Skip to main content

Nuclear Molecular Motors for Active, Directed Chromatin Movement in Interphase Nuclei

  • Chapter
  • First Online:
Advances in Nuclear Architecture

Abstract

The nucleus is a highly organised organelle that contains structural elements which interact and control the genome. A few studies have started to undercover a role for actin and myosin isoforms, found in the nucleus, as nuclear motors that actively move individual gene loci, clusters of genes and whole chromosomes within the nucleoplasm. This chapter reviews these few studies, discusses the presence of proteins potentially part of acto-myosin nuclear motors and asks where these studies should aim to head in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Pollard TD, Eisenberg E, Korn ED, Kielley WW (1973) Inhibition of Mg ++ ATPase activity of actin-activated Acanthamoeba myosin by muscle troponin-tropomyosin: implications for the mechanism of control of amoeba motility and muscle contraction. Biochem Biophys Res Commun 51:693–698

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Korn ED (1973) Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity. J Biol Chem 248:4691–4697

    PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794

    PubMed  CAS  Google Scholar 

  • Bahler M (2000) Are class III and class IX myosins motorized signalling molecules? Biochim Biophys Acta 1496:52–59

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406:1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Klebl BM, Tong AH, Webb BA, Leeuw T et al (2000) A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148:353–362

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Shevchenko A, Li R (2000) Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148:363–373

    Article  PubMed  CAS  Google Scholar 

  • Lee WL, Bezanilla M, Pollard TD (2000) Fission yeast myosin-I, Myo1p, stimulates actin ­assembly by Arp2/3 complex and shares functions with WASp. J Cell Biol 151:789–800

    Article  PubMed  CAS  Google Scholar 

  • Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496:3–22

    Article  PubMed  CAS  Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533

    Article  PubMed  CAS  Google Scholar 

  • McDonald D, Carrero G, Andrin C, de Vries G, Hendzel MJ (2006) Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J Cell Biol 172:541–552

    Article  PubMed  CAS  Google Scholar 

  • de Lanerolle P, Johnson T, Hofmann WA (2005) Actin and myosin I in the nucleus: what next? Nat Struct Mol Biol 12:742–746

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Johnson T, Klapczynski M, Fan JL, de Lanerolle P (2006a) From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol 84:418–426

    Article  PubMed  CAS  Google Scholar 

  • Castano E, Philimonenko VV, Kahle M, Fukalova J, Kalendova A et al (2010) Actin complexes in the cell nucleus: new stones in an old field. Histochem Cell Biol 133:607–626

    Article  PubMed  CAS  Google Scholar 

  • Dion V, Shimada K, Gasser SM (2010) Actin-related proteins in the nucleus: life beyond ­chromatin remodelers. Curr Opin Cell Biol

    Google Scholar 

  • Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4:e138

    Article  PubMed  CAS  Google Scholar 

  • Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL et al (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5:e192

    Article  PubMed  CAS  Google Scholar 

  • Dundr M, Ospina JK, Sung MH, John S, Upender M et al (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Chuang CH, Carpenter AE, Fuchsova B, Johnson T, de Lanerolle P et al (2006) Long-range ­directional movement of an interphase chromosome site. Curr Biol 16:825–831

    Article  PubMed  CAS  Google Scholar 

  • Mehta IS (2005) Genome organisation in senescent cells. Master’s dissertation

    Google Scholar 

  • Mehta IS, Elcock LS, Amira M, Kill IR, Bridger JM (2008) Nuclear motors and nuclear structures containing A-type lamins and emerin: is there a functional link? Biochem Soc Trans 36:1384–1388

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Kwon YS, Nunez E, Cardamone MD, Hutt KR et al (2008) Enhancing nuclear ­receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci U S A 105:19199–19204

    Article  PubMed  CAS  Google Scholar 

  • Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11:R5

    Article  PubMed  CAS  Google Scholar 

  • Lane NJ (1969) Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J Cell Biol 40:286–291

    Article  PubMed  CAS  Google Scholar 

  • Clark TG, Rosenbaum JL (1979) An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell 18:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Nakayasu H, Ueda K (1983) Association of actin with the nuclear matrix from bovine lymphocytes. Exp Cell Res 143:55–62

