Skip to main content

Endocytosis and Cytoskeleton: Dynamic Encounters Shaping the Portals of Cell Entry

  • Chapter
  • First Online:
Endocytosis in Plants

Abstract

Genetic and pharmacological studies coupled with live imaging have portrayed the crosstalk between cytoskeleton and endocytic pathways of yeast, animals, and plants. Localized actin nucleation at endocytic foci seems to be the driving force for endocytic vesicle formation in yeasts and animals. Actin microfilaments also serve as tracks for intracellular transport of internalized endocytic vesicles. In addition, microtubules serve as the tracks for long range transport of endosomes in mammalian cells. Distinct actin and microtubule associated motor proteins facilitate this transport processes. Depolymerization of cortical actin in plants does not block entry of cargo in cells. However, subsequent trafficking processes are affected indicating a major role of actin in long range transport of endocytic vesicles. In plants involvement of microtubules in endocytic processes specializes both in non-dividing and dividing cells. In interphase cells, cortical microtubules co-align with pinching endocytic vesicles while endoplasmic microtubules direct the trajectories of endocytic materials during mitosis. Microtubules play key roles in delivering secreted and endocytic cargos to the newly assembling cell plate. Thus, with some conserved features of cytoskeletal involvement in endocytosis from yeast and animals, plants shape a unique dialogue between the cytoskeleton and membrane trafficking in order to meet plant-specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affentranger S, Martinelli S, Hahn J, Rossy J, Niggli V (2011) Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. BMC Cell Biol 12:28

    Article  PubMed  CAS  Google Scholar 

  • Aniento F, Emans N, Griffiths G, Gruenberg J (1993) Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J Cell Biol 123:1373–1387

    Article  PubMed  CAS  Google Scholar 

  • Apodaca G, Katz LA, Mostov KE (1994) Receptor-mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 125:67–86

    Article  PubMed  CAS  Google Scholar 

  • Ayscough KR (2000) Endocytosis and the development of cell polarity in yeast require a dynamic F-actin cytoskeleton. Curr Biol 10:1587–1590

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004) Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55:463–473

    Article  PubMed  Google Scholar 

  • Baluška F, Šamaj J, Wojtaszek P, Volkmann D, Menzel D (2003) Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. Plant Physiol 133:482–491

    Article  PubMed  Google Scholar 

  • Banno H, Chua NH (2000) Characterization of the arabidopsis formin-like protein AFH1 and its interacting protein. Plant Cell Physiol 41:617–626

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Aharon M, Benjamin S, Rotblat B, Horowitz M, Avni A (2008) AtEHDs, novel Arabidopsis EH-domain-containing proteins involved in endocytosis. Plant J 55:1025–1038

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Avni A (2009) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611

    Article  PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    PubMed  CAS  Google Scholar 

  • Bloch D, Lavy M, Efrat Y, Efroni I, Bracha-Drori K, Abu-Abied M, Sadot E, Yalovsky S (2005) Ectopic expression of an activated RAC in Arabidopsis disrupts membrane cycling. Mol Biol Cell 16:1913–1927

    Article  PubMed  CAS  Google Scholar 

  • Boutte Y, Crosnier MT, Carraro N, Traas J, Satiat-Jeunemaitre B (2006) The plasma membrane recycling pathway and cell polarity in plants: studies on PIN proteins. J Cell Sci 119:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Caviston JP, Holzbaur EL (2006) Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530–537

    Article  PubMed  CAS  Google Scholar 

  • Chadda R, Howes MT, Plowman SJ, Hancock JF, Parton RG, Mayor S (2007) Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:702–717

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu HM (2004) Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell 16:257–269

    Article  PubMed  CAS  Google Scholar 

  • de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274

    Article  PubMed  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella TW Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrášek J, Seifertová D, Tejos R, Meisel LA, Zažímalová E, Gadella TW Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J (2008) Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci U S A 105:4489–4494

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Mathur J, Hulskamp M, Gadella TW Jr (2005) Microtubule plus-ends reveal essential links between intracellular polarization and localized modulation of endocytosis during division-plane establishment in plant cells. BMC Biol 3:11

    Article  PubMed  Google Scholar 

  • Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH (2001) ADF proteins are involved in the control of flowering and regulate F-actin organization, cell expansion, and organ growth in Arabidopsis. Plant Cell 13:1333–1346

    PubMed  CAS  Google Scholar 

  • Duncan MC, Cope MJ, Goode BL, Wendland B, Drubin DG (2001) Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex. Nat Cell Biol 3:687–690

    Article  PubMed  CAS  Google Scholar 

  • Echarri A, Muriel O, Pavon DM, Azegrouz H, Escolar F, Sanchez-Cabo F, Martinez F, Montoya MC, Llorca O, Del Pozo MA (2012) Caveolar domain organization and trafficking is regulated by Abl kinases and mDia1. J Cell Sci. doi:10.1242/jcs.090134

    PubMed  Google Scholar 

  • Favery B, Chelysheva LA, Lebris M, Jammes F, Marmagne A, De Almeida-Engler J, Lecomte P, Vaury C, Arkowitz RA, Abad P (2004) Arabidopsis formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. Plant Cell 16:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Egile C, Dyachok J, Djakovic S, Nolasco M, Li R, Smith LG (2004) Activation of Arp2/3 complex-dependent actin polymerization by plant proteins distantly related to Scar/WAVE. Proc Natl Acad Sci U S A 101:16379–16384

    Article  PubMed  CAS  Google Scholar 

  • Gekle M, Mildenberger S, Freudinger R, Schwerdt G, Silbernagl S (1997) Albumin endocytosis in OK cells: dependence on actin and microtubules and regulation by protein kinases. Am J Physiol 272:668–677

    Google Scholar 

  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428

    Article  PubMed  CAS  Google Scholar 

  • Geli MI, Riezman H (1996) Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272:533–535

    Article  PubMed  CAS  Google Scholar 

  • Girao H, Geli MI, Idrissi FZ (2008) Actin in the endocytic pathway: from yeast to mammals. FEBS Lett 582:2112–2119

    Article  PubMed  CAS  Google Scholar 

  • Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46–54

    Article  PubMed  CAS  Google Scholar 

  • Golomb L, Abu-Abied M, Belausov E, Sadot E (2008) Different subcellular localizations and functions of Arabidopsis myosin VIII. BMC Plant Biol 8:3

    Article  PubMed  Google Scholar 

  • Grebe M, Xu J, Mobius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Guilherme A, Soriano NA, Bose S, Holik J, Bose A, Pomerleau DP, Furcinitti P, Leszyk J, Corvera S, Czech MP (2004) EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton. J Biol Chem 279:10593–10605

    Article  PubMed  CAS  Google Scholar 

  • Hoshino H, Yoneda A, Kumagai F, Hasezawa S (2003) Roles of actin-depleted zone and preprophase band in determining the division site of higher-plant cells, a tobacco BY-2 cell line expressing GFP-tubulin. Protoplasma 222:157–165

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Blanchoin L, Kovar DR, Staiger CJ (2003) Arabidopsis capping protein (AtCP) is a heterodimer that regulates assembly at the barbed ends of actin filaments. J Biol Chem 278:44832–44842

    Article  PubMed  CAS  Google Scholar 

  • Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530

    Article  PubMed  CAS  Google Scholar 

  • Hussey PJ, Allwood EG, Smertenko AP (2002) Actin-binding proteins in the Arabidopsis genome database: properties of functionally distinct plant actin-depolymerizing factors/cofilins. Philos Trans R Soc Lond B Biol Sci 357:791–798

    Article  PubMed  CAS  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  PubMed  CAS  Google Scholar 

  • Jones MA, Shen JJ, Fu Y, Li H, Yang Z, Grierson CS (2002) The Arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth. Plant Cell 14:763–776

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G (2005) Plant cytokinesis: fission by fusion. Trends Cell Biol 15:277–283

    Article  PubMed  Google Scholar 

  • Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2005) A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:305–320

