csillag G et al (1999) A Balaton-Felvidék Földtana. Geological Institute of Hungary, Budapest

    Google Scholar 

  • Buratti N, Cirilli S (2007) Microfloristic provincialism in the Upper Triassic Circum–Mediterranean area and paleogeographic implication. Geobios 40:133–142

    Article  Google Scholar 

  • Burger D (1994) Palynological studies of the Bundamba Group and Walloon Coal Measures in the Clarence-Moreton Basin. In: Wells AT, O’Brien PE (eds) Geology and petroleum potential of the Clarence-Moreton Basin, New South Wales and Queensland. Austral Geol Surv Org, Bull 241:164–180

    Google Scholar 

  • Cairncross B, Anderson JM, Anderson HM (1995) Palaeoecology of the Triassic Molteno Formation, Karoo Basin, South Africa—sedimentological and palaeoecological evidence. South Afr J Geol 98:452–478

    Google Scholar 

  • Cantrill DJ, Drinnan AN (1994) Late Triassic megaspores from the Amery Group, Prince Charles Mountains, East Antarctica. Alcheringa 18:71–78

    Article  Google Scholar 

  • Cantrill DJ, Drinnan AN, Webb JA (1995) Late Triassic plant fossils from the Prince Charles Mountains, East Antarctica. Antarct Sci 7:51–62

    Article  Google Scholar 

  • Césari SN, Colombi CE (2013) A new Late Triasssic phytogeographical scenario in westernmost Gondwana. Nat Commun 4:1889

    Article  Google Scholar 

  • Césari SN, Colombi CE (2016) Palynology of the Late Triassic Ischigualasto Formation, Argentina: Paleoecological and paleogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 449:365–384

    Article  Google Scholar 

  • Chalyshev VI, Variukhina LM (1966) Triassic biostratigraphy of the Pechora region. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Chen Y, Duan S-Y, Zhang Y-C (1979a) New species of Late Triassic plants from Yanbian Sichuan I. Acta Bot Sin 21:57–63

    Google Scholar 

  • Chen Y, Duan S-Y, Zhang Y-C (1979b) New species of Late Triassic plants from Yanbian Sichuan II. Acta Bot Sin 21:186–190

    Google Scholar 

  • Chen Y, Duan S-Y, Zhang Y-C (1979c) New species of Late Triassic plants from Yanbian Sichuan III. Acta Bot Sin 21:269–273

    Google Scholar 

  • Chen Y, Duan S-Y, Zhang Y-C (1985) A preliminary study of Late Triassic plants from Qinghe of Yanbian District, Sichuan Province. Acta Bot Sin 27:318–325

    Google Scholar 

  • Cirilli S (2010) Upper Triassic lowermost Jurassic palynology and palynostratigraphy: a review. Geol Soc Lond Spec Publ 334:285–314

    Article  Google Scholar 

  • Clemmensen LB (1976) Tidally influenced deltaic sequences from the Kap Stewart Formation (Rhaetic-Liassic, Scoresby Land, East Greenland). Bull Geol Soc Denmark 25:1–13

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard PL et al (2013) The ICS International Chronostratigraphic Chart. Episodes 36:199–204

    Google Scholar 

  • Colombi CE, Parrish JT (2008) Late Triassic environmental evolution in southwestern Pangea: plant taphonomy of the Ischigualasto Formation. Palaios 23:778–795

    Google Scholar 

  • Cornet B (1977a) The palynostratigraphy and age of the Newark Supergroup. Dissertation, Pennsylvania State University, University Park, PN, 505 p

    Google Scholar 

  • Cornet B (1977b) Preliminary investigations of two Triassic conifers from York County, Pennsylvania. In: Romans RC (ed) Geobotany. Plenum Publishing Corporation, New York, pp 165–172

    Chapter  Google Scholar 

  • Cornet B, Olsen PE (1985) A summary of the biostratigraphy of the Newark Supergroup of eastern North America. In: Weber R (ed) 3rd Congreso Latinoamericano de paleontologia. Simposio sobre floras del Triasico Tardio, su fitogeografia y paleoecologia. Instituto de Geologia Universidad Nacional Autonoma de Mexico, Memoria, pp 67–81

    Google Scholar 

  • Crane PR (1985) Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Missouri Bot Garden 72:716–793

    Article  Google Scholar 

  • Creber GT, Ash SR (2004) The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA 47:21–38

    Google Scholar 

  • Crisafulli A, Herbst R (2011) La flora triásica del grupo El Tranquilo, provincia de Santa Cruz (Patagonia): leños fósiles. Ameghiniana 48:275–288

    Article  Google Scholar 

  • Dal Corso J, Gianolla P, Newton RJ et al (2015) Carbon isotope records reveal synchronicity between carbon cycle perturbation and the ‘Carnian Pluvial Event’ in the Tethys realm (Late Triassic). Global Planet Change 127:79–90

    Article  Google Scholar 

  • Dalla Vecchia FM (2000) Macrovegetali terrestri nel Mesozoico Italiano: un’ulteriore evidenza di frequenti emersioni. Natura Nascosta 20:18–35

    Google Scholar 

  • Dalla Vecchia FM (2012) Il Friuli 215 milioni di anni fa: gli straordinari fossili di Preone, finestra su di un mondo scomparso. Comune di Preone

    Google Scholar 

  • Dalla Vecchia FM, Selden PA (2013) A Triassic spider from Italy. Acta Palaeont Pol 58:325–330

    Google Scholar 

  • Daugherty LH (1941) The Upper Triassic flora of Arizona. Carnegie Institution of Washington Publication 526:1–108

    Google Scholar 

  • de Jersey NJ (1975) Miospore zones in the lower Mesozoic of southeastern Queensland. In: Campbell KSW (ed) Gondwana geology. ANU Press, Canberra, pp 159–172

    Google Scholar 

  • de Jersey NJ, McKellar JL (2013) The palynology of the Triassic–Jurassic transition in southeastern Queensland, Australia, and correlation with New Zealand. Palynology 37:77–114

    Article  Google Scholar 

  • de Jersey NJ, Raine JI (1990) Triassic and earliest Jurassic miospores from the Murihiku Supergroup, New Zealand. New Zealand Geol Surv Paleont Bull 62:1–164

    Google Scholar 

  • de Saporta G (1873–1891) Paléontologie Française. Ser. 2, Vegetaux. Plantes jurassiques: 1–4, Paris

    Google Scholar 

  • Delevoryas T, Hope RC (1971) A new Triassic cycad and its phylletic implications. Postilla 150:1–21

    Google Scholar 

  • Delevoryas T, Hope RC (1975) Voltzia andrewsii, n. sp., an Upper Triassic seed cone from North Carolina, U.S.A. Rev Palaeobot Palynol 166:94–106

    Google Scholar 

  • Delevoryas T, Hope RC (1981) More evidence for conifer diversity in the Upper Triassic of North Carolina. Am J Bot 68:1003–1007

    Article  Google Scholar 

  • Delevoryas T, Hope RC (1987) Further observations on the Late Triassic conifers Compsostrobus neotericus and Voltzia andrewsii. Rev Palaeobot Palynol 51:59–64

    Article  Google Scholar 

  • Deng S, Lu Y, Fan R et al (2001) The Jurassic System of Northern Xinjiang, China. Univ Science and Technology of China Press, Hefei

    Google Scholar 

  • Depape G, Doubinger J (1963) Flores triasiques de France, Colloques sur le Trias de la France et les regions limitrophes. Mem Bureau Rech Geol Minéres 15:507–523

    Google Scholar 

  • Dettmann ME (1961) Lower Mesozoic megaspores from Tasmania and South Australia. Micropaleontology 7:71–86

    Article  Google Scholar 

  • Dobruskina IA (1980) Stratigraficheskoe polozhenie floronosnyh tolshh triasa Evrazii. (Stratigraphical position of Triassic plant-bearing beds of Eurasia). Trudy GIN AN SSSR, Moscow. (in Russian)

    Google Scholar 

  • Dobruskina IA (1988) The history of land plants in the northern hemisphere during the Triassic with special reference to the floras of Eurasia. Geol Paläont Mitt 15:1–12

    Google Scholar 

  • Dobruskina IA (1993) First data of the Seefeld conifer flora (Upper Triassic, Tyrol, Austria). In: Lucas SG, Morales M (eds) The Nonmarine Triassic, New Mexico Mus Nat Hist Sci Bull 3:113–115

    Google Scholar 

  • Dobruskina IA (1994) Triassic Floras of Eurasia. Österr Akad Wissensch, Schriftenreihe Erdwiss Kommiss 10:1–422

    Google Scholar 

  • Dobruskina IA (1995) Keuper (Triassic) Flora from Middle Asia (Madygen, Southern Fergana). New Mexico Museum of Natural History and Science, Albuquerque

    Google Scholar 

  • Dobruskina IA (1998) Lunz flora in the Austrian Alps: a standard for Carnian floras. Palaeogeogr Palaeoclimatol Palaeoecol 143:307–345

    Article  Google Scholar 

  • Dobruskina IA (2001) Upper Triassic Flora from “Raibl beds” of Julian Alps (Italy) in Karavanke Mts. (Slovenia). Geologija 44:263–290

    Article  Google Scholar 

  • Dolby JH, Balme BE (1976) Triassic palynology of the Carnarvon Basin, Western Australia. Rev Palaeobot Palynol 22:105–168

    Article  Google Scholar 

  • Dubiel RF, Parrish JT, Parrish JM et al (1991) The Pangean megamonsoon: evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios 6:347–370

    Article  Google Scholar 

  • Dunay RE, Fisher MJ (1979) Palynology of the Dockum Group (Upper Triassic), Texas, U.S.A. Rev Paleobot Palynol 28:61–92

    Article  Google Scholar 

  • Dunay RE, Traverse A (1971) Preliminary report on Triassic spores and pollen of the Dockum Group, Texas panhandle. Geosci Man 3:65–68

    Article  Google Scholar 

  • Dzik J, Sulej T (2007) A review of the early Late Triassic Krasiejów biota from Silesia, Poland. Palaeontol Pol 64:3–27

    Google Scholar 

  • Emmons E (1856) Geological Report of the midland counties of North Carolina. George P. Putnam & Company, New York and Henry D. Turner, Raleigh

    Google Scholar 

  • Emmons E (1857) American geology, Part 6. Sprague & Company, Albany

    Google Scholar 

  • Escapa IH, Taylor EL, Cuneo R et al (2011) Triassic floras of Antarctica: plant diversity and distribution in high paleolatitude communities. Palaios 26:522–544

    Article  Google Scholar 

  • Fakhr MS (1977) Contribution a l’étude de la flore Rhéto–Liasique de la formation de Shemshak de l'Elbourz (Iran). Mém Section Sci 5:1–178

    Google Scholar 

  • Farabee MJ, Taylor IL, Taylor TN (1990) Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Rev Palaeobot Palynol 65:257–265

    Article  Google Scholar 

  • Fefilova LA (2005) Upper Triassic palynoassemblages of Franz-Iosef land. In: Afonin SA, Tokarev PI (eds) Proceedings of XI All-Russian palynological conference “Palynology: Theory & applications” (27 september – 1 october 2005). PIN RAS, Moscow, pp 266–267. (in Russian)

    Google Scholar 

  • Feng Z, Su T, Yang JY et al (2014) Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology 42:407–410

    Article  Google Scholar 

  • Fielding CR, Frank TD, Isbell JL (2008) The late Paleozoic ice age—a review of current understanding and synthesis of global climate patterns. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America Special Paper 441:343–354

    Google Scholar 

  • Fisher MJ, Dunay RE (1984) Palynology of the Petrified Forest Member of the Chinle Formation (Upper Triassic), Arizona, U.S.A. Pollen et Spores 26:241–284

    Google Scholar 

  • Flint JCE, Gould RE (1975) A note on the fossil megafloras of the Nymboida and Red Cliff Coal Measures, southern Clarence-Moreton Basin, NSW. J Proc R Soc New South Wales 108:70–74

    Google Scholar 

  • Fontaine WM (1883) Contributions to the knowledge of the older Mesozoic flora of Virginia. U.S. Geol Surv Monogr 6:1–144

    Google Scholar 

  • Foster CB, Balme BE, Helby R (1994) First record of Tethyan palynomorphs from the Late Triassic of Antarctica. AGSO J Austral Geol Geophys 15:239–246

    Google Scholar 

  • Fraser NC, Grimaldi DA, Olsen PE, Axsmith B (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–619

    Article  Google Scholar 

  • Frenguelli J (1948) Estratigrafía y edad del Ilamado “Rético” en la Argentina. Soc Argent Estud Geogr 8:159–309

    Google Scholar 

  • Frentzen K (1922) Beiträge zur Kenntnis der fossilen Flora des südwestlichen Deutschland. II. Lettenkohlen- und Schilfsandsteinflora. Jb Mitt Oberrh Geol Ver 11:1–14

    Google Scholar 

  • Furin S, Preto N, Rigo M et al (2006) A high-precision U-Pb zircon age from the Triassic of Italy: implications for the Carnian rise of calcareous nannoplankton and dinosaurs. Geology 34:1009–1012

