Skip to main content

Slow Myosins in Muscle Development

  • Chapter
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

Abstract

The expression of various different isoforms of myosin in skeletal and cardiac muscle serves to define particular types of skeletal muscle fibers and cardiomyocytes, and to describe functional differences among them. This review will focus on those issues related to the developmental expression of different isoforms of myosin heavy chain (MyHC) in the vertebrate embryo with a particular focus on the expression of the MyHCs of the slow type. The slow isoforms of myosin are particularly of interest in myogenesis because they identify the least common fibers in vertebrates, appear principally in specific muscles, are highly dependent on innervation for sustained expression and are commonly expressed both within developing skeletal and cardiac muscle cells. In both cardiac and skeletal muscle development, expressions of slow MyHCs are controlled by a number of molecular and functional cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acakpo-Satchivi LJ, Edelmann W, Sartorius C, Lu BD, Wahr PA, Watkins SC, Metzger JM, Leinwand L, Kucherlapati R (1997) Growth and muscle defects in mice lacking adult myosin heavy chain genes. J Cell Biol 139: 1219–1229

    Article  PubMed  CAS  Google Scholar 

  • Allen DL, Harrison BC, Leinwand LA (2000) Inactivation of myosin heavy chain genes in the mouse: diverse and unexpected phenotypes. Microsci Res Tech 50: 492–499

    Article  CAS  Google Scholar 

  • Bandman ER (1985) Myosin isoenzyme transitions in muscle development, maturation, and disease. Int Rev Cytol 97: 97–131

    Article  PubMed  CAS  Google Scholar 

  • Bandman E, Rosser BW (2000) Evolutionary significance of myosin heavy chain heterogeneity in birds. Microsci Res Tech 50: 473–491

    Article  CAS  Google Scholar 

  • Bao ZZ, Bruneau BG, Seidman JG, Seidman CE, Cepko CL (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283: 1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Genet Physiol 50 (Suppl): 197–216

    Article  Google Scholar 

  • Barresi MJ, Stickney HL, Devoto SH (2000) The zebrafish slow-muscle-omitted gene product is required for Hedgehog signal transduction and the development of slow muscle identity. Development 127: 2189–2199

    PubMed  CAS  Google Scholar 

  • Barton-Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL (1998) Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function. Proc Natl Acad Sci USA 95: 15603–15607

    Article  PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12: 780–794

    PubMed  CAS  Google Scholar 

  • Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, Ventura-Clapier R (2000) Calcineurin Co-regulates contractile and metabolic components of slow muscle phenotype. J Biol Chem 275: 19653–19660

    Article  PubMed  CAS  Google Scholar 

  • Blagden CS, Currie PD, Ingham PW, Hughes SM (1997) Notochord induction of zebrafish slow muscle mediated by Sonic Hedgehog. Genes Dev 11: 2163–2175

    Article  PubMed  CAS  Google Scholar 

  • Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP Jr (1999) Sonic Hedgehog controls epaxial muscle determination through Myf5 activation. Development 126: 4053–4063

    PubMed  CAS  Google Scholar 

  • Bruneau BG, Bao ZZ, Fatkin D, Xavier-Neto J, Georgakopoulos D, Maguire CT, Berul CI, Kass DA, Kuroski-de Bold ML, de Bold AJ, Conner DA, Rosenthal N, Cepko CL, Seidman CE, Seidman JG (2001) Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol Cell Biol 21: 1730–1736

    Article  PubMed  CAS  Google Scholar 

  • Buffinger N, Stockdale FE (1994) Myogenic specification in somites: induction by axial structures. Development 120: 1443–1452

    PubMed  CAS  Google Scholar 

  • Buffinger N, Stockdale FE (1995) Myogenic specification of somites is mediated by diffusible factors. Dev Biol 169: 96–108

    Article  PubMed  CAS  Google Scholar 

  • Butler J, Cosmos E, Brierly J (1982) Differentiation of muscle fiber types in aneurogenic brachial muscles of the chick embryo. J Exp Zool 224: 65–80

    Article  PubMed  CAS  Google Scholar 

  • Butler-Browne GS, Herlicoviez D, Whalen RG (1984) Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett 166: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Calvo S, Venepally P, Cheng J, Buonanno A (1999) Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol Cell Biol 19: 515–525

    PubMed  CAS  Google Scholar 

  • Camoretti-Mercado B, Jakovcic S, Zak R (1994) Cardiac phenotypic markers expressed in early stages of both cardiac and skeletal muscle development. Cell Mol Biol Res 40: 87–91