    Article  PubMed  CAS  Google Scholar 

  • Jockusch BM, Becker M, Hindennach I, Jockusch E (1974) Slime mould actin: homology to vertebrate actin and presence in the nucleus. Exp Cell Res 89:241–246

    Article  PubMed  CAS  Google Scholar 

  • Clark TG, Merriam RW (1977) Diffusible and bound actin nuclei of Xenopus laevis oocytes. Cell 12:883–891

    Article  PubMed  CAS  Google Scholar 

  • Egly JM, Miyamoto NG, Moncollin V, Chambon P (1984) Is actin a transcription initiation factor for RNA polymerase B? Embo J 3:2363–2371

    PubMed  CAS  Google Scholar 

  • Rungger D, Rungger-Brandle E, Chaponnier C, Gabbiani G (1979) Intranuclear injection of ­anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature 282:320–321

    Article  PubMed  CAS  Google Scholar 

  • Scheer U, Hinssen H, Franke WW, Jockusch BM (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39:111–122

    Article  PubMed  CAS  Google Scholar 

  • Ankenbauer T, Kleinschmidt JA, Walsh MJ, Weiner OH, Franke WW (1989) Identification of a widespread nuclear actin binding protein. Nature 342:822–825

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Wang W, Rando OJ, Xue Y, Swiderek K et al (1998) Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95:625–636

    Article  PubMed  CAS  Google Scholar 

  • Gonsior SM, Platz S, Buchmeier S, Scheer U, Jockusch BM et al (1999) Conformational ­difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J Cell Sci 112(Pt 6):797–809

    PubMed  CAS  Google Scholar 

  • Schoenenberger CA, Buchmeier S, Boerries M, Sutterlin R, Aebi U et al (2005) Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J Struct Biol 152:157–168

    Article  PubMed  CAS  Google Scholar 

  • Wang IF, Chang HY, Shen CK (2006) Actin-based modeling of a transcriptionally competent nuclear substructure induced by transcription inhibition. Exp Cell Res 312:3796–3807

    Article  PubMed  CAS  Google Scholar 

  • Cruz JR, Diaz M, de la Espina S (2009) Subnuclear compartmentalization and function of actin and nuclear myosin I in plants. Chromosoma 118:193–207

    Article  PubMed  CAS  Google Scholar 

  • Hofmann W, Reichart B, Ewald A, Muller E, Schmitt I et al (2001) Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 152:895–910

    Article  PubMed  CAS  Google Scholar 

  • Kiseleva E, Drummond SP, Goldberg MW, Rutherford SA, Allen TD et al (2004) Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J Cell Sci 117:2481–2490

    Article  PubMed  CAS  Google Scholar 

  • Bohnsack MT, Stuven T, Kuhn C, Cordes VC, Gorlich D (2006) A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat Cell Biol 8:257–263

    Article  PubMed  CAS  Google Scholar 

  • Jockusch BM, Schoenenberger CA, Stetefeld J, Aebi U (2006) Tracking down the different forms of nuclear actin. Trends Cell Biol 16:391–396

    Article  PubMed  CAS  Google Scholar 

  • Egelman EH (2003) A tale of two polymers: new insights into helical filaments. Nat Rev Mol Cell Biol 4:621–630

    Article  PubMed  CAS  Google Scholar 

  • Gedge LJ, Morrison EE, Blair GE, Walker JH (2005) Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5. Exp Cell Res 303:229–239

    Article  PubMed  CAS  Google Scholar 

  • Muratani M, Gerlich D, Janicki SM, Gebhard M, Eils R et al (2002) Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 4:106–110

    Article  PubMed  CAS  Google Scholar 

  • Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71:755–781

    Article  PubMed  CAS  Google Scholar 

  • Pederson T (2000) Half a century of “the nuclear matrix”. Mol Biol Cell 11:799–805

    PubMed  CAS  Google Scholar 

  • Zhang S, Buder K, Burkhardt C, Schlott B, Gorlach M et al (2002) Nuclear DNA helicase II/RNA helicase A binds to filamentous actin. J Biol Chem 277:843–853

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E et al (2004) Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol 6:1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Philimonenko VV, Zhao J, Iben S, Dingova H, Kysela K et al (2004) Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol 6:1165–1172

    Article  PubMed  CAS  Google Scholar 

  • Hu P, Wu S, Hernandez N (2004) A role for beta-actin in RNA polymerase III transcription. Genes Dev 18:3010–3015

    Article  PubMed  CAS  Google Scholar 

  • Kukalev A, Nord Y, Palmberg C, Bergman T, Percipalle P (2005) Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat Struct Mol Biol 12:238–244

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Jonsson A, Nashchekin D, Karlsson C, Bergman T et al (2002) Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res 30:1725–1734

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Zhao J, Pope B, Weeds A, Lindberg U et al (2001) Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J Cell Biol 153:229–236

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa JI (2000) Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells 5:289–307

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Song K (2007) Actin dysfunction activates ERK1/2 and delays entry into mitosis in mammalian cells. Cell Cycle 6:1487–1495

    PubMed  CAS  Google Scholar 

  • Andrin C, Hendzel MJ (2004) F-actin-dependent insolubility of chromatin-modifying components. J Biol Chem 279:25017–25023

    Article  PubMed  CAS  Google Scholar 

  • Gieni RS, Hendzel MJ (2008) Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem 104:1964–1987

    Article  PubMed  CAS  Google Scholar 

  • Gieni RS, Hendzel MJ (2009) Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 87:283–306

    Article  PubMed  CAS  Google Scholar 

  • Holaska JM, Kowalski AK, Wilson KL (2004) Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol 2:E231

    Article  PubMed  CAS  Google Scholar 

  • Holaska JM, Wilson KL (2007) An emerin “proteome”: purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene ­regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46:8897–8908

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Kang MJ, Kwon SJ, Kwon YK, Kim KW et al (2007) Expansion of chromosome territories with chromatin decompaction in BAF53-depleted interphase cells. Mol Biol Cell 18:4013–4023

    Article  PubMed  CAS  Google Scholar 

  • Sasseville AM, Langelier Y (1998) In vitro interaction of the carboxy-terminal domain of lamin A with actin. FEBS Lett 425:485–489

    Article  PubMed  CAS  Google Scholar 

  • Dingova H, Fukalova J, Maninova M, Philimonenko VV, Hozak P (2009) Ultrastructural ­localization of actin and actin-binding proteins in the nucleus. Histochem Cell Biol 131:425–434

    Article  PubMed  CAS  Google Scholar 

  • Hagen SJ, Kiehart DP, Kaiser DA, Pollard TD (1986) Characterization of monoclonal antibodies to Acanthamoeba myosin-I that cross-react with both myosin-II and low molecular mass nuclear proteins. J Cell Biol 103:2121–2128

    Article  PubMed  CAS  Google Scholar 

  • Berrios M, Fisher PA, Matz EC (1991) Localization of a myosin heavy chain-like polypeptide to Drosophila nuclear pore complexes. Proc Natl Acad Sci U S A 88:219–223

    Article  PubMed  CAS  Google Scholar 

  • Pederson T, Aebi U (2002) Actin in the nucleus: what form and what for? J Struct Biol 140:3–9

    Article  PubMed  CAS  Google Scholar 

  • Nowak G, Pestic-Dragovich L, Hozak P, Philimonenko A, Simerly C et al (1997) Evidence for the presence of myosin I in the nucleus. J Biol Chem 272:17176–17181

    Article  PubMed  CAS  Google Scholar 

  • Pestic-Dragovich L, Stojiljkovic L, Philimonenko AA, Nowak G, Ke Y et al (2000) A myosin I isoform in the nucleus. Science 290:337–341

    Article  PubMed  CAS  Google Scholar 

  • Kahle M, Pridalova J, Spacek M, Dzijak R, Hozak P (2007) Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates. Histochem Cell Biol 127:139–148

    Article  PubMed  CAS  Google Scholar 

  • Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio PC et al (2006) Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell 23:749–755

    Article  PubMed  CAS  Google Scholar 

  • Jung EJ, Liu G, Zhou W, Chen X (2006) Myosin VI is a mediator of the p53-dependent cell ­survival pathway. Mol Cell Biol 26:2175–2186

    Article  PubMed  CAS  Google Scholar 

  • Cameron RS, Liu C, Mixon AS, Pihkala JP, Rahn RJ et al (2007) Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton 64:19–48

    Article  PubMed  CAS  Google Scholar 

  • Pranchevicius MC, Baqui MM, Ishikawa-Ankerhold HC, Lourenco EV, Leao RM et al (2008) Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil Cytoskeleton 65:441–456