    Google Scholar 

  • Gallego OF, Gnaedinger S, Kirsten O et al (2003) Primera cita de trazas fósiles de insectos en hojas del Pérmico de Uruguay y Triásico de Chile. Univ Nacl Nordeste. Comun Cient Tecnol Biol B032:1–4

    Google Scholar 

  • Gallego OF, Gnaedinger S, Labandeira CC et al (2004) Permian and Triassic insect traces on fossil leaves from Uruguay and Chile. International Congress on Ichnology ICHNIA Abstract Book 1:35

    Google Scholar 

  • Genkina RZ (1964) Cycadocarpidium Nathorst and Fraxinopsis Wieland from the Aktash Formation sediments of the Upper Triassic of the southern coast of Issyk-Kul in Kirghizia. In: Biostratigraphy and palaeogeography of the Meso-Kainozoic of the oil and gaz promising areas of the south east of the USSR. Nauka, Moscow, pp 69–78. (in Russian)

    Google Scholar 

  • Ghavidel-Syooki M, Yousefi M, Shekarifard A, Mohnhoff D (2015) Palynostratigraphy, palaeogeography and source rock evaluation of the Nayband Formation at the Parvadeh area, Central Iran, Iran. J Sci Islamic Rep Iran 26:241–263

    Google Scholar 

  • Ghosh AK, Tewari R, Agnihotri D et al (2015) Gondwana formations of South Rewa and upper Narmada basins, Central India. Birbal Sahni Institute of Palaeobotany, Lucknow

    Google Scholar 

  • Ghosh AK, Kar R, Chatterjee R (2016) Reassessment of the macroflora of the Parsora Formation with remarks on the age connotation. J Palaeont Soc India 61:225–238

    Google Scholar 

  • Gianolla P, Ragazzi E, Roghi G (1998) Upper Triassic amber from the Dolomites (Northern Italy). A paleoclimatic indicator? Riv Ital Pal Strat 93:331–347

    Google Scholar 

  • Gluzbar EA (1973) Correlation of several lower Mesozoic geological sections of Europe based on palynological data. In: Chlonova AF (ed) Palynology of mesophyte. Proc Int Palynol Conf, 3rd, Nauka, Moscow, pp 44–48. (in Russian)

    Google Scholar 

  • Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2007) Evidencias de trazas de oviposición de insectos (Odonata) en hojas del Triásico de Chile. Ameghiniana 44:94R

    Google Scholar 

  • Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2008) Insect egg ovipositions on leaves from the Upper Triassic from northern Chile [Abstract 86]. In: Boardman DR (ed) Simpósio Brasileiro de Paleobotânica e Palinologia, Florianópolis: Asociación Latinoamericana de Paleobotánica y Palinología, Abstract book

    Google Scholar 

  • Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios 47:221–236

    Article  Google Scholar 

  • Golonka J (2007) Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeogr Palaeoclimatol Palaeoecol 244:297–307

    Article  Google Scholar 

  • Gomolitzky NP (1993) On the question of the age of the continental Aktash Formation of the Soguti (Issyk-Kul), previously considered to be Upper Triassic. The Nonmarine Triassic: Bulletin 3:151

    Google Scholar 

  • Gothan W (1910) Die fossilen Holzreste von Spitzbergen. Kung Sven Vetenskap Handl 45(8):565

    Google Scholar 

  • Gothan W (1914) Die unter-liassische (rhätische) Flora der Umgegend von Nürnberg. Abh Naturhist Ges Nürnberg 19:91–186

    Google Scholar 

  • Götz AE, Ruckwied K, Barbacka M (2011) Palaeoenvironment of the Late Triassic (Rhaetian) and Early Jurassic (Hettangian) Mecsek Coal Formation (south Hungary): implications from macro and microfloral assemblages. Palaeobiodiv Palaeoenviron 91:75–88

    Article  Google Scholar 

  • Gould RE (1975) The succession of Australian pre-Tertiary megafossil floras. Bot Rev 41:453–483

    Article  Google Scholar 

  • Grauvogel-Stamm L, Kelber K-P (1996) Plant-insect interactions and coevolution during the Triassic in Western Europe. Paleont Lombarda Nov Ser 5:5–23

    Google Scholar 

  • Greene A, Scoates JS, Weis D et al (2009a) Geochemistry of Triassic flood basalts from the Yukon (Canada) segment of the accreted Wrangellia oceanic plateau. Lithos 110:1–19

    Article  Google Scholar 

  • Greene A, Scoates JS, Weis D et al (2009b) Melting history and magmatic evolution of basalts and picrites from the accreted Wrangellia oceanic plateau, Vancouver Island. Can J Petrol 50:467–505

    Article  Google Scholar 

  • Haas J, Budai T, Raucsik B (2012) Climatic controls on sedimentary environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeogr Palaeoclimatatol Palaeoecol 353:31–44

    Article  Google Scholar 

  • Hallam A (1985) A review of Mesozoic climates. J Geol Soc 142:433–445

    Article  Google Scholar 

  • Halle TG (1908) Zur Kenntnis der Mesozoischen Equisetales Schwedens. Kung Sven Vetenskap Handl 43:1–40

    Google Scholar 

  • Harper CJ, Taylor TN, Krings M et al (2016) Structurally preserved fungi from Antarctica: diversity and interactions in late Palaeozoic and Mesozoic polar forest ecosystems. Antarct Sci 28:153–173

    Article  Google Scholar 

  • Harris TM (1926) The Rhaetic flora of Scoresby Sound East Greenland. Medd om Grønland 68:44–148

    Google Scholar 

  • Harris TM (1931a) The fossil flora of Scoresby Sound, East Greenland. 1. Cryptogams. Medd om Grønland 85(2):1–102

    Google Scholar 

  • Harris TM (1931b) Rhaetic floras. Biol Rev 6:133–162

    Article  Google Scholar 

  • Harris TM (1932a) The fossil flora of Scoresby Sound, East Greenland. 2. Description of seed plants Incertae sedis together with a discussion of certain cycadophyte cuticles. Medd om Grønland 85(3):1–112

    Google Scholar 

  • Harris TM (1932b) The fossil flora of Scoresby Sound East Greenland. 3. Caytoniales and Bennettitales. Medd om Grønland 85(5):1–333

    Google Scholar 

  • Harris TM (1935) The fossil flora of Scoresby Sound, East Greenland. 4. Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Medd om Grønland 112(1):1–176

    Google Scholar 

  • Harris TM (1937) The fossil flora of Scoresby Sound, East Greenland. Part 5: stratigraphic relations of the plant beds. Medd om Grønland 112:1–114

    Google Scholar 

  • Harris TM (1938) The British Rhaetic flora. British Museum

    Google Scholar 

  • Harris TM (1946) Liassic and Rhaetic plants collected in 1936–38 from East Greenland. Medd om Grønland 114(9):1–41

    Google Scholar 

  • Harris TM (1957) A Liasso–Rhaetic flora in South Wales. Proc R Soc 147B:289–308

    Article  Google Scholar 

  • Hartz N (1896) Planteforsteninger fra Cap Stewart i Øst-grønland. Medd om Grønland 19:215–247

    Google Scholar 

  • He Y (1980) Upper Triassic stratigraphy of Qinghai. J Strat 4(4):293–300. (in Chinese)

    Google Scholar 

  • Heer O (1868) Flora Fossilis Arctica 1. Die fossile Flora der Polarländer. Schulthess, Zurich

    Book  Google Scholar 

  • Helby R, Morgan R, Partridge AD (1987) A palynological zonation of the Australian Mesozoic. Assoc Austral Palaeont Mem 4:1–94

    Google Scholar 

  • Herbst R, Troncoso A (2000) Las Cycadophyta del Triásico de las Formaciones La Ternera y El Puquén (Chile). Ameghiniana 37:283–292

    Google Scholar 

  • Herendeen PS, Friis EM, Pedersen KR et al (2017) Palaeobotanical redux: revisiting the age of the angiosperms. Nat Plants 17015(8 p):3

    Google Scholar 

  • Herngreen GFW (2005) Triassic sporomorphs of NW Europe: taxonomy, morphology and ranges of marker species with remarks on botanical relationship and ecology and comparison with ranges in the Alpine Triassic. Kenniscentrum Biogeology (UU/TNO)—TNO report, NITG 04–176-C, Ned Inst Toegepaste Geowet TNO, Utrecht

    Google Scholar 

  • Hesselbo SP, Robinson SA, Surlyk F et al (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geology 30:251–254

    Article  Google Scholar 

  • Heunisch C (1999) Die Bedeutung der Palynologie für Biostratigraphie und Fazies in der Germanischen Trias. In: Hauschke N, Wilde V (eds) Trias, Eine ganz andere Welt, Mitteleuropa im frühen Erdmittelalter. Pfeil Verlag, München, pp 207–220

    Google Scholar 

  • Hill RS, Truswell EM, McLoughlin S et al (1999) The evolution of the Australian flora: fossil evidence. Flora of Australia, 2nd edn, vol 1 (Introduction), pp 251–320

    Google Scholar 

  • Hochuli PA, Feist-Burkhardt S (2013) Angiosperm-like pollen and Afropollis from the Middle Triassic (Anisian) of the Germanic Basin (Northern Switzerland). Front Plant Sci 4:344. https://doi.org/10.3389/fpls.2013.00344

    Article  Google Scholar 

  • Hochuli PA, Frank SM (2000) Palynology (dinoflagellate cysts, spore-pollen) and stratigraphy of the Lower Carnian Raibl Group in the Eastern Swiss Alps. Eclog Geol Helv 93:429–443

    Google Scholar 

  • Hochuli PA, Vigran JO (2010) Climate variations in the Boreal Triassic—Inferred from palynological records from Barents Sea. Palaeogeogr Palaeoclimatol Palaeoecol 290:20–42

    Article  Google Scholar 

  • Hope RC, Patterson OF III (1969) Triassic flora from the Deep River Basin, North Carolina. North Carolina Department of Conservation, Division of Mineral Resources, Special Publication 3:1–22

    Google Scholar 

  • Hornung T, Brandner R (2005) Biostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): local black shale events controlled by the regional tectonics, climatic change and plate tectonics. Facies 51:460–479

    Article  Google Scholar 

  • Hsü J, Chu C-N, Chen Y et al (1974) New genera and species of the Late Triassic plants from Yungjen, Yunnan I. Acta Bot Sin 16:266–278

    Google Scholar 

  • Hsü J, Zhu J, Chen Y, Hu Y et al (1979) Late Triassic Baoding flora of China. Science Press, Beijing. (in Chinese)

    Google Scholar 

  • Hu Y (1986) Phytogeography and distribution characters of the fossil plants from Xinjiang. In: Palaeontological Society of China (ed) Abstract of symposium on paleoecology, paleogeography and paleoclimate 14th annual conventions of Palaeontological Society of China. Nanjing, pp 23–24. (in Chinese)

    Google Scholar 

  • Hu Y, Gu D (1987) Plant fossils from the Xiaoquangou Group of the Xinjiang and its flora and age. Bot Res 2:207–234. (in Chinese with English abstract)

    Google Scholar 

  • Huang Z, Zhou H (1980) Fossil plants. In: Institute of Geology, Chinese Academy of Geological Sciences (ed) Mesozoic stratigraphy and palaeontology Palaeont of Shaanxi-Gansu-Ningxia Basin, vol 1. Geological Publishing House, Beijing, pp 43–198. (in Chinese)

    Google Scholar 

  • Ilyina NV, Egorov AY (2016) The Upper Triassic of northern Middle Siberia: stratigraphy and palynology. Polar Res 27(3):372–392. https://doi.org/10.1111/j.1751-8369.2008.00083.x

    Article  Google Scholar 

  • Jain RK, Delevoryas T (1967) A Middle Triassic flora from the Cacheuta Formation, Minas de Petroleo, Argentina. Palaeontology 10:564–589

    Google Scholar 

  • Jalfin G, Herbst R (1995) La flora triásica del Grupo El Tranquilo, provincia de Santa Cruz (Patagonia). Estrat. Ameghiniana 32:211–229

    Google Scholar 

  • Jameson I (1823) List of specimens of rocks brought from the eastern coast of Greenland. In: Scoresby W Jr (ed) Journal of a Voyage to the Northern Whale-fishery Including Researches and Discoveries on the Eastern Coast of West Greenland, Made in the Summer of 1822, in the Ship Baffin of Liverpool. Archibald Constable and Co., Edinburgh, pp 399–408

    Google Scholar 

  • Jell PA (2013) Tarong Basin. In: Jell PA (ed) Geology of Queensland. Geological Survey of Queensland, Brisbane, pp 396–397

    Google Scholar 

  • Jell PA, McKellar JL (2013) Callide Basin. In: Jell PA (ed) Geology of Queensland. Geological Survey of Queensland, Brisbane, p 398

    Google Scholar 

  • Jell PA, McKellar JL, Draper JJ (2013) Clarence-Moreton Basin. In: Jell PA (ed) Geology of Queensland. Geological Survey of Queensland, Brisbane, pp 542–546

    Google Scholar 

  • Johansson N (1922) Die rhätische Flora der Kohlengruben bei Stabbarp und Skromberga in Schonen. Kungl Svenska Vetenskap Handl 63:1–78