    PubMed  CAS  Google Scholar 

  • Cann GM, Lee JW, Stockdale FE (1999) Sonic Hedgehog enhances somite cell viability and formation of primary slow muscle fibers in avian segmented mesoderm. Anat Embryol 200: 239–252

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Moore LA, Wick M, Sandman E (1997) Identification of a genomic locus containing three slow myosin heavy chain genes in the chicken. Biochim Biophys Acta 7: 148–156

    Google Scholar 

  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, Zhu W, Bassel-Duby R, Williams RS (1998) A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 12: 2499–2509

    Article  PubMed  CAS  Google Scholar 

  • Condon KW, Soileau LC, Silberstein L, Blau HM, Thompson WJ (1989) Development and innervation of muscle fiber types in the rat hindlimb. In: Landmesser L (ed) The assembly of the nervous system. Alan R Liss, New York, pp 51–63

    Google Scholar 

  • Crow MT, Stockdale FE (1986a) The developmental program of fast myosin heavy chain expression in avian skeletal muscles. Dev Biol 118: 333–342

    Article  PubMed  CAS  Google Scholar 

  • Crow MT, Stockdale FE (1986b) Myosin expression and specialization among the earliest muscle fibers of the developing avian limb. Dev Biol 113: 238–254

    Article  PubMed  CAS  Google Scholar 

  • Currie PD, Ingham PW (1996) Induction of a specific muscle cell type by a Hedgehog-like protein in zebrafish. Nature 382: 452–455

    Article  PubMed  CAS  Google Scholar 

  • Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD (2000) A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 20: 6600–6611

    Article  PubMed  CAS  Google Scholar 

  • Devoto SH, Melanìon E, Eisen JS, Westerfield M (1996) Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. Development 122: 3371–3380

    PubMed  CAS  Google Scholar 

  • Dunn SE, Burns JL, Michel RN (1999) Caleineurin is required for skeleal muscle hypertrophy. J Biol Chem 274: 21908–21912

    Article  PubMed  CAS  Google Scholar 

  • Everett AW, Sinha AM, Umeda PK, Jakovcic S, Rabinowitz M, Zak R (1984) Regulation of myosin synthesis by thyroid hormone: relative change in the a-and b-myosin heavy chain mRNA levels in rabbit heart. Biochemistry 23: 1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Stockdale FE (1991) Skeletal muscle satellite cell diversity: satellite cells form fibers of different types in cell culture. Dev Biol 143: 320–334

    Article  PubMed  CAS  Google Scholar 

  • Gambke B, Lyons GE, Haselgrove J, Kelly AM, Rubinstein NA (1983) Thyroidal and neural control of myosin transitions of rat fast and slow muscles. FEBS Lett 156: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Gustafson TA, Markham BE, Morkin E (1985) Analysis of thyroid hormone effects on myosin heavy chain gene expression in cardiac and soleus muscles using a novel dot-blot mRNA assay. Biochem Biophys Res Commun 130: 1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Halpern ME, Ho RK, Walker C, Kimmel CB (1993) Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75: 99–111

    PubMed  CAS  Google Scholar 

  • Hartley RS, Sandman E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153: 206–216

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY, McGrath PA, White RI (1976) Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J 157: 87–95

    PubMed  CAS  Google Scholar 

  • Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153: 329–338

    Article  PubMed  CAS  Google Scholar 

  • Hughes SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, Blau HM (1993) Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 158: 183–199

    Article  PubMed  CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mandavi V (1986) All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231: 597–600

    Article  PubMed  CAS  Google Scholar 

  • Jones WK, Grupp IL, Doetschman T, Grupp G, Osinska H, Hewett TE, Boivin G, Gulick J, Ng WA, Robbins J (1996) Ablation of the murine alpha myosin heavy chain gene leads to dosage effects and functional deficits in the heart. J Clin Invest 98: 1906–1917

    Article  PubMed  CAS  Google Scholar 

  • Kegley KM, Gephart J, Warren GL, Pavlath GK (2001) Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol 232: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Lefaucheur L, Hoffman R, Okamura C, Gerrard D, Läger JJ, Rubinstein N, Kelly A (1997) Transitory expression of alpha cardiac myosin heavy chain in a subpopulation of secondary generation muscle fibers in the pig. Dev Dyn 210: 106–116

    Article  PubMed  CAS  Google Scholar 

  • Leinwand LA, Fournier RE, Nadal-Ginard B, Shows TB (1983) Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Science 221: 766–769

    Article  PubMed  CAS  Google Scholar 

  • Lewis KE, Currie PD, Roy S, Schauerte H, Haffter P, Ingham PW (1999) Control of muscle cell- type specification in the zebrafish embryo by Hedgehog signalling. Dev Biol 216: 469–480