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Toret CP, Drubin DG (2006) Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 7:404–414

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S (2006) Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3’-kinase-dependent machinery. Mol Biol Cell 17:3689–3704

    Article  PubMed  CAS  Google Scholar 

  • Karahara I, Suda J, Tahara H, Yokota E, Shimmen T, Misaki K, Yonemura S, Staehelin LA, Mineyuki Y (2009) The preprophase band is a localized center of clathrin-mediated endocytosis in late prophase cells of the onion cotyledon epidermis. Plant J 57:819–831

    Article  PubMed  CAS  Google Scholar 

  • King SM (2002) Dyneins motor on in plants. Traffic 3:930–931

    Article  PubMed  CAS  Google Scholar 

  • Kitakura S, Vanneste S, Robert S, Lofke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931

    Article  PubMed  CAS  Google Scholar 

  • Kleine-Vehn J, Leitner J, Zwiewka M, Sauer M, Abas L, Luschnig C, Friml J (2008) Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc Natl Acad Sci U S A 105:17812–17817

    Article  PubMed  CAS  Google Scholar 

  • Konopka CA, Backues SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380

    Article  PubMed  CAS  Google Scholar 

  • Kotchoni SO, Zakharova T, Mallery EL, Le J, El-Assal Sel D, Szymanski DB (2009) The association of the Arabidopsis actin-related protein2/3 complex with cell membranes is linked to its assembly status but not its activation. Plant Physiol 151:2095–2109

    Article  PubMed  CAS  Google Scholar 

  • Lam BC, Sage TL, Bianchi F, Blumwald E (2001) Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Plant Cell 13:2499–2512

    PubMed  CAS  Google Scholar 

  • Lee YR, Giang HM, Liu B (2001) A novel plant kinesin-related protein specifically associates with the phragmoplast organelles. Plant Cell 13:2427–2439

    PubMed  CAS  Google Scholar 

  • Lee YR, Liu B (2004) Cytoskeletal motors in Arabidopsis. Sixty-one kinesins and seventeen myosins. Plant Physiol 136:3877–3883

    Article  PubMed  CAS  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. doi:10.1105/tpc.112.095695

    Google Scholar 

  • Li S, Blanchoin L, Yang Z, Lord EM (2003) The putative Arabidopsis arp2/3 complex controls leaf cell morphogenesis. Plant Physiol 132:2034–2044

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wang X, Yang Y, Li R, He Q, Fang X, Luu DT, Maurel C, Lin J (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 23:3780–3797

    Article  PubMed  CAS  Google Scholar 

  • Lu L, Lee YR, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    Article  PubMed  CAS  Google Scholar 

  • Mathur J, Mathur N, Kirik V, Kernebeck B, Srinivas BP, Hulskamp M (2003) Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 130:3137–3146

    Article  PubMed  CAS  Google Scholar 

  • Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  PubMed  CAS  Google Scholar 

  • Molendijk AJ, Bischoff F, Rajendrakumar CSV, Frim J, Braun M, Gilroy S, Palme K (2001) Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth. EMBO J 20:2779–2788

    Article  PubMed  CAS  Google Scholar 

  • Morris SM, Arden SD, Roberts RC, Kendrick-Jones J, Cooper JA, Luzio JP, Buss F (2002) Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic 3:331–341

    Article  PubMed  CAS  Google Scholar 

  • Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115:4327–4339

    Article  PubMed  CAS  Google Scholar 

  • Nabi IR, Le PU (2003) Caveolae/raft-dependent endocytosis. J Cell Biol 161:673–677

    Article  PubMed  CAS  Google Scholar 

  • Nagawa S, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296:535–539

    Article  PubMed  CAS  Google Scholar 

  • Peremyslov VV, Prokhnevsky AI, Dolja VV (2010) Class XI myosinss are required for development, cell expansion, and F-Actin organization in Arabidopsis. Plant Cell 22:1883–1897

    Article  PubMed  CAS  Google Scholar 

  • Reichelt S, Knight AE, Hodge TP, Baluška F, Šamaj J, Volkmann D, Kendrick-Jones J (1999) Characterization of the unconventional myosin VIII in plant cells and its localization at the post-cytokinetic cell wall. Plant J 19:555–567

    Article  PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev 20:537–542

    Article  PubMed  CAS  Google Scholar 

  • Ross JL, Ali MY, Warshaw DM (2008) Cargo transport: molecular motors navigate a complex cytoskeleton. Curr Opin Cell Biol 20:41–47

    Article  PubMed  CAS  Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    Article  PubMed  Google Scholar 

  • Sattarzadeh A, Franzen R, Schmelzer E (2008) The Arabidopsis class VIII myosin ATM2 is involved in endocytosis. Cell Motil Cytoskeleton 65:457–468

    Article  PubMed  CAS  Google Scholar 

  • Sawa M, Suetsugu S, Sugimoto A, Miki H, Yamamoto M, Takenawa T (2003) Essential role of the C. Elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci 116:1505–1518

    Article  PubMed  CAS  Google Scholar 

  • Smythe E, Ayscough KR (2006) Actin regulation in endocytosis. J Cell Sci 119:4589–4598

    Article  PubMed  CAS  Google Scholar 

  • Soldati T, Schliwa M (2006) Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7:897–908

    Article  PubMed  CAS  Google Scholar 

  • Subtil A, Dautry-Varsat A (1997) Microtubule depolymerization inhibits clathrin coated-pit internalization in non-adherent cell lines while interleukin 2 endocytosis is not affected. J Cell Sci 110(19):2441–2447

    PubMed  CAS  Google Scholar 

  • Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11:33–46

    Article  PubMed  CAS  Google Scholar 

  • Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649

    Article  PubMed  CAS  Google Scholar 

  • Szymanski DB (2005) Breaking the WAVE complex: the point of Arabidopsis trichomes. Curr Opin Plant Biol 8:103–112

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Chaudhry F, Ruzicka DR, Meagher RB, Staiger CJ, Day B (2009) Arabidopsis actin-depolymerizing factor AtADF4 mediates defense signal transduction triggered by the Pseudomonas syringae effector AvrPphB. Plant Physiol 150:815–824

    Article  PubMed  CAS  Google Scholar 

  • Vanstraelen M, Torres Acosta JA, De Veylder L, Inze D, Geelen D (2004) A plant-specific subclass of C-terminal kinesins contains a conserved a-type cyclin-dependent kinase site implicated in folding and dimerization. Plant Physiol 135:1417–1429

    Article  PubMed  CAS  Google Scholar 

  • Vanstraelen M, Van Damme D, De Rycke R, Mylle E, Inze D, Geelen D (2006) Cell cycle-dependent targeting of a kinesin at the plasma membrane demarcates the division site in plant cells. Curr Biol 16:308–314

    Article  PubMed  CAS  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Teng Y, Wang Q, Li X, Sheng X, Zheng M, Šamaj J, Baluška F, Lin J (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Wang YS, Motes CM, Mohamalawari DR, Blancaflor EB (2004) Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots. Cell Motil Cytoskeleton 59:79–93

    Article  PubMed  CAS  Google Scholar 

  • Winter DC, Choe EY, Li R (1999) Genetic dissection of the budding yeast Arp2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci U S A 96:7288–7293

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    Article  PubMed  CAS  Google Scholar 

  • Xu XM, Zhao Q, Rodrigo-Peiris T, Brkljacic J, He CS, Muller S, Meier I (2008) RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc Natl Acad Sci U S A 105:18637–18642

    Article  PubMed  CAS  Google Scholar 

  • Yarar D, Waterman-Storer CM, Schmid SL (2005) A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol Biol Cell 16:964–975

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Dhonukshe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baral, A., Dhonukshe, P. (2012). Endocytosis and Cytoskeleton: Dynamic Encounters Shaping the Portals of Cell Entry. In: Šamaj, J. (eds) Endocytosis in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32463-5_16

Download citation

Publish with us

Policies and ethics