    Google Scholar 

  • Johnston RM (1886) General observations regarding the classification of the upper Palaeozoic and Mesozoic rocks of Tasmania, together with a full description of all the known Tasmanian coal plants, including a considerable number of new species. Pap Proc R Soc Tasmania 1885:343–387

    Google Scholar 

  • Johnston RM (1887) Fresh contribution to our knowledge of the plants of Mesozoic age in Tasmania. Pap Proc R Soc Tasmania 1886:160–185

    Google Scholar 

  • Johnston RM (1894) Further contributions to the history of the fossil flora of Tasmania. Part 1. Pap Proc R Soc Tasmania 1893:170–178

    Google Scholar 

  • Johnston RM (1896) Further contributions to the history of the fossil flora of Tasmania. Parts 1 and 2. Pap Proc R Soc Tasmania 95:57

    Google Scholar 

  • Jones OA, de Jersey NJ (1947) The flora of the Ipswich Coal Measures: morphology and succession. Pap Dep Geol Univ Queensl 3(3):1–88

    Google Scholar 

  • Kawasaki S (1925) Some older Mesozoic plants in Korea. Bull Geol Surv Korea 4:1–71

    Google Scholar 

  • Kawasaki S (1926) Addition to the older Mesozoic plants in Korea. Bull Geol Surv Korea 4:1–35

    Google Scholar 

  • Kawasaki S (1939) Second addition to the older Mesozoic plants in Korea. Bull Geol Surv Korea 4:1–69

    Google Scholar 

  • Kelber K-P (1990) Die versunkene Pflanzenwelt aus den Deltasümpfen Mainfrankens vor 230 Millionen Jahren. Beringeria 1:1–67

    Google Scholar 

  • Kelber K-P (1998) Phytostratigraphische Aspekte der Makrofloren des süddeutschen Keupers. Documenta naturae 117:89–115

    Google Scholar 

  • Kelber K-P (2000) Zur Pflanzenwelt des Keupers. In: Brunner K, Hinkelbein K (eds) 1:50000 Erläuterungen zum Blatt Heilbronn und Umgebung, pp 78–95

    Google Scholar 

  • Kelber K-P, Hansch W (1995) Keuperpflanzen. Die Enträtselung einer über 200 Millionen Jahre alten Flora. Museo 11:1–157

    Google Scholar 

  • Kelber K-P, Van Konijnenburg-van Cittert JHA (1997) A new Rhaetian Flora from the neighbourhood of Coburg (Germany): preliminary results. Medd Nederlands Instit Toegepaste Geowet 58:105–113

    Google Scholar 

  • Kent DV, Olsen PE (2000) Magnetic polarity stratigraphy and paleolatitude of the Triassic Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients. Earth Planet Sci Lett 179:311–324

    Article  Google Scholar 

  • Kidder DL, Worsley TR (2004) Causes and consequences of extreme Permo–Triassic warming to globally equable climate and relation to Permo–Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol 203:207–237

    Article  Google Scholar 

  • Kilpper K (1964) Über eine Rhät/Lias-Flora aus dem nördlichen Abfall des Alburs-Gebirges in Nord-Iran. Teil 1: Bryophyta und Pteridophyta. Palaeontographica 114B:1–78

    Google Scholar 

  • Kilpper K (1971) Über eine Rhät/Lias-Flora aus dem nördlichen Abfall des Alburs-Gebirges in Nord-Iran. Teil II: Ginkgophyten-Belaubungen. Palaeontographica B133:89–102

    Google Scholar 

  • Kim JH (1989) New fossil plants from the Nampo Group (Lower Mesozoic), Korea. Geosci J 5:173–180

    Article  Google Scholar 

  • Kim JH (1993) Fossil plants from the Lower Mesozoic Daedong Supergroup in the Korean Peninsula and their phytogeographical and paleogeographical significance in East and Southeast Asia. PhD thesis, Kyushu University, 315 p

    Google Scholar 

  • Kim JH, Kimura T (1988) Lobatannularia nampoensis (Kawasaki) Kawasaki from the Upper Triassic Baegunsa Formation, Nampo Group, Korea. Proc Jap Acad Ser B 64:221–224

    Article  Google Scholar 

  • Kim JH, Kim H-S, Lee B-J et al (2002) A new species of Leptostrobus from the Upper Triassic Amisan Formation of the Nampo Groups in Korea. J Korean Earth Sci Soc 23:30–37

    Google Scholar 

  • Kim K, Jeong EK, Kim JH et al (2005) Coniferous fossil woods from the Jogyeri Formation (Upper Triassic) of the Nampo-Group, Korea. IAWA J 26:253–265

    Article  Google Scholar 

  • Kimura T, Kim BK (1984) General review on the Daedong flora, Korea. Bull Tokyo Gakugei Univ 36:201–236

    Google Scholar 

  • Kimura T, Kim BK (1988) New taxa in the Late Triassic Daedong Flora, South Korea Part 1. Trans Proc Palaeont Soc Japan 152:603–624

    Google Scholar 

  • Kimura T, Kim BK (1989) New taxa in the Late Triassic Daedong Flora, South Korea. Part 2. Trans Proc Palaeont Soc Japan 155:141–158

    Google Scholar 

  • Kirchner M (1992) Untersuchungen an einigen Gymnospermen der fränkischen Rhät-Lias-Grenzschichten. Palaeontogr B 224:17–91

    Google Scholar 

  • Kirichkova AI (1962) Rod Cladophlebis v nizhnemezozojskih otlozhenijah Vostochnogo Urala (The genus Cladophlebis in the Lower Mesozoic sediments of the Eastern Urals). Trudy VNIGRI, Paleontol Sbornik 196:495–544. (in Russian)

    Google Scholar 

  • Kirichkova AI (1969) Materialy k izucheniju nizhnemezozojskoj flory Vostochnogo Urala (The materials for the study of the Lower Mesozoic flora of the Eastern Urals). Trudy VNIGRI, Paleontol Sbornik 268:270–349. (in Russian)

    Google Scholar 

  • Kirichkova AI (1990) Taksonomicheskaja revizija nekotoryh triasovyh rastenij Vostochnogo Urala (Taxonomic revision of some Triassic plants of the Eastern Urals). Bot Zhurn 75:1288–1294. (in Russian)

    Google Scholar 

  • Kirichkova AI (2011) Fitostratigrafija opornyh razrezov i problema korreljacii triasa Zapadnoj Sibiri (Western Siberian Triassic—phyto stratigraphy and correlation of key sequences). Neftegasovya geologya. Teorya i practika 6(3):1–40. (in Russian)

    Google Scholar 

  • Kirichkova AI, Esenina AV (2014) Stratotipicheskie i opornye razrezy srednego-nizy verhnego triasa Timano-Pechorskoj neftegazonosnoj provincii: litologija, facial’nye osobennosti (Stratotypical and key sections of the Lower Triassic of the Timan-Pechora province: lithology and facial features). Neftegasovya geologya. Teorya i practika 9(3):1–26. (in Russian)

    Google Scholar 

  • Klausen TG, Mørk A (2014) The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: outcrop analog to the subsurface Snadd Formation in the Barents Sea. Am Assoc Petrol Geol Bull 98:1911–1941

    Google Scholar 

  • Kochnev EA (1934) On the study of Jurassic coal-bearing deposits of Fergana. Materials on geology of coal deposits of Middle Asia, pp 5–6. (in Russian)

    Google Scholar 

  • Koken E (1913) Kenntnis der Schichten von Heiligenkreuz (Abteital, Südtirol). Abh k k geol Reichsanst 16:1–43

    Google Scholar 

  • Kon’no E (1972) A new Chiropteris and other fossil plants from the Heian System, Korea. Jap J Geol Geogr 16:105–114

    Google Scholar 

  • Köppen W, Wegener A (1924) Die Klimate der geologischen Vorzeit. Borntraeger, Berlin

    Google Scholar 

  • Kozur HW, Bachmann GH (2010) The Middle Carnian wet intermezzo of the Stuttgart formation (Schilfsandstein), Germanic basin. Palaeogeogr Palaeoclimatol Palaeoecol 290:107–119

    Article  Google Scholar 

  • Krasser F (1891) Über die fossile Flora der rhätischen Schichten Persiens. Sitzungsber math naturwiss Ges 100:413–432

    Google Scholar 

  • Krassilov VA, Shorokhova SA (1970) New Triassic plants from the Iman River (Primorye) Basin and some problems of the morphogenesis of the Mesozoic Pteridophyllum. In: Triassic invertebrates and plants of the East of the USSR, Vladivostok, pp 98–121. (in Russian)

    Google Scholar 

  • Krassilov VA, Shorokhova SA (1975) Triasovye geoflory i nekotorye obshhie principy paleofitogeografii (Triassic geofloras and some general principles of palaeophytogeography). Trudy DVNTS, biol pochv Inst AN SSSR 27:7–16. (in Russian)

    Google Scholar 

  • Kräusel R, Leschik G (1955) Die Keuperflora von Neuewelt bei Basel: Koniferen und andere Gymnospermen. Schweiz Paläont Abh 71:1–27

    Google Scholar 

  • Kräusel R, Schaarschmidt F (1966) Die Keuperflora von Neuewelt bei Basel–IV. Pterophyllen und Taeniopteriden. Schweiz Paläontol Abh 84:3–44

    Google Scholar 

  • Kryshtofovich AN (1912) Rastitel’nye ostatki mezozojskih uglenosnyh otlozhenij vostochnogo sklona Urala. (The plant remains of the Mesozoic coal-bearing sediments of the eastern slope of the Urals) Izv. geol. com, St.-Petersbourg. (in Russian)

    Google Scholar 

  • Kryshtofovich AN (1957) Palaeobotany. Gostoptechisdat. (In Russian)

    Google Scholar 

  • Kürschner WM, Herngreen GW (2010) Triassic palynology of central and northwestern Europe: A review of palynofloral diversity patterns and biostratigraphic subdivisions. In: Lucas SG (ed) The Triassic Timescale. Geological Society, London, Special Publications 334:263–283

    Google Scholar 

  • Kürschner WM, Bonis NR, Krystyn L (2007) Carbon–isotope stratigraphy and palynostratigraphy of the Triassic–Jurassic transition in the Tiefengraben section—Northern Calcareous Alps (Austria). Palaeogeogr Palaeoclimatol Palaeoecol 244:257–280

    Google Scholar 

  • Kürschner WM, Mander L, McElwain J (2014) A gymnosperm affinity for Ricciisporites tuberculatus Lundblad: implications for vegetation and environmental reconstructions in the Late Triassic. Palaeobiodiver Palaeoenvir 94:29–305

    Article  Google Scholar 

  • Kustatscher E, Van Konijnenburg-van Cittert JHA (2008) Considerations on Phylladelphia strigata Bronn from the historical Raibl flora (Carnian, lower Upper Triassic, Italy). Geo Alp 5:69–81

    Google Scholar 

  • Kustatscher E, Bizzarini F, Roghi G (2011) Plant fossils in the Cassian Beds and other Carnian formations of the Southern Alps (Italy). Geo Alp 8:146–155

    Google Scholar 

  • Kustatscher E, Daxer C, Krainer K (2017) Plant fossils from the Norian Seefeld Formation (Late Triassic) of the Northern Calcareous Alps (Tyrol, Austria). N Jb Geol Pal Abh 283(3):335–346

    Google Scholar 

  • Labandeira CC (2006) The four phases of plant-arthropod associations in deep time. Geologica Acta 4:409–438

    Google Scholar 

  • Labandeira CC, Anderson JM (2005) Insect leaf-mining in Late Triassic gymnospermous floras from the Molteno Formation of South Africa. Geol Soc Am Abstr Prog 37:15

    Google Scholar 

  • Lanteaume M (1950) Dadoxylon (Araucarioxylon) boureaui n.sp. Bois silicifé mésozoïque de Nouvelle Calédonie. Bull Soc Géol France, 5ème série 20:33–38

    Google Scholar 

  • Larsson LM (2009) Palynostratigraphy of the Triassic–Jurassic transition in southern Sweden. GFF 131:147–163

    Article  Google Scholar 

  • Launis A, Pott C, Mørk A (2014) A glimpse into the Carnian: Late Triassic plant fossils from Hopen, Svalbard. Norw Petrol Direct Bull 11:129–136

    Google Scholar 

  • Leuthardt F (1903) Die Keuperflora von Neuewelt bei Basel—I. Teil Phanerogamen. Abh Schweiz Paläontol Ges 30:1–23

    Google Scholar 

  • Li P (1964) Fossil plants from the Hsuchiaho Series of Kwangyuan, northern Szechuan. Mem Inst Geol Palaeont, Acad Sinica 3:101–178. (in Chinese with English summary)

    Google Scholar 

  • Li P, Cao Z, Wu S (1976) Mesozoic plants of Yunnan. In: Nanjing Institute of Geology and Palaeontology, Academia Sinica (eds) Mesozoic fossils of Yunnan, vol 1. Science Press, Beijing, pp 87–160. (in Chinese)

    Google Scholar 

  • Li J, Zhen B, Sun G (1991) First discovery of Late Triassic florule in Wusitentag-Karamiran area of Kulun Mountain of Xinjiang. Xinjiang Geol 9:50–58. in Chinese with, English abstract

    Google Scholar 

  • Linck O (1949) Fossile Bohrgänge (Anobichnium simile n. g. n sp.) an einem Keuperholz. N Jb Min Geol Paläont 90B:180–185

    Google Scholar 

  • Lindström S (2016) Palynofloral patterns of terrestrial ecosystem change during the end—Triassic event—a review. Geol Mag 153:223–251

    Article  Google Scholar 

  • Lindström S, Erlström M (2006) The late Rhaetian transgression in southern Sweden: Regional (and global) recognition and relation to the Triassic–Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 241:339–372

    Article  Google Scholar 

  • Lindström S, van de Schootbrugge B, Hansen KH et al (2017) A new correlation of Triassic–Jurassic boundary successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: a time-line for the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 478:80–102. https://doi.org/10.1016/j.palaeo.2016.12.025

    Article  Google Scholar 

  • Litwin R, Ash SR (1991) First early Mesozoic amber in the western hemisphere. Geology 19:273–276

    Article  Google Scholar 

  • Litwin RJ, Ash SR (1993) Revision of the biostratigraphy of the Chatham Group (Upper Triassic), Deep River basin, North Carolina, USA. Rev Palaeobot Palynol 77:75–95

    Article  Google Scholar 

  • Litwin RJ, Traverse A, Ash SR (1991) Preliminary palynological zonation of the Chinle Formation, southwestern U.S.A., and its correlation with the Newark Supergroup (eastern U.S.A.) Rev Palaeobot Palynol 68:269–287

    Article  Google Scholar 

  • Loope DB, Steiner MB, Rowe CM et al (2004) Tropical westerlies over Pangaean sand seas. Sedimentology 51:315–322

    Article  Google Scholar 

  • Lord GS, Solvi KH, Ask M, Mork A, Hounslow MW, Paterson NW (2014) The Hopen Member: a new member of the Triassic De Geerdalen Formation, Svalbard. Norweg Petrol Direct Bull 11:81–96

    Google Scholar 

  • Loubiere A (1936) Sur la structure d’un bois silicifié de Nouvelle Calédonie. Bull Bot Soc France 82:620–624

    Article  Google Scholar 

  • Lucas SG, Minter NJ, Hunt AP (2010) Re-evaluation of alleged beesevaluation of alleged0–624turic of Arizona. Palaeogeogr Palaeoclimatol Palaeoecol 286:194–201

    Article  Google Scholar 

  • Lucas SG, Tanner LH, Kozur HW et al (2012) The Late Triassic timescale: age and correlation of the Carnian–Norian boundary. Earth-Sci Rev 114:1–18

    Article  Google Scholar 

  • Lund JJ (1977) Rhaetic to Lower Liassic palynology of the onshore south-eastern North Sea Basin. Geol Surv Denmark II Ser 109:1–129

    Google Scholar 

  • Lundblad AB (1949) De geologiska resultaten från borrningarna vid Höllviken Del 4: On the presence of Lepidopteris in cores from “Hollviken II”. Sver Geol Undersök Ser C 506(43):1–17

    Google Scholar 

  • Lundblad AB (1950) Studies in the Rhaeto–Liassic floras of Sweden. I. Pteridophyta, Pteridospermae and Cycadophyta from the mining district of NW Scania. Kungl Svenska Vetenskap Handl, Fjärde Ser 1:1–82

    Google Scholar 

  • Lundblad AB (1959a) Studies in the Rhaeto–Liassic floras of Sweden. II:1. Ginkgophyta from the mining district of NW Scania. Kungl Svenska Vetenskap Handl, Fjärde Ser 6:1–38

    Google Scholar 

  • Lundblad AB (1959b) Rhaeto–Liassic floras and their bearing on the stratigraphy of Triassic–Jurassic rocks. Stockholm. Contrib Geol 3:83–102

    Google Scholar 

  • MacClure W (1817) Observations on the geology of the United States of America, to accompany geologic map. Am Phil Soc Trans 6:411–428

    Article  Google Scholar 

  • Maheshwari HK, Kumaran KPN, Bose MN (1978) The age of the Tiki Formation: with remarks on the miofloral succession in the Triassic Gondwanas of India. Palaeobotanist 25:254–265

    Google Scholar 

  • Malyavkina VS (1964) Spores and pollen of Triassic deposits of West-Siberian lowland. Nedra, Leningrad. (in Russian)

    Google Scholar 

  • Mander L, Kürschner WM, McElwain JC (2013) Palynostratigraphy and vegetation history of the Triassic–Jurassic transition in East Greenland. J Geol Soc Lond 170:37–46

    Article  Google Scholar 

  • Markevich PV, Zakharov VD (eds) (2004) Triassic and Jurassic of the Sikhote-Alin: Book 1. Terrigenous assemlage. Dal’nauka, Vladivostok. (in Russian)

    Google Scholar 

  • Martínez RN, Sereno PC, Alcober OA et al (2011) A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea. Science 331:206–210

    Article  Google Scholar 

  • Marwick J (1953) Divisions and faunas of the Hokmui System (Triassic and Jurassic). Paleont Bull N Z Geol Surv 21:1–114

    Google Scholar 

  • Mazza M, Furin S, Spötl C et al (2010) Generic turnovers of Carnian/Norian conodonts: climatic control or competition? Palaeogeogr Palaeoclimatol Palaeoecol 290:120–137

    Article  Google Scholar 

  • McElwain JC, Popa ME, Hesselbo SP et al (2007) Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33:547–573

    Article  Google Scholar 

  • McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324:1554–1556

    Article  Google Scholar 

  • McLoughlin S (2001) The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism. Aust J Bot 49:271–300

    Article  Google Scholar 

  • McLoughlin S (2011) Glossopteris: insights into the architecture and relationships of an iconic Permian Gondwanan plant. J Bot Soc Bengal 65:93–106

    Google Scholar 

  • McLoughlin S (2013) Claystone textbooks. Aust Age Dinosaurs Mag 10:40–49

    Google Scholar 

  • McLoughlin S, Bomfleur B (2016) Biotic interactions in an exceptionally well preserved osmundaceous fern rhizome from the Early Jurassic of Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 464:86–96

    Article  Google Scholar 

  • McLoughlin S, Drinnan AN (1997) Fluvial sedimentology and revised stratigraphy of the Triassic Flagstone Bench Formation, northern Prince Charles Mountains, East Antarctica. Geol Mag 134:781–806

    Article  Google Scholar 

  • McLoughlin S, Hill RS (1996) The succession of Western Australian Phanerozoic floras. In: Hopper SD, Chappill JA, Harvey MS, George AS (eds) Gondwanan heritage: past, present and future of the Western Australian Biota (Proceedings of the Conference on Systematics, Evolution and Conservation of the Western Australian Biota, Perth, 1993). Surrey Beatty, Sydney, pp 61–80

    Google Scholar 

  • McLoughlin S, Pott C (2009) The Jurassic flora of Western Australia. GFF 131:113–136

    Article  Google Scholar 

  • McLoughlin S, Strullu-Derrien C (2016) Biota and palaeoenvironment of a high middle-latitude Late Triassic peat-forming ecosystem from Hopen, Svalbard Archipelago. In: Kear BP, Lindgren J, Hurum JH et al (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geol Soc London Spec Pub 434:87–112

    Google Scholar 

  • McLoughlin S, Lindström S, Drinnan AN (1997) Gondwanan floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica. Antarct Sci 9:281–298

    Article  Google Scholar 

  • McLoughlin S, Jansson IM, Vajda V (2014) Megaspore and microfossil assemblages reveal diverse herbaceous lycophytes in the Australian Early Jurassic Flora. Grana 53:22–53

    Article  Google Scholar 

  • McLoughlin S, Martin SK, Beattie R (2015) The record of Australian Jurassic plant-arthropod interactions. Gondwana Res 27:940–959

    Article  Google Scholar 

  • Meller B, Ponomarenko AG, Vasilenko DV et al (2011) First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54:97–110

    Article  Google Scholar 

  • Meng F (1983) New materials of fossil plants from Jiuligang Formation of Jingmen-Dangyang Basin, Western Hubei. Prof Pap Strat Palaeont 10:223–238

    Google Scholar 

  • Meng F (1990) Some pteridosperms from Western Hubei in Late Triassic and their evolutionary tendency. Acta Bot Sin 32:317–322

    Google Scholar 

  • Meng F (1992) New genus and species of fossil plants from Jiuligang Formation in Western Hubei. Acta Palaeont Sin 31:703–707

    Google Scholar 

  • Meyen SV (1970) Permian floras. Trans Geol Inst USSR Acad Sci N208:111–157. (in Russian)

    Google Scholar 

  • Meyen SV (1987) Fundamentals of palaeobotany. Chapman and Hall, London. 432 pp

    Book  Google Scholar 

  • Mi J (1977) Late Triassic plants and strata from Hunjiang of Jilin Province. J Changchun Coll Geo1 3:2–12. (in Chinese)

    Google Scholar 

  • Mickle JE, Gensel P, Wheeler E (2000) 17th MPC Field Trip Guidebook: Boren Clay Products, Gulf, North Carolina, May 7, 2000. Department of Biology, UNC-Chapel Hill, 20 p. (Unpublished)

    Google Scholar 

  • Moisan P, Voigt S (2013) Lycophytes from the Madygen Lagerstätte (Middle to Late Triassic, Kyrgystan, Central Asia). Rev Palaeobot Palynol 192:42–64

    Article  Google Scholar 

  • Moisan P, Voigt S, Pott C et al (2011) Cycadalean and bennettitalean foliage from the Triassic Madygen Lagerstätte (SW Kyrgyzstan, Central Asia). Rev Palaeobot Palynol 164:93–108

    Article  Google Scholar 

  • Moisan P, Labandeira CC, Matushkina NA, Wappler T, Voigt S, Kerp H (2012a) Lycopsid–arthropod associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr Palaeoclimatol Palaeoecol 344–345:6–15

    Article  Google Scholar 

  • Moisan P, Voigt S, Schneider JW et al (2012b) New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan). Rev Palaeobot Palynol 187:29–37

    Article  Google Scholar 

  • Morel EM, Artabe AE, Spalletti LA (2003) Triassic floras of Argentina: biostratigraphy, floristic events and comparison with other areas of Gondwana. Alcheringa 27:231–243

    Article  Google Scholar 

  • Morel EM, Artabe AE, Martínez LCA et al (2011) Megafloras Mesozoicas. Relatorio del XVIII Congreso Geológico Argentino, Neuquén, pp 573–578

    Google Scholar 

  • Mueller S, Hounslow MW, Kürschner WM (2016a) Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). J Geol Soc 173:186–202. https://doi.org/10.1144/jgs2015-028

    Article  Google Scholar 

  • Mueller S, Krystyn L, Kürschner WM (2016b) Climate variability during the Carnian Pluvial Phase: a quantitative palynological study of the Carnian sedimentary succession at Lunz am See, Northern Calcareous Alps, Austria. Palaeogeogr Palaeoclimatol Palaeoecol 441:198–211

    Article  Google Scholar 

  • Mukherjee D, Ray S, Chandra S et al (2012) Upper Gondwana succession of the Rewa Basin, India: understanding the interrelationship of lithologic and stratigraphic variables. J Geol Soc India 79:563–575

    Article  Google Scholar 

  • Mutti M, Weissert H (1995) Triassic Monsoonal Climate and its signature in Ladinian—Carnian carbonate platforms (Southern Alps, Italy). J Sed Res B65:357–367

    Google Scholar 

  • Nathorst AG (1876a) Anmärkningar om den fossilen floran vid Bjuf i Skåne. Öfversigt af Kongl Vetenskaps-Akad Förh 1:29–41

    Google Scholar 

  • Nathorst AG (1876b) Bidrag till Sveriges fossila flora. Växter från rätiska formationen vid Pålsjö i Skåne. Kongl Vetenskaps-Akad Förh 14:1–82

    Google Scholar 

  • Nathorst AG (1878a) Om floran i Skånes kolförande bildningar. Sver Geol Undersök Ser C 27:1–52

    Google Scholar 

  • Nathorst AG (1878b) Beiträge zur fossilen Flora Schwedens. Über einige rhätische Pflanzen von Pålsjö in Schonen. Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Nathorst AG (1878c) Bidrag till Sveriges fossila flora. II. Floran vid Höganäs och Helsingborg. Kungl Svenska Vetenskapsakad Handl 16(7):1–53

    Google Scholar 

  • Nathorst AG (1879) Om floran i Skånes kolförande bildningar. Sver Geol Undersök Ser C 33:53–82

    Google Scholar 

  • Nathorst AG (1880) Om de växtförande lagren i Skånes kolförande bildningar och deras plats i Lagerföljden. Geol Fören Stockholm Förhand 62:274–284

    Google Scholar 

  • Nathorst AG (1886) Om floran i Skånes kolförande bildningar. Sver Geol Undersök Ser C 85:83–131

    Google Scholar 

  • Nathorst AG (1888) Nya anmärkningar om Williamsonia. Kongl Vetenskaps-Akad Förh 6:359–365

    Google Scholar 

  • Nathorst AG (1902) Beiträge zur Kenntnis einiger mesozoischen Cycadophyten. Kungl Svenska Vetenskapsakad Handl 36:1–28

    Google Scholar 

  • Nathorst AG (1909a) Über die Gattung Nilssonia Brongn. mit besonderer Berücksichtigung schwedischer Arten. Kungl Svenska Vetenskapsakad Handl 43:3–37

    Google Scholar 

  • Nathorst AG (1909b) Paläobotanische Mitteilungen 8. Über Williamsonia, Wielandia, Cycadocephalus und Weltrichia. Kungl Svenska Vetenskapsakad Handl 45:3–37

    Google Scholar 

  • Nathorst AG (1913) How are the names Williamsonia and Wielandiella to be used? A question of nomenclature. Geol Fören Stockholm Förhand 35:361–366

    Article  Google Scholar 

  • Nielsen SN (2005) The Triassic Santa Juana Formation at the lower Biobío River, south central Chile. J South Am Earth Sci 19:547–562

    Article  Google Scholar 

  • Nilsson S (1820) Om försteningar och aftryck af tropiska trädslag, blad, ormbunkar och rörväxter m. m. samt trädkol funna i ett sandstenslager i Skåne. Kungl Svenska Vetenskapsakad Handl Ser 2:278–285

    Google Scholar 

  • Nilsson T (1946) A new find of Gerrothorax rhaeticus Nilsson, a plagiosaurid from the Rhaetic of Scania. Lunds Universitets Årskrift n.f., avd. 2, 42(1–10):1–42

    Google Scholar 

  • Nordt L, Atchley S, Dworkin S (2015) Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present American Southwest. Geol Soc Am Bull 127:1798–1815

    Article  Google Scholar 

  • Odintsova MM (1977) Palynology of the Early Mesozoic of the Siberian platform. Nauka Sib otd AN SSSR, Novosibirsk. (in Russian)

    Google Scholar 

  • Ogg JG, Ogg G, Gradstein FM (2008) The concise Geologic Time Scale 2008. Cambridge University Press, Cambridge

    Google Scholar 

  • Ôishi S (1930) Notes on some fossil plants from the. Upper Triassic beds of Nariwa, Provo Bitchu. Japan. Inst Geol Palaeont Tôhoku Imp Uni Sendai, pp 49–58

    Google Scholar 

  • Ôishi S (1931) Rhaetic plants from Province Nagato (Yamaguchi Prefecture), Japan. J Faculty of Science, Hokkaido Imperial University, ser 4 Geol Min 2(1):51–68

    Google Scholar 

  • Ôishi S (1932a) Rhaetic Plants from Province Nagato (Yamaguchi Prefecture). J Fac Sci Hokkaido Imp Univ Ser 4 Geol Min 2:51–68

    Google Scholar 

  • Ôishi S (1932b) The Rhaetic plants from the Nariwa Distric, Prov. Bitchû (Okayama Prefecture), Japan. J Fac Sci Hokkaido Imp Univ Ser 4 Geol Min 1:271–310

    Google Scholar 

  • Ôishi S (1940) The Mesozoic Flora of Japan. J Fac Sci Hokkaido Imp Univ Ser 4 5:123–480

    Google Scholar 

  • Ôishi S, Takahashi E (1936) Rhaetic plants from Nagato (a Supplement). J Fac Sci Hokkaido Imp Univ Ser 4 4:113–133

    Google Scholar 

  • Olsen PE, Kent DV (2000) High resolution early Mesozoic Pangean climatic transect in lacustrine environments. Zentralbl Geol Paläont 11–12:1475–1496

    Google Scholar 

  • Orłowska-Zwolińska T (1984) Palynostratigraphy of the Buntsandstein in sections of western Poland. Acta Pal Pol 29:161–194

    Google Scholar 

  • P’an CH (1936) Older Mesozoic plants from North Shensi. Palaeont Sinica 4(2):1–49

    Google Scholar 

  • Pacyna G (2014) Plant remains from the Polish Triassic. Present knowledge and future prospects. Acta Palaeobot 54:3–33

    Article  Google Scholar 

  • Pal PK (1984) Triassic plant megafossils from the Tiki Formation, South Rewa Gondwana Basin, India. Palaeobotanist 32:235–309

    Google Scholar 

  • Pal PK (1985) Palaeobotany and stratigraphy of the Dhaurai Hill beds, South Rewa Gondwana Basin, India. Geophytology 15:224–225

    Google Scholar 

  • Parrish JT (1993) Climate of the supercontinent Pangea. J Geol 101:215–233

    Article  Google Scholar 

  • Parrish JT, Peterson F (1988) Wind directions predicted from global circulation models and wind directions determined from eolian sandstones of the western United States: a comparison. Sed Geol 56:261–282

    Article  Google Scholar 

  • Paterson NW, Mangerud G (2015) Late Triassic (Carnian – Rhaetian) palynology of Hopen, Svalbard. Rev Palaeobot Palynol 220:98–119

    Article  Google Scholar 

  • Pattemore GA (2016a) The structure of umkomasiacean fructifications from the Triassic of Queensland. Acta Palaeobot 56:17–40

    Google Scholar 

  • Pattemore GA (2016b) Megaflora of the Australian Triassic–Jurassic: a taxonomic revision. Acta Palaeobot 56:121–182

    Google Scholar 

  • Pedersen KR (1976) Fossil floras of Greenland. In: Escher A, Watt WS (eds) Geology of Greenland. Geological Survey of Greenland, Copenhagen, pp 519–535

    Google Scholar 

  • Pedersen KR, Lund JJ (1980) Palynology of the plant-bearing Rhaetian to Hetangian Kap Stewart Formation, Scoresby Sund, East Greenland. Rev Palaeobot Palynol 31:1–69

    Article  Google Scholar 

  • Peng J, Li J, Li W, Slater SM, Zhu H, Vajda V (2017a) Triassic to Early Jurassic vegetation change of the Tarim Basin, Xinjiang, China, based on palynology. Palaeobiol Palaeoenviron XX: xxx–xxx DOI 10.1007/s12549-017-0279-y

    Google Scholar 

  • Peng J, Li J, Slater SM, Li W, Zhu H, Vajda V (2017b) Middle to Late Triassic palynofloras from southern Xizang (Tibet), China and their bearing on biostratigraphy and palynofloral provinces. Alcheringa XX: xxx–xxx

    Google Scholar 

  • Peterffy O, Calner M, Vajda V (2016) Early Jurassic cyanobacterial mats—a potential response to reduced biotic activity in the aftermath of the Triassic mass extinction event. Palaeogeogr Palaeoclimatol Palaeoecol 464:76–85

    Article  Google Scholar 

  • Petti FM, Bernardi M, Kustatscher E et al (2013) Diversity of continental tetrapods and plants in the Triassic of the Southern Alps: ichnological, paleozoological and paleobotanical evidence. New Mex Mus Nat Hist Sci Bull 61:458–484

    Google Scholar 

  • Pichler A (1868) Beiträge zur Geognosie Tirols. XI. Fossiles Harz. Jb k k Geol Reichsanst 18:45–52

    Google Scholar 

  • Pott C (2007) Cuticular analysis of gymnosperm foliage from the Carnian (Upper Triassic) of Lunz, Lower Austria. PhD thesis, University Münster, 274 p

    Google Scholar 

  • Pott C (2014a) A revision of Wielandiella angustifolia: a shrub-sized bennettite from the Rhaetian–Hettangian of Scania, Sweden, and Jameson Land, Greenland. Int J Plant Sci 175:467–499

    Article  Google Scholar 

  • Pott C (2014b) The Upper Triassic flora of Svalbard. Acta Pal Pol 59:709–740

    Google Scholar 

  • Pott C (2016) Westersheimia pramelreuthensis from the Carnian (Upper Triassic) of Lunz, Austria: more evidence for a unitegmic seed coat in early Bennettitales. Int J Plant Sci 177:771–791

    Article  Google Scholar 

  • Pott C, Axsmith BJ (2015) Williamsonia carolinensis sp. nov. and associated Eoginkgoites foliage from the Upper Triassic Pekin Formation, North Carolina: implications for early evolution in the Williamsoniaceae (Bennettitales). Int J Plant Sci 176:174–185

    Article  Google Scholar 

  • Pott C, Bouchal JM, Yousif R, Bomfleur B (In press) Ferns and fern allies from the Carnian (Upper Triassic) flora of Lunz am See, Lower Austria: A melting pot of Mesozoic fern vegetation. Palaeontographica B XX:xxx–xxx

    Google Scholar 

  • Pott C, Krings M (2010) Gymnosperm foliage from the Upper Triassic of Lunz, Lower Austria: an annotated checklist and identification key. Geo Alp 7:19–38

    Google Scholar 

  • Pott C, Launis A (2015) Taeniopteris novomundensis sp. nov.—“cycadophyte” foliage from the Carnian of Switzerland and Svalbard reconsidered: how to use Taeniopteris? N Jb Geol Pal Abh 275:19–31

    Article  Google Scholar 

  • Pott C, McLoughlin S (2009) Bennettitalean foliage in the Rhaetian–Bajocian (latest Triassic–Middle Jurassic) floras of Scania, southern Sweden. Rev Palaeobot Palynol 158:117–166

    Article  Google Scholar 

  • Pott C, McLoughlin S (2011) The Rhaetian Flora of Rögla, Northern Scania, Sweden. Palaeontology 54:1025–1051

    Article  Google Scholar 

  • Pott C, Krings M, Kerp H (2007a) The first record of Nilssoniopteris (Gymnospermophyta, Bennettitales) from the Carnian (Upper Triassic) of Lunz, Lower Austria. Palaeontol Palaeont 50:1299–1318

    Article  Google Scholar 

  • Pott C, Van Konijnenburg-van Cittert JHA, Kerp H et al (2007b) Revision of the Pterophyllum species (Cycadophytina: Bennettitales) in the Carnian (Late Triassic) flora from Lunz, Lower Austria. Rev Palaeobot Palynol 147:3–27

    Article  Google Scholar 

  • Pott C, Kerp H, Krings M (2007c) Morphology and epidermal anatomy of Nilssonia (cycadalean foliage) from the Upper Triassic of Lunz (Lower Austria). Rev Palaeobot Palynol 143:197–217

    Article  Google Scholar 

  • Pott C, Kerp H, Krings M (2007d) Pseudoctenis cornelii nov. spec. (cycadalean foliage) from the Carnian (Upper Triassic) of Lunz, Lower Austria. Ann Naturhist Mus Wien 109A:1–17

    Google Scholar 

  • Pott C, Kerp H, Krings M (2008a) Sphenophytes from the Carnian (Upper Triassic) of Lunz am See, Lower Austria. Jahrb Geol Bundesanstalt Wien 148:183–199

    Google Scholar 

  • Pott C, Krings M, Kerp H (2008b) The Carnian (Late Triassic) flora from Lunz in Lower Austria: palaeoecological considerations. Palaeoworld 17:172–182

    Article  Google Scholar 

  • Pott C, Labandeira CC, Krings M, Kerp H (2008c) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Austria. J Paleont 82:778–789

    Article  Google Scholar 

  • Pott C, Schmeißner S, Dütsch G et al (2016a) Bennettitales in the Rhaetian flora of Wüstenwelsberg, Bavaria, Germany. Rev Palaeobot Palynol 232:98–118

    Article  Google Scholar 

  • Pott C, Van der Burgh J, Van Konijnenburg-van Cittert JHA (2016b) New ginkgophytes from the Upper Triassic–Lower Cretaceous of Spitsbergen and Edgeøya (Svalbard, Arctic Norway): the history of Ginkgoales on Svalbard. Int J Plant Sci 177:175–197

    Article  Google Scholar 

  • Pott C, Fischer T, Aschauer B (2017) Lunzia austriaca—a bennettitalean microsporangiate structure with Cycadopites-like in situ pollen from the Carnian (Upper Triassic) of Lunz, Austria. Grana 56:321–338

    Google Scholar 

  • Preto N, Hinnov LA (2003) Unravelling the origin of shallow-water cyclothems in the Upper Triassic Dürrenstein Fm. (Dolomites, Italy). J Sed Res 73:774–789

    Article  Google Scholar 

  • Preto N, Kustatscher E, Wignall PB (2010) Triassic climates—state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 291:1–10

    Article  Google Scholar 

  • Price PL (1997) Permian to Jurassic palynostratigraphic nomenclature of the Bowen and Surat Basins. In: Green PM (ed) The Surat and Bowen Basins, South-east Queensland. Queensland Minerals and Energy Review Series, Queensland Department of Mines and Energy, Brisbane, pp 137–178

    Google Scholar 

  • Prynada VD (1934) Ancient Mesozoic plants of Pamir. Tadzhik integrated expedition of 1932. Reports of the expedition. Geology of Pamir. Union Expeditional Committee GGGGU, Acad Sci USSR, Leningrad Department 9:1–100. (in Russian)

    Google Scholar 

  • Qu LF, Yang JD, Bai YH, Zhang ZL (1983) A preliminary discussion on the characteristics and stratigraphic division of Triassic spores and pollen in China. Bull Chin Acad Geol Sci 5:81–94. (in Chinese with English abstract)

    Google Scholar 

  • Reichgelt T, Parker WG, Martz JW et al (2013) The palynology of the Sonsela Member (Late Triassic, Norian) at Petrified Forest National Park, Arizona, USA. Rev Palaeobot Palynol 189:75–95

    Google Scholar 

  • Retallack GJ (1977) Reconstructing Triassic vegetation of eastern Australasia: a new approach for the biostratigraphy of Gondwanaland. Alcheringa 1:247–278

    Article  Google Scholar 

  • Retallack GJ (1985) Triassic fossil plant fragments from shallow marine rocks of the Murihiku Supergroup, New Zealand. J Roy Soc New Zealand 15:1–26

    Article  Google Scholar 

  • Retallack GJ (1987) Triassic vegetation and geography of the New Zealand portion of the Gondwana supercontinent. In: Elliot DH, Collinson JW, McKenzie GD et al (eds) Gondwana Six: stratigraphy and paleontology. Amer Geophys Union, Geophys Monograph 41:29–39

    Google Scholar 

  • Retallack GJ (1999) Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. GSA Bull 111:52–70

    Google Scholar 

  • Reymanówna M (1963) The Jurassic flora of Grojec near Cracow in Poland. Part I. Acta Palaeobot 4:9–48

    Google Scholar 

  • Reymanówna M, Barbacka M (1981) Lepidopteris ottonis (Goeppert) Schimper z Wyżyny Śląsko-Krakowskiej i obrzeżenia Gór Świętokrzyskich (Lepidopteris ottonis (Goepp.) Schimp. from Śląsko-Krakowska Highland and Holy Cross Mountains). In: Fauna i flora triasu obrzeżenia Gór Świętokrzyskich i Wyżyny Śląsko-Krakowskiej. Materiały V Krajowej Konferencji Paleontologicznej, Kielce-Sosnowiec, pp 79–84. (in Polish)

    Google Scholar 

  • Robinson PL (1973) Paleoclimatology and continental drift. In: Tarling DH, Runcorn SK (eds) Implications of continental drift to the earth sciences. Academic Press, London, pp 449–476

    Google Scholar 

  • Rogers RR, Swisher CC, Sereno PC et al (1993) The Ischigualasto tetrapod assemblage (Late Triassic, Argentina) and 40Ar/39Ar dating of dinosaur origins. Science 260:794–797

    Article  Google Scholar 

  • Roghi G (2004) Palynological investigations in the Carnian of the Cave del Predil area (Julian Alps, NE Italy). Rev Palaeobot Palyn 132:1–35

    Article  Google Scholar 

  • Roghi G, Coppellotti O, Ragazzi E (2005) Fossil microorganisms in Triassic amber of the Dolomites. Rend Soc Paleont Ital 2:209–217

    Google Scholar 

  • Roghi G, Kustatscher E, Van Konijnenburg-van Cittert JHA (2006a) Late Triassic plants from Julian Alps (Italy). Boll Soc Paleont Ital 45:133–140

    Google Scholar 

  • Roghi G, Ragazzi E, Gianolla P (2006b) Triassic amber of the Southern Alps (Italy). Palaios 21:143–154

    Article  Google Scholar 

  • Roghi G, Gianolla P, Minarelli L et al (2010) Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 290:89–106

    Article  Google Scholar 

  • Romanovskaya GM, Vasilieva NS (1990) Palynostratigraphy of Triassic deposits. In: Panova LA, Oshurkova MV, Romanovskaya GM (eds) Practical palynostratigraphy. Nedra, Leningrad, pp 81–102. (in Russian)

    Google Scholar 

  • Roselt G (1954) Ein neuer Schachtelhalm aus dem Keuper und Beiträge zur Kenntnis von Neocalamites meriani Brongn. Geologie 3:617–643

    Google Scholar 

  • Rozefelds AC, Sobbe I (1987) Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of southeastern Queensland, Australia. Alcheringa 11:51–57

    Article  Google Scholar 

  • Sadler C, Parker WG, Ash SR (2015) Dawn of the dinosaurs. The Late Triassic in the American Southwest. Petrified Forest Museum Association, Petrified Forest, Arizona, p 124

    Google Scholar 

  • Sakulina GV (1973) Middle and Late Triassic miospores from South-Eastern Kazakhstan. In: Chlonova AF (ed) Palynology of mesophyte. Proc Int Palynol Conf, 3rd, Nauka, Moscow, pp 33–38. (In Russian)

    Google Scholar 

  • Salard M (1968) Contribution à la connaissance de la flore fossile de la Nouvelle Calédonie. Palaeontographica B 124:1–44

    Google Scholar 

  • Schenk A (1866–1867) Über die Flora der schwarzen Schiefer von Raibl. Würzb naturwiss Zeitschr 6:10–20

    Google Scholar 

  • Schenk A (1867) Bemerkungen über einige Pflanzen der Lettenkohle und des Schilfsandsteines. Würzb naturwiss Zeitschr 6:49–63

    Google Scholar 

  • Schenk A (1883) Jurassische Pflanzen. In: von Richthofen F (ed) China, vol 4. Studien Verlag von Dietrich Reimer, Berlin, pp 245–269

    Google Scholar 

  • Schenk A (1884) Die Wahrend der Reise des Grafen Bela Szechenyi in China Gesammelten fossilen Pflanzen. Palaeontographica B 31:163–182

    Google Scholar 

  • Schmidt M (1928) Die Lebewelt unserer Trias. Hohenlohe’sche Buchhandlung, Öhringen

    Google Scholar 

  • Schmidt AR, Ragazzi E, Coppellotti O, Roghi G (2006) A microworld in Triassic amber. Nature 444:835

    Article  Google Scholar 

  • Schmidt AR, Jancke S, Lindquist EE et al (2012) Arthropods in amber from the Triassic Period. PNAS 109(37):14796–14801

    Article  Google Scholar 

  • Schönborn W, Dörfelt H, Foissner W et al (1999) A fossilized microcenosis in Triassic amber. J Eukaryot Microbiol 46(6):571–584

    Article  Google Scholar 

  • Schultz G, Hope RC (1973) Late Triassic microfossil flora from the Deep River Basin, North Carolina. Palaeontographica B 141:63–88

    Google Scholar 

  • Schweitzer HJ (1977) Die räto-jurassischen Floren des Iran und Afghanistans. 4. Die rätische zwitterblüte Irania hermaphroditica nov. sp. und ihre Bedeutung für die Phylogenie der Angiospermen. Palaeontographica B 161:98–145

    Google Scholar 

  • Schweitzer HJ (1978) Die rhäto-jurassischen Floren des Iran und Afghanistans: 5. Todites princeps, Thaumatopteris brauniana und Phlebopteris polypodioides. Palaeontographica B 168:17–60

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1995) Die rhäto-jurassischen Floren des Iran und Afghanistans. 8. Ginkgophyta. Palaeontographica B 237:1–58

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1996) Die rhäto-jurassischen Floren des Iran und Afghanistans. 9. Coniferophyta. Palaeontographica B 238:77–139

    Google Scholar 

  • Schweitzer H-J, Kirchner M (1998) Die rhäto-jurassischen Floren des Iran und Afghanistans. 11. Pteridospermophyta und Cycadophyta I. Cycadales. Palaeontographica B 248:1–85

    Google Scholar 

  • Schweitzer H-J, Kirchner M (2003) Die rhäto-jurassischen Floren des Iran und Afghanistans 13. Cycadophyta. III. Bennettitales. Palaeontographica B 264:1–166

    Google Scholar 

  • Schweitzer HJ, Van-Konijnenburg-van Cittert JHA, van der Burg J (1997) The Rhaeto-Jurassic flora of Iran and Afghanistan. 10. Bryophyta, Lycophyta, Sphenophyta, Pterophyta-Eusporangiate and Protoleptosporangiate. Palaeontographica B 243:103–192

    Google Scholar 

  • Schweitzer HJ, Kirchner M, Van-Konijnenburg-van Cittert JHA (2000) The Rhaeto-Jurassic flora of Iran and Afghanistan. 12. Cycadophyta II. Nilssoniales. Palaeontographica B 279:1–108

    Google Scholar 

  • Schweitzer HJ, Schweitzer U, Kirchner M et al (2009) The Rhaeto-Jurassic flora of Iran and Afghanistan. 14. Pterophyta-Leptosporangiatae. Palaeontographica B 279:1–108

    Article  Google Scholar 

  • Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc Lond 161:401–410

    Article  Google Scholar 

  • Selling OH (1944) On cupressoid root remains of Mesozoic age from the Arctic. Arkiv för Botanik 31A(13):1–20

    Google Scholar 

  • Selling OH (1945) A megaspore from the Mesozoic of Hope Island, Svalbard. Bot Notiser 1:44–48

    Google Scholar 

  • Semenova EV (1970) Spore and pollen assemblages of deposits of the Jurassic and Triassic Boundary of the Donents Basin. Naukova Dumka, Kiev. (In Russian)

    Google Scholar 

  • Semenova EV (1973) Correlation of the Upper Triassic of the Donets Basin and some Central European regions according to miospores. In: Chlonova AF (ed) Palynology of mesophyte. Proceedings of the 3rd International Palynological Conference. Nauka, Moscow, pp 42–44. (In Russian)

    Google Scholar 

  • Sha J, Vajda V, Pan Y et al (2011) The stratigraphy of the Triassic−Jurassic boundary successions of the southern margin of Junggar Basin, northwestern China. Act Geol Sin 85:421–436

    Article  Google Scholar 

  • Sha J, Olsen PE, Pan Y et al (2015) Triassic−Jurassic climate in continental high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Urumqi, China). PNAS 112:3624–3629

    Google Scholar 

  • Shao J, Tang K, Wang C et al (1992) Structural feature and evolution of the Nadanhada Terrane. Sci China B 35:621–630

    Google Scholar 

  • Shorokhova SA (1975a) Novye osmundovye paporotniki iz verhnego triasa Primor’ja (New Osmundaceae from the Upper Triassic of Primorye). Paleont Zhurn 4:106–110. (In Russian)

    Google Scholar 

  • Shorokhova SA (1975b) The Early Mesozoic flora of Primorye and its significance for the stratigraphy. In: Avtoreferat kand. dissertatsii, Moscow, p 21. (In Russian)

    Google Scholar 

  • Shorokhova SA, Srebrodolskaya IN (1979) Some Triassic plants from Primorye. Trudy biol pochv in ta DVNTS AN SSSR, Vladivostok. (In Russian)

    Google Scholar 

  • Sigmund A (1937) Die Minerale Niederösterreichs, 2nd edn. Deuticke, Wien-Leipzig

    Google Scholar 

  • Simms MJ, Ruffel AH (1989) Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17:265–268

    Article  Google Scholar 

  • Simms MJ, Ruffel AH (1990) Climatic and biotic change in the late Triassic. J Geol Soc Lond 147:321–327

    Article  Google Scholar 

  • Simms MJ, Ruffel AH, Johnson LA (1995) Biotic and climatic changes in the Carnian (Triassic) of Europe and adjacent areas. In: Fraser NC, Sues HD (eds) In the shadow of the dinosaurs: early mesozoic tetrapods. Cambridge University Press, Cambridge, pp 352–365

    Google Scholar 

  • Sixtel TA (1960) Stratigrafija kontinental’nyh otlozhenij verhnej permi i triasa Srednej Azii. (The stratigraphy of the continental sediments of the Upper Permian and Triassic of Middle Asia). Trudy Tashkent Univ, Nov Ser, geol. Nauki, Tashkent. (In Russian)

    Google Scholar 

  • Sixtel TA (1961) The representatives of the Gigantopteris and some accompanying plants from the Madygen Formation of Fergana. Paleont J 1:151–158. (in Russian)

    Google Scholar 

  • Sixtel TA (1962) Flora of the Late Permian and Early Triassic in Southern Fergana. Stratigrafia i Paleontologia Uzbekistana i sopredelnychrayonov, Tashkent, pp 271–414. (in Russian)

    Google Scholar 

  • Smoot JP, Olsen PE (1988) Massive mudstones in basin analysis and paleoclimatic interpretation of the Newark Supergroup. In: Manspeizer W (ed) Triassic–Jurassic rifting, continental breakup and the origin of the Atlantic Ocean and passive margins. Elsevier, New York, pp 249–274

    Chapter  Google Scholar 

  • Solms-Laubach G (1899) Beschreibung der Pfianzenreste von La Ternera. N Jb Min Geol Pal 12:593–609

    Google Scholar 

  • Soom M (1984) Bernstein vom Nordrand der Schweizer Alpen. Stuttgarter Beitr Naturk, Ser C 18:15–20

    Google Scholar 

  • Spalletti LA, Artabe AE, Morel E et al (1999) Biozonación paleoflorística y cronoestratigrafía del Triásico Argentino. Ameghiniana 36:419–451

    Google Scholar 

  • Spalletti LA, Morel EM, Artabe AE et al (2005) Estratigrafía, facies y paleoflora de la sucesión triásica de Potrerillos, Mendoza, República Argentina. Rev Geol Chile 32:249–272

    Article  Google Scholar 

  • Srebrodolskaya IN (1960) Novye materialy po mongugajskim floram juzhnogo Primor’ja (New data on the Mongugay floras of Southern Primorye). Inf. bull. VSEGEI (24):107–116. (In Russian)

    Google Scholar 

  • Srivastava SC, Manik SR (1991) Triassic flora of India; a transition. Palaeobotanist 40:244

    Google Scholar 

  • Srivastava SC, Pal PK (1983) Upper Triassic fossil plants from Son River section near Giar, Shahdol district, M.P, India. Geophytology 13:238

    Google Scholar 

  • Stanislavsky FA (1965) Ostatki roda Neocalamites iz verhnego triasa Doneckogo bassejna (The remains of the genus Neocalamites from the Upper Triassic of the Donets Basin). Paleont. Sbornik 2:88–95. (In Russian)

    Google Scholar 

  • Stanislavsky FA (1971) Iskopaemaja flora i stratigrafija verhnetriasovyh otlozhenij Donbassa (Fossil flora and stratigraphy of Upper Triassic sediments in the Donetz Basin (Rhaetian flora from Raiskoye). Naukova Dumka, Kiev. (In Russian)

    Google Scholar 

  • Stanislavsky FA (1973) Novyj rod Toretzia iz verhnego triasa Donbassa i ego otnoshenie k rodam porjadka Ginkgoales (New genus Toretzia from the Upper Triassic of the Donbass and its relations to the genera of the Ginkgoales order). Paleont Zhurn 1:88–96. (In Russian)

    Google Scholar 

  • Stanislavsky FA (1976) Srednekejperskaja flora Doneckogo bassejna (The Middle Keuper flora of the Donets Basino vremeni). Naukova Dumka, Kiev. (In Russian)

    Google Scholar 

  • Steinthorsdottir M, Tosolini A-MP, McElwain JC (2015) Evidence for insect and annelid activity across the Triassic-Jurassic transition of east Greenland. Palaios 30:597–607

    Article  Google Scholar 

  • Strullu-Derrien C, McLoughlin S, Philippe M et al (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN (1986) Wood decay in silicified gymnosperms from Antarctica. Bot Gaz 147:116–125

    Article  Google Scholar 

  • Stur D (1868) Beiträge zur Kenntnis der geologischen Verhältnisse der Umgebung von Raibl und Kaltwasser. Jb Geol Reichsans 18:71–122

    Google Scholar 

  • Stur D (1885) Die obertriadische Flora der Lunzer-Schichten und des bituminösen Schiefers von Raibl. Sitzungsber Kais Akad Wissensch Wien, Math-Naturwiss Klasse 91:93–103

    Google Scholar 

  • Sukh-Dev (1987) Floristic zones in the Mesozoic formations and their relative age. Palaeobotanist 36:161–167

    Google Scholar 

  • Sun G (1979) On the discovery of Cycadocarpidium from the Upper Triassic of eastern Jilin. Acta Palaeont Sinica 18:312–325. (in Chinese with English abstract)

    Google Scholar 

  • Sun G (1981) Discovery of Dipteridaceae from Upper Triassic of eastern Jilin. Acta Palaeont Sin 20:459–467. (in Chinese with English abstract)

    Google Scholar 

  • Sun G (1987) On Late Triassic geofloras in China and principles for palaeophytogeographic regionalization. Acta Geol Sin 61:1–9

    Google Scholar 

  • Sun G (1990) Correlation on Late Triassic floras from Tianqiaoling of Jilin, China to from Mongugai of S. Primorye, USSR and its geological significance. In: Editorial Committee of 4th Symp. Asian Cont. Pacific Trans Zon (ed) Abstract collections 4th Symp. Asian Cont. Pacific Trans. Zon, Beijing, pp 31–32

    Google Scholar 

  • Sun G (1993) Late Triassic flora from Tianqiaoling of Jilin, China. Jilin Science and Technology Publishing House, Changchun. (in Chinese with English summary)

    Google Scholar 

  • Surlyk F (2003) The Jurassic of East Greenland: a sedimentary record of thermal subsidence, onset and culmination of rifting. In: Ineson JR, Surlyk F (eds) The Jurassic of Denmark and Greenland. Geol Surv Denmark Greenland, Copenhagen, pp 659–723

    Google Scholar 

  • Sze (1933) Fossile Pflanzen aus Shensi, Szechuan and Kueichow. Palaeont Sin A 1(3):1–32

    Google Scholar 

  • Sze HC (1956a) On the occurrence of the Yenchang Formation in Kuyuan district, Kansu Province. Acta Palaeont Sin 4:285–292. (in Chinese and English)

    Google Scholar 

  • Sze HC (1956b) The fossil flora of the Mesozoic oil-bearing deposits of the Dzungaria-Basin, northwestern Sinkiang. Acta Palaeont Sin 4:461–467. (in Chinese and English)

    Google Scholar 

  • Sze HC (1960) Late Triassic plants from Tiencho, Kansu. In: Institute of Geology and Paleontology, Academia Sinica et al (eds) Contribution to Geology of the Chilien Mts. Science Press, Beijing 4:23–26. (in Chinese)

    Google Scholar 

  • Sze H, Lee H (1952) Jurassic plant from Szechuan. Palaeont Sin A, No. 135(Ser. A., no 3):1–38. (in Chinese with English abstract)

    Google Scholar 

  • Takahashi E (1951) Descriptive notes on some Mesozoic plants from Province Nagato. J Geol Soc Jap 664:29–33

    Article  Google Scholar 

  • Tanner LH, Lucas SG (2007) The Moenave Formation: sedimentologic and stratigraphic context of the Triassic–Jurassic boundary in the Four Corners area, southwestern U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 244:111–125

    Article  Google Scholar 

  • Tanner LH, Lucas SG (2013) Degraded wood in the Upper Triassic Petrified Forest Formation (Chinle Group), northern Arizona: differentiating fungal rot from arthropod boring. In: Tanner LH, Spielmann JA, Lucas SG (eds) The Triassic system. New Mexico Mus Nat Hist Sci Bull 61:582–582B

    Google Scholar 

  • Taylor EL (1989) Tree-ring structure in woody axes from the central Transantarctic Mountains, Antarctica. In: Proceedings of the International Symposium on Antarctic Research, China. Ocean Press, Tianjin, pp 109–113

    Google Scholar 

  • Tidwell WD, Kim J-H, Kimura T (1987) Mid-Mesozoic leaves from near Ida Bay, southern Tasmania, Australia. Pap Proc R Soc Tasmania 121:159–170

    Google Scholar 

  • Tillyard RJ (1922) Mesozoic insects of Queensland. 9. Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Plannipennia. Proc Linn Soc New South Wales 47:447–470

    Google Scholar 

  • Traverse A (1986) Palynology of the Deep River Basin, North Carolina. In: Gore PJW (ed) Framework of a Triassic rift basin: the Durham and Sanford sub-basins of the Deep River Basin, North Carolina. Field Trip #3, Society of Economic Paleontologists and Mineralogists Meeting, Raleigh, NC, pp 66–71

    Google Scholar 

  • Tripathi A, Vijaya, Raychowdhuri AK (2005) Triassic palynoflora from the Mahuli-Mahersop area, Singrauli Coalfield (southern extension), Sarguja district, Chhattisgarh, India. J Palaeont Soc India 50:77–99

    Google Scholar 

  • Troedsson G (1943) Om gränsen mellan rät och lias i Skåne. Geol Fören Stockholm Förhand 65:271–284

    Article  Google Scholar 

  • Troedsson G (1950) Om lagerföljden inom Sveriges äldre Mesozoikum. Medd fra Dansk Geol Foren 11:595–597

    Google Scholar 

  • Troedsson G (1951) On the Höganäs Series of Sweden (Rhaeto-Lias). Skrifter från Mineralogisk- Paleont-Geol Institut Lund 7:1–269

    Google Scholar 

  • Turner S, Bean LB, Dettmann M, McKellar J, McLoughlin S, Thulborn T (2009) Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation. GFF 131:49–70

    Article  Google Scholar 

  • Turutanova-Ketova AI (1931) Materialy k poznaniju jurskoj flory bassejna oz. Issyk-Kul’ v Kirgizskoj SSR (The materials to the knowledge of the Jurassic flora of the Issyk-Kul Basin in the Kirgiz SSR). Trudy Geol Mus AN SSSR 8:311–356. (In Russian)

    Google Scholar 

  • Vaez-Javadi F (2012) Plant macrofossils from Tiar area, South Amol, dating and correlation with the other florizones of Iran. Geosciences 21(83):229–237. (In Persian)

    Google Scholar 

  • Vaez-Javadi F (2013a) Triassic and Jurassic floras and climate of central-east Iran. Geological Survey of Iran, Rahi Publication, Tehran, p 254

    Google Scholar 

  • Vaez-Javadi F (2013b) Williamsonia iranica sp. nov. and Ginkgoites persica sp. nov. from the Rhaetian of Nayband Formation, Tabas. J Strat Sed Res Esfahan 48(4):25–34. (In Persian)

    Google Scholar 

  • Vajda V, Bercovici A (2014) The global vegetation pattern across the Cretaceous–Paleogene mass-extinction interval—an integrated global perspective. Global Planet Change 12:29–49

    Article  Google Scholar 

  • Vajda V, McLoughlin S (2004) Fungal proliferation at the Cretaceous-Tertiary boundary. Science 303:1489

    Article  Google Scholar 

  • Vajda V, McLoughlin S (2007) Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary—a tool for unravelling the causes of the end-Permian mass-extinction. Rev Palaeobot Palynol 144:99–112

    Article  Google Scholar 

  • Vajda V, Wigforss-Lange J (2009) Onshore Jurassic of Scandinavia and related areas. GFF 131:5–23

    Article  Google Scholar 

  • Vajda V, Raine JI, Hollis CJ (2001) Indication of global deforestation at the Cretaceous-Tertiary boundary by New Zealand fern spike. Science 294:1700–1702

    Article  Google Scholar 

  • Vajda V, Calner M, Ahlberg A (2013) Palynostratigraphy of dinosaur footprint-bearing deposits from the Triassic–Jurassic boundary interval of Sweden. GFF 135:120–130

    Article  Google Scholar 

  • Vajda V, Linderson H, McLoughlin S (2016) Disrupted vegetation as a response to Jurassic volcanism in southern Sweden. In: Kear BP, Lindgren J, Hurum JH, Milàn J, Vajda V (eds) Mesozoic Biotas of Scandinavia and its Arctic Territories. Geological Society, London, Special Publications 434:127–147

    Google Scholar 

  • Vakhrameev VA, Dobruskina IA, Zaklinskaya EL (1970) Paleozoic and Mesozoic floras of Eurasia and phytogeography of that time. Trans Geol Inst Acad Sci USSR Nauka, Moscow. (In Russian)

    Google Scholar 

  • Vakhrameev VA, Dobruskina IA, Zhatkova EA, Yaroshenko OP (1977) Verhnetriasovye floronosnye otlozhenija Vostochnogo Predkavkaz’ja (The Upper Triassic plant-bearing beds of Eastern Predkavkazye). Izv AN SSSR Ser Geol 3:62–72. (In Russian)

    Google Scholar 

  • Vakhrameev VA, Dobruskina IA, Meyen SV et al (1978) Paläozoische und mesozoische Floren Eurasiens und die Phytogeographie dieser Zeit. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • van de Schootbrugge B, Tremolada F, Rosenthal Y et al (2007) End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr Palaeoclimatol Palaeoecol 244:126–141

    Article  Google Scholar 

  • Van Konijnenburg-van Cittert JHA, Kustatscher E, Bauer K et al (2014) A Selaginellites from the Rhaetian of Wüstenwelsberg (Upper Franconia, Germany). N Jb Geol Pal Abh 272:115–127

    Article  Google Scholar 

  • Van Konijnenburg-van Cittert JHA, Kustatscher E, Pott C et al (2016) New data on Selaginellites coburgensis from the Rhaetian of Wüstenwelsberg (Upper Franconia, Germany). N Jb Geol Paläont Abh 280:177–181

    Article  Google Scholar 

  • Variukhina LM (1971) Spores and pollen of red color and coal bearing deposits of Permian and Triassic of north-east of European part of USSR. Nauka, Leningrad. (In Russian)

    Google Scholar 

  • Vasilenko DV (2009) Traces of plant-arthropod interactions from Madygen (Triassic, Kyrgyzstan): preliminary data. In: Sovremennaya paleontologia: klassicheskie i noveishie metody. PIN RAS, Moscow, pp 9–15. (In Russian)

    Google Scholar 

  • Vassilevskaja ND (1972) Late Triassic flora of Svalbard. In: Mesozoic deposits of Svalbard. NIIGA, St Petersburg, pp 27–63

    Google Scholar 

  • Vávra N (1984) Reich an armen Fundstellen: Übersicht über die fossilen Harze Osterreichs. Stuttgarter Beitr Naturk Ser C 18:9–14

    Google Scholar 

  • Vavrek MJ, Larsson HCE, Rybczynski N (2007) A Late Triassic flora from east-central Axel Heiberg Island, Nunavut, Canada. Can J Earth Sci 44:1653–1659

    Article  Google Scholar 

  • Vigran J, Mangerud G, Mørk A et al (2014) Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Norweg Geol Surv Spec Publ 14:1–274

    Google Scholar 

  • Vinogradova KV, Tsaturova AA (2005) Palynostratigraphy and paleogeography of the Triassic deposits of Southern Mangyshlak. In: Afonin SA, Tokarev PI (eds) Proceedings of XI All-Russian palynological conference “Palynology: Theory & applications”, (27 september – 1 october 2005). PIN RAS, Moscow, pp 46–47. (In Russian)

    Google Scholar 

  • Visscher H, Brinkhuis H, Dilcher DL et al (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci U S A 93:2155–2158

    Article  Google Scholar 

  • Vladimirovich VP (1959) K izucheniju verhnetriasovoj i nizhnejurskoj flory Vostochnogo Urala (On the study of the Late Triassic–Early Jurassic flora of Eastern Urals). Bot Zhurn 49:458–466. (In Russian)

    Google Scholar 

  • Vladimirovich VP (1965) Ostatki nekotoryh predstavitelej roda Thinnfeldia iz rjetskih otlozhenij Vostochnogo Urala (Remains of some representatives of the genus Thinnfeldia from the Rhaetian deposits of the Eastern Urals). Ezhegodnik VPO XVII:238–261. (In Russian)

    Google Scholar 

  • Vladimirovich VP (1967) Biostratigraphy of the continental Triassic and Jurassic deposits of the Eastern slope of the Urals, northern Kazakhstan and mountaneous part of western Siberia. In: Stratigraphy and palaeontology of the Mesozoic and Palaeogene–Neogene continental deposits of the Asian part of the USSR. Nauka, Moscow, pp 46–56. (In Russian)

    Google Scholar 

  • Volynets EB, Shorokhova SA (2007) Late Triassic (Mongugai) flora of the Primorye region and its position among coeval floras of Eurasia. Russ J Pac Geol 1(5):482–494. (In Russian)

    Article  Google Scholar 

  • Volynets E, Shorokhova SA, Ge S (2008) Late Triassic flora of the Partizanskaya River Basin (Southern Primor’e). Stratigr Geol Correl 16(1):47–58. https://doi.org/10.1007/s11506-008-1004-0. (In Russian)

    Google Scholar 

  • von Hillebrandt A, Krystyn L, Kürschner WM, Bown PR, McRoberts C, Ruhl M, Simms M, Tomasovych A, Urlichs M (2008) A candidate GSSP for the base of the Jurassic in the Northern Calcareous Alps (Kuhjoch section; Karwendel Mountains, Tyrol, Austria). Intern Subcom Jurassic Stratigraphy, Triassic/Jurassic Boundary Working Group Ballot, pp 2–20

    Google Scholar 

  • von Richthofen F (1882) China. Ergebnisse eigener Reisen und darauf gegründeter Studien. 5 Bände mit Atlas. Band 2: Das nördliche China. Dietrich Reimer, Berlin

    Google Scholar 

  • Vozenin-Serra C, Salard-Cheboldaeff M (1992) Les bois mineralises Permo-Triasiques de Nouvelle Calédonie. Implications phylogenetique et paleogeographique. Palaeontographica B 225B:1–25

    Google Scholar 

  • Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument. U.S. Nat Mus Proc 88:137–141

    Article  Google Scholar 

  • Walkom AB (1917) Mesozoic floras of Queensland. Part 1 continued. The flora of the Ipswich and Walloon Series (c.) Filicales, etc. Geol Surv Queensl Publ 257:1–65

    Google Scholar 

  • Wang PX (2009) Global monsoon in a geological perspective. Chinese Sci Bull 54:1113–1136

    Google Scholar 

  • Wang C, Kang B, Zhang H (1986) A discovery of Triassic conodonts in the Nadanhad Range and geological significance. In: Editorial Committee of Contribution for the Project of Plate Tectonics in Northern China (ed) Contributions for the project of plate tectonics in northern China. Geological Publishing House, Beijing, pp 208–213. (in Chinese with English abstract)

    Google Scholar 

  • Wang YD, Fu BH, Xie XP et al (2010) The terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China. University of Science and Technology of China Press, Hefei. 216 p

    Google Scholar 

  • Wappler T, Kustatscher E, Dellantonio E (2015) Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy): initial pattern and response to abiotic environmental pertubations. PeerJ 3:e921. https://doi.org/10.7717/peerj.921

    Article  Google Scholar 

  • Ward LH (1900) The older Mesozoic. In: Status of the Mesozoic floras of the United States. US Geological Survey, Twentieth Annual Report 2:213–768

    Google Scholar 

  • Wawrzyniak Z, Ziaja J (2009) Wstępne wyniki badań górnotriasowej makroflory Lipia Śląskiego, Polska. Preliminary results of research of the Upper Triassic macroflora from Lipie Śląskie, Poland. In: Krobicki M (ed) Jurassica VIII, Vršatec 09–11.10.2009. Kwartalnik AGH Geologia 35(3/1):105–106

    Google Scholar 

  • Webb JA (1982) Triassic species of Dictyophyllum from eastern Australia. Alcheringa 6:79–91

    Google Scholar 

  • Weber R (1968) Die fossile Flora der Rhät-Lias-Übergangsschichten von Bayreuth (Oberfranken) unter besonderer Berücksichtigung der Coenologie. Erlanger geol Abh 72:1–73

    Google Scholar 

  • Weber R (1995) A new species of Scoresbya Harris and Sonoraphyllum gen. nov. (Plantae incertae sedis) from the Late Triassic of Sonora, Mexico. Rev Mexic Ciencias Geo1 12:94–107

    Google Scholar 

  • Weber R (1996) Review of Macropterygium Schimper (“Cycadophyta”, presumed Bennettitales) and a new species from the Upper Triassic of Sonora, Northwestern Mexico. Rev Mexic Ciencias Geo1 13:201–220

    Google Scholar 

  • Weber R (1997) How old is the Triassic flora of Sonora and Tamaulipas and news on Leonardian floras in Puebla and Hidalgo, Mexico. Rev Mexic Ciencias Geo1 14:225–243

    Google Scholar 

  • Weber R (1999) New and poorly known ferns from the Santa Clara Formation, Late Triassic, Sonora, NW Mexico, III, Marattiales. Tranuilia Herbst: a panamerican dimorphic genus. Rev Mexic Ciencias Geo1 16:172–186

    Google Scholar 

  • Weems RE, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the Upper Permian?–Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy 13:111–153

    Google Scholar 

  • Wendt J, Fürsich FT (1980) Facies analysis and palaeogeography of the Cassian Formation, Triassic, Southern Alps. Riv Ital Paleont Stratigr 85:1003–1028

    Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, New York

    Google Scholar 

  • Wu H, Pu Y (1982) Sporo-pollen assemblage from the Beishan Formation of Hunjiang, Jilin. In: Palynological Society of China (ed) Selected papers for the First Scientific Symposium of the Palynological Society of China. Beijing Science Press, pp 110–115. (in Chinese)

    Google Scholar 

  • Wu S, Ye M, Li B (1980) Upper Triassic and Lower and Middle Jurassic plants from the Hsiangchi Group, western Hubei. Mem Nanjiang Inst Geol Palaeont Acad Sin 14:63–131. (in Chinese with English abstract)

    Google Scholar 

  • Yabe H (1905) Mesozoic plants from Korea. J Coll Sci Imp Univ Tokyo, Japan 20:1–59

    Google Scholar 

  • Yang X (1978) The vegetable kingdom (Mesozoic). In: Chengdu Institute of Geology and Mineral Resources (The Southwest China Institute of Geological Science) (ed) Altas of fossils of Southwest China, Sichuan volumn, (Part II): Carboniferous to Mesozoic. Geological Publishing House, Beijing, pp 469–536. (in Chinese)

    Google Scholar 

  • Yaroshenko OP (1978) Miospore assemblages and stratigraphy of the Triassic of the Western Caucasus Mountains. Proc Geol Inst Acad Sci USSR, vol 324. Nauka, Moscow. (In Russian)

    Google Scholar 

  • Yaroshenko OP (2007) Late Triassic palynological flora from western Ciscaucasia. Paleont J 41:1190–1197. https://doi.org/10.1134/S0031030107110172. (In Russian)

    Article  Google Scholar 

  • Ye M, Liu X (1986) Late Triassic and Early-Middle Jurassic fossil plants from northeastern-Sichuan. Anhui Science and Technology Publishing House, Hefei, p 141. (in Chinese with English abstract)

    Google Scholar 

  • Yin H, Ling Q (1986) Triassic palaeobiogeographic provincialization of China. In: Palaeotological Society of China (ed) Selected papers 13th and 14th annual conventions of palaeontological Society of China. Anhui Science and technology Publishing House, pp 189–203. (in Chinese with English abstract abstract)

    Google Scholar 

  • Zardini R (1973) Geologia e fossili attorno a Cortina d’Ampezzo. Ed. Ghedina, Cortina d’Ampezzo.

    Google Scholar 

  • Zavattieri AM, Mego N (2008) Palynological record of the Paso Flores Formation (Late Triassic) on the southeastern side of the Limay River, Patagonia, Argentina. Ameghiniana 45:483–502

    Google Scholar 

  • Zavattieri AM, Volkheimer W, Rosenfeld U (1994) Palynology and facies of the Late Triassic of Comallo (Northern Patagonia, Argentina). Zentralbl Geol Palaeontol 1:133–154

    Google Scholar 

  • Zavialova NE, Roghi G (2005) Exine morphology and ultrastructure of Duplicisporites from the Triassic of Italy. Grana 44:337–342

    Article  Google Scholar 

  • Zavialova NE, Van Konijnenburg-van Cittert JHA (2011) Exine ultrastructure of in situ peltasperm pollen from the Rhaetian of Germany and its implications. Rev Palaeobot Palynol 168:7–20

    Article  Google Scholar 

  • Zeiller R (1903) Flore fossile des Gîtes de Charbon du Tonkin. Études des Gîtes mineraux de la France.

    Google Scholar 

  • Zhang Q (1990) Triassic and Jurassic Radiolaria fauna in Nadanhada Range, northeast China. Bull Shenyang Inst Geol Miner Resour 21:157–191. in Chinese with English abstract

    Google Scholar 

  • Zhang W, Grant-Mackie JA (2001) Late Triassic–Early Jurassic palynofloral assemblages from Murihiku strata of New Zealand, and comparisons with China. J R Soc New Zealand 31:575–683

    Google Scholar 

  • Zhou T (1978) The Mesozoic coal-bearing strata and fossil plants from Fujian Province. Prof Pap Strat Palaeont 4:88–134. (in Chinese)

    Google Scholar 

  • Zhou Z (1989) Late Triassic plants from Shaqiao, Hengyang, Hunan Province. Palaeont Cathayana 4:131–197

    Google Scholar 

  • Zhou T, Zhou H (1983) Triassic non-marine strata and flora of China. Bull Chin Acad Geol Sci 5(5):95–108

    Google Scholar 

Download references

Acknowledgements

We want to thank Lawrence (Larry) Tanner for the organization of this book as well as Brian Axsmith and Spencer Lucas for their constructive reviews. Part of the material was studied by Evelyn Kustatscher under the projects ‘Taxonomic revision of the Carnian (Upper Triassic) conifers from the historical Raibl flora from Northern Italy’ (AT-TAF2999) and ‘Palaeozoic relict and “modern” Mesozoic ferns in the Ladinian and Carnian floras of Europe’ (DE-TAF239, AT-TAF236, SE-TAF149), which received funding through SYNTHESYS, which was made available by the European Community-Research Infrastructure Action under the FP7 ‘Structuring the European Research Area’ Programme. Evelyn Kustatscher acknowledges also financial support from the Alexander von Humboldt-Foundation (3.3-ITA/1141759STP). This paper is also part of the IGCP 630 cooperation project ‘Permian-Triassic climatic and environmental extremes and biotic response’. Eugeny Karasev thanks E.B. Volynets (Institute of Biology and Soil Sciences) for photos of fossil plants from the Late Triassic of Primorye. Eugeny Karasev received funding from the subsidy allocated to Kazan Federal University (#5.2192.2017/4.6) for the state assignment in the sphere of scientific activities. Christian Pott acknowledges funding from the German and Swedish Research Councils (DFG KR2125/3, VR 2012-4375) and from the ‘Friends of the Swedish Museum of Natural History’ (Riksmusei Vänner, Stockholm) and funding through SYNTHESYS (AT-TAF 467). Vivi Vajda acknowledges support from UNESCO grant IGCP 632 and the Swedish Research Council grant VR 2015-4264. Financial support to Stephen McLoughlin by the Swedish Research Council (VR grant 2014-5234) and National Science Foundation (project #1636625) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyn Kustatscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kustatscher, E. et al. (2018). Flora of the Late Triassic. In: Tanner, L. (eds) The Late Triassic World. Topics in Geobiology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-68009-5_13

Download citation

Publish with us

Policies and ethics