    Article  PubMed  CAS  Google Scholar 

  • Li X, Murre C, McGinnis W (1999) Activity regulation of a Hox protein and a role for the home- odomain in inhibiting transcriptional activation. EMBO J 18: 198–211

    Article  PubMed  CAS  Google Scholar 

  • Lompre A-M, Nadal-Ginard B, Mandavi V (1984) Expression of the cardiac ventricular a-and b-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem 259: 6437–6446

    PubMed  CAS  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6: 233–244

    Article  PubMed  CAS  Google Scholar 

  • Miller JB, Stockdale FE (1986) Developmental origins of skeletal muscle fibers: Clonal analysis of myogenic cell lineages based on fast and slow myosin heavy chain expression. Proc Natl Acad Sci USA 83: 3860–3864

    Google Scholar 

  • Morkin E (2000) Control of cardiac myosin heavy chain gene expression. Microsci Res Tech 50: 522–531

    Article  CAS  Google Scholar 

  • Münsterberg AE, Lassar AB (1995) Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development 121: 651–660

    PubMed  Google Scholar 

  • Musary“ A, McCullagh KJA, Naya FJ, Olson EN, Rosenthal N (1999) IGF-I induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400: 581–585

    Google Scholar 

  • Narusawa M, Fitzsimons RB, Izumo S, Nadal-Ginard B, Rubinstein NA, Kelly AM (1987) Slow myosin in developing rat skeletal muscle. J Cell Biol 104: 447–459

    Article  PubMed  CAS  Google Scholar 

  • Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN (2000) Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 275:4545–4548 Nikovits WJ, Stockdale F (1996) Cellular and molecular bases of skeletal muscle fiber diversity. Basic Appl Myol 6: 407–415

    Google Scholar 

  • Norris W, Neyt C, Ingham PW, Currie PD (2000) Slow muscle induction by Hedgehog signalling in vitro. J Cell Sci 113: 2695–2703

    PubMed  CAS  Google Scholar 

  • Oana S, Machida S, Hiratsuka E, Furutani Y, Momma K, Takao A, Matsuoka R (1998) The complete sequence and expression patterns of the atrial myosin heavy chain in the developing chick. Biol Cell 90: 605–613

    PubMed  CAS  Google Scholar 

  • Olson EN, Williams RS (2000a) Remodeling muscles with calcineurin. Bioessays 22:510–519 Olson EN, Williams RS (2000b) Calcineurin signaling and muscle remodeling. Cell 101: 689–692

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa-Domellof F, Holmgren Y, Lucas CA, Hoh JF, Thornell LE (2000) Human extraocular muscles: unique pattern of myosin heavy chain expression during myotube formation. Invest Ophthalmol Vis Sci 41: 1608–1616

    PubMed  CAS  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol 90: 1119–1124

    PubMed  CAS  Google Scholar 

  • Phillips WD, Everett AW, Bennett MR (1986) The role of innervation in the establishment of the topographical distribution of primary myotube types during development. J Neurocytol 15: 397–405

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Moss RL, Giulian GG, Greaser ML (1985) Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J Biol Chem 260: 9077–9080

    PubMed  CAS  Google Scholar 

  • Reiser PJ, Greaser ML, Moss RL (1988) Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. Dev Biol 129: 400–407

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Wolff C, Ingham PW (2001) The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo. Genes Dev 15: 1563–1576

    Article  PubMed  CAS  Google Scholar 

  • Saez LJ, Gianola KM, McNally EM, Feghali R, Eddy R, Shows TB, Leinwand LA (1987) Human cardiac myosin heavy chain genes and their linkage in the genome. Nucleic Acids Res 15: 5443–5459

    Article  PubMed  CAS  Google Scholar 

  • Salmons S, Vrbovç (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol 201: 535–549

    CAS  Google Scholar 

  • Sandri M, Rizzi C, Rossini K, Catani C, Cantini M, Spina M (1999) Purification of myosin heavy chain isoforms by electroendosmotic preparative gel electrophoresis: characterization of embryonic slow myosin heavy chain. Basic Appl Myol 9: 71–78

    Google Scholar 

  • Sartorius CA, Lu BD, Acakpo-Satchivi L, Jacobsen RP, Byrnes WC, Leinwand LA (1998) Myosin heavy chains IIa and IId are functionally distinct in the mouse. J Cell Biol 141: 943–953

    Article  PubMed  CAS  Google Scholar 

  • Semsarian C, Wu M-J, Ju Y-K, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM (1999) Skeletal muscle hypertrophy is mediated by a Ca’-dependent calcineurin signalling pathway. Nature 400: 576–581