    Article  PubMed  CAS  Google Scholar 

  • Lindsay AJ, McCaffrey MW (2009a) Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil Cytoskeleton 66:1057–1072

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Richards TA, de Lanerolle P (2009) Ancient animal ancestry for nuclear myosin. J Cell Sci 122:636–643

    Article  PubMed  CAS  Google Scholar 

  • Roberts R, Lister I, Schmitz S, Walker M, Veigel C et al (2004) Myosin VI: cellular functions and motor properties. Philos Trans R Soc Lond B Biol Sci 359:1931–1944

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS et al (2001) Myosin-I nomenclature. J Cell Biol 155:703–704

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, Vargas GM, Ramchandran R, Stojiljkovic L, Goodrich JA et al (2006b) Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J Cell Biochem 99:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Lindsay AJ, McCaffrey MW (2009) Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil Cytoskeleton

    Google Scholar 

  • Fomproix N, Percipalle P (2004) An actin-myosin complex on actively transcribing genes. Exp Cell Res 294:140–148

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (2003) Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev 17:1691–1702

    Article  PubMed  CAS  Google Scholar 

  • Cavellan E, Asp P, Percipalle P, Farrants AK (2006) The WSTF-SNF2h chromatin remodeling ­complex interacts with several nuclear proteins in transcription. J Biol Chem 281:16264–16271

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Farrants AK (2006) Chromatin remodelling and transcription: be-WICHed by nuclear myosin 1. Curr Opin Cell Biol 18:267–274

    Article  PubMed  CAS  Google Scholar 

  • Percipalle P, Fomproix N, Cavellan E, Voit R, Reimer G et al (2006) The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep 7:525–530

    PubMed  CAS  Google Scholar 

  • Kysela K, Philimonenko AA, Philimonenko VV, Janacek J, Kahle M et al (2005) Nuclear ­distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem Cell Biol 124:347–358

    Article  PubMed  CAS  Google Scholar 

  • Obrdlik A, Louvet E, Naschekin D, Kiseleva E, Fahrenkrog B et al (2010) Nuclear myosin 1 is in a complex with mature rRNA transcripts and associates with the nuclear pore basket. FASEB J 24:146–157

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Ragnauth CD, Skepper JN, Worth NF, Warren DT et al (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687

    Article  PubMed  CAS  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KF, Shelby RD (1999) Using time-lapse confocal microscopy for analysis of centromere dynamics in human cells. Methods Cell Biol 58:183–202

    Article  PubMed  CAS  Google Scholar 

  • Weipoltshammer K, Schofer C, Almeder M, Philimonenko VV, Frei K et al (1999) Intranuclear anchoring of repetitive DNA sequences: centromeres, telomeres, and ribosomal DNA. J Cell Biol 147:1409–1418

    Article  PubMed  CAS  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J et al (2000) Large-scale chromatin ­organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576

    PubMed  CAS  Google Scholar 

  • Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in ­quiescent and senescent human fibroblasts. Curr Biol 10:149–152

    Article  PubMed  CAS  Google Scholar 

  • Brown KE, Baxter J, Graf D, Merkenschlager M, Fisher AG (1999) Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell 3:207–217

    Article  PubMed  CAS  Google Scholar 

  • Skalnikova M, Kozubek S, Lukasova E, Bartova E, Jirsova P et al (2000) Spatial arrangement of genes, centromeres and chromosomes in human blood cell nuclei and its changes during the cell cycle, differentiation and after irradiation. Chromosome Res 8:487–499

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS (2001) Visualizing chromosome dynamics with GFP. Trends Cell Biol 11:250–257

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Belmont AS (2001) Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 3:134–139

    Article  PubMed  CAS  Google Scholar 

  • Levi V, Ruan Q, Plutz M, Belmont AS, Gratton E (2005) Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys J 89:4275–4285

    Article  PubMed  CAS  Google Scholar 

  • Chuang CH, Belmont AS (2007) Moving chromatin within the interphase nucleus-controlled transitions? Semin Cell Dev Biol 18:698–706

    Article  PubMed  CAS  Google Scholar 

  • Rubtsov MA, Terekhov SM, Razin SV, Iarovaia OV (2008) Repositioning of ETO gene in cells treated with VP-16, an inhibitor of DNA-topoisomerase II. J Cell Biochem 104:692–699

    Article  PubMed  CAS  Google Scholar 

  • Ondrej V, Lukasova E, Falk M, Kozubek S (2007) The role of actin and microtubule networks in plasmid DNA intracellular trafficking. Acta Biochim Pol 54:657–663

    PubMed  CAS  Google Scholar 

  • Ondrej V, Lukasova E, Krejci J, Matula P, Kozubek S (2008a) Lamin A/C and polymeric actin in genome organization. Mol Cells 26:356–361

    PubMed  CAS  Google Scholar 

  • Ondrej V, Lukasova E, Krejci J, Kozubek S (2008b) Intranuclear trafficking of plasmid DNA is mediated by nuclear polymeric proteins lamins and actin. Acta Biochim Pol 55:307–315

    PubMed  CAS  Google Scholar 

  • Barr ML, Bertram EG (1951) The behaviour of nuclear structures during depletion and restoration of Nissl material in motor neurons. J Anat 85:171–181

    PubMed  CAS  Google Scholar 

  • Borden J, Manuelidis L (1988) Movement of the X chromosome in epilepsy. Science 242:1687–1691

    Article  PubMed  CAS  Google Scholar 

  • Croft JA, Bridger JM, Boyle S, Perry P, Teague P et al (1999) Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol 145:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Meaburn KJ, Newbold RF, Bridger JM (2008) Positioning of human chromosomes in murine cell hybrids according to synteny. Chromosoma 117:579–591

    Article  PubMed  Google Scholar 

  • Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE et al (2007) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 6:139–153

    Article  PubMed  CAS  Google Scholar 

  • Mehta IS, Figgitt M, Clements CS, Kill IR, Bridger JM (2007) Alterations to nuclear architecture and genome behavior in senescent cells. Ann N Y Acad Sci 1100:250–263

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM Volpi (2010) Fluorescence in situ Hybridization (FISH), Molecular methods in molecular biology. Humana Press, USA

    Google Scholar 

  • Wiegant JB, Raap AK; Tanke HJ, Dirks RW (2010) Visualizing nucleic acids in living cells by fluorescence in vivo hybridization. In: Bridger JM, Volpi EV (eds) Fluorescence in situ Hybridization (FISH), Methods in molecular biology. Humana Press, USA

    Google Scholar 

  • Kocanova S, Kerr EA, Rafique S, Boyle S, Katz E et al (2010) Activation of estrogen-responsive genes does not require their nuclear co-localization. PLoS Genet 6:e1000922

    Article  PubMed  CAS  Google Scholar 

  • Brickner JH, Walter P (2004) Gene recruitment of the activated INO1 locus to the nuclear ­membrane. PLoS Biol 2:e342

    Article  PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    Article  PubMed  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F et al (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778

    Article  PubMed  CAS  Google Scholar 

  • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ (2009) Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev 23:2610–2624

    Article  PubMed  CAS  Google Scholar 

  • Laine JP, Singh BN, Krishnamurthy S, Hampsey M (2009) A physiological role for gene loops in yeast. Genes Dev 23:2604–2609

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Shimada K, Oma Y, Kalck V, Akimura K et al (2010) Actin-related protein Arp6 ­influences H2A.Z-dependent and -independent gene expression and links ribosomal protein genes to nuclear pores. PLoS Genet 6:e1000910

    Article  PubMed  CAS  Google Scholar 

  • Hofmann WA, de Lanerolle P (2006) Nuclear actin: to polymerize or not to polymerize. J Cell Biol 172:495–496

    Article  PubMed  CAS  Google Scholar 

  • Chikashige Y, Haraguchi T, Hiraoka Y (2007) Another way to move chromosomes. Chromosoma 116:497–505

    Article  PubMed  Google Scholar 

  • Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM et al (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751

    Article  PubMed  CAS  Google Scholar 

  • Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122:577–586

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Brunel University Progeria Research Fund for partially funding ISM in her Ph.D. studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna M. Bridger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Bridger, J.M., Mehta, I.S. (2011). Nuclear Molecular Motors for Active, Directed Chromatin Movement in Interphase Nuclei. In: Adams, N., Freemont, P. (eds) Advances in Nuclear Architecture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9899-3_5

Download citation

Publish with us

Policies and ethics