    Article  PubMed  CAS  Google Scholar 

  • Stedman HH, Eller M, Jullian EH, Fertels SH, Sarkar S, Sylvester JE, Kelly AM, Rubinstein NA (1990) The human embryonic myosin heavy chain. Complete primary structure reveals evolutionary relationships with other developmental isoforms. J Biol Chem 265: 3568–3576

    Google Scholar 

  • Stern HM, Hauschka SD (1995) Neural tube and notochord promote in vitro myogenesis in single somite explants. Dev Biol 167: 87–103

    Article  PubMed  CAS  Google Scholar 

  • Stevens L, Gohlsch B, Mounier Y, Pette D (2000) Upregulation of myosin heavy chain MHClalpha in rat muscles after unweighting and clenbuterol treatment. Biochem Biophys Res Commun 275: 418–421

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE (1992) Myogenic cell lineages. Dev Biol 154: 284–298

    Article  PubMed  CAS  Google Scholar 

  • Stockdale FE (1997) Mechanisms of formation of muscle fiber types. Cell Struct Funct 22: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Taylor LD, Bandman E (1989) Distribution of fast myosin heavy chain isoforms in thick filaments of developing chicken pectoral muscle. J Cell Biol 108: 533–542

    Article  PubMed  CAS  Google Scholar 

  • Tullio AN, Accili D, Ferrans VJ, Yu ZX, Takeda K, Grinberg A, Westphal H, Preston YA, Adelstein RS (1997) Nonmuscle myosin II-B is required for normal development of the mouse heart. Proc Natl Acad Sci USA 94: 12407–12412

    Article  PubMed  CAS  Google Scholar 

  • Wang GF, Stockdale, FE (1998) Chamber-specific gene expression and regulation during heart development. In: Rosenthal N (ed) Heart development. Academic Press, New York

    Google Scholar 

  • Wang GF, Nikovits W Jr, Schleinitz M, Stockdale FE (1996) Atrial chamber-specific expression of the slow myosin heavy chain 3 gene in the embryonic heart. J Biol Chem 271: 19836–19845

    Article  PubMed  CAS  Google Scholar 

  • Wang GF, Nikovits W Jr, Schleinitz M, Stockdale FE (1998) A positive GATA element and a negative vitamin D receptor-like element control atrial chamber-specific expression of a slow myosin heavy-chain gene during cardiac morphogenesis. Mol Cell Biol 18: 6023–6034

    PubMed  CAS  Google Scholar 

  • Wang GF, Nikovits WJ, Bao Z-Z, Cann GM, Stockdale FE (2001) Irx4 Forms an inhibitory complex with the vitamin D and retinoic X receptors to regulate cardiac chamber-specific slow MyHC3 expression. J Biol Chem 276: 28835–28841

    Article  PubMed  CAS  Google Scholar 

  • Weeds AG, Burridge K (1975) Myosin from cross-reinnervated cat muscles. Evidence for reciprocal transformation of heavy chains. FEBS Lett 57: 203–207

    Google Scholar 

  • Weiss A, McDonough D, Wertman B, Acakpo-Satchivi L, Montgomery K, Kucherlapati R, Leinwand L, Krauter K (1999) Organization of human and mouse skeletal myosin heavy chain gene clusters is highly conserved. Proc Natl Acad Sci USA 96: 2958–2963

    Article  PubMed  CAS  Google Scholar 

  • Weydert A, Daubas P, Lazaridis I, Barton P, Garner I, Leader DP, Bonhomme F, Catalan J, Simon D, Guenet JL et al. (1985) Genes for skeletal muscle myosin heavy chains are clustered and are not located on the same mouse chromosome as a cardiac myosin heavy chain gene. Proc Natl Acad Sci USA 82: 7183–7187

    Article  PubMed  CAS  Google Scholar 

  • Whalen RG, Sell SM, Butler-Browne GS, Schwartz K, Bouveret P, Pinset-Harstrom I (1981) Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 292: 805–809

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek DF, Periasamy M, Butler-Browne GS, Whalen RG, Nadal-Ginard B (1985) Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol 101: 618–629

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, Williams RS (2000) MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 19: 1963–1973

    Article  PubMed  CAS  Google Scholar 

  • Yelon D, Home SA, Stainier DY (1999) Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev Biol 214: 23–37

    Article  PubMed  CAS  Google Scholar 

  • Yutzey KE, Rhee JT, Bader D (1994) Expression of the atrial-specific myosin heavy chain AMHC1 and the establishment of anteroposterior polarity in the developing chicken heart. Development 120: 871–883

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stockdale, F.E., Nikovits, W., Espinoza, N.R. (2002). Slow Myosins in Muscle Development. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics