Skip to main content

Animal Models Systems of Cancer for Preclinical Trials

  • Chapter
  • First Online:
Pharmacotherapeutic Botanicals for Cancer Chemoprevention

Abstract

Over the recent preceding few decades, cancer has existed as the second leading cause of death after cardiovascular diseases globally. Therefore, effective therapies are required to enhance the survival rate and lead a quality life for cancer patients. Preclinical trials are a prerequisite for the development of effective cancer therapeutics. However, direct experimentation on human subjects cannot be undertaken due to several ethical, safety, and practical issues. Hence, preclinical animal model systems have become an indispensable part, since these allow to decipher the highly complex cascades responsible for human cancer, and may help in the prediction of safety and efficacy of anticancer drug or therapy for successful translation into clinical trials. Mouse models mostly have utility in preclinical trials. While the other systems utilized include zebrafish, Drosophila, and C. elegans models. These alternative preclinical models give complimentary information for the development of cancer therapeutics. Nevertheless, companion preclinical models like dog and swine are underexploited though these can fasten to fill the gap information required between preclinical and clinical trials of cancer. The aim is to mimic this deadly and complicated disease in animal models and reflect the situation in humans for effective therapeutics. This chapter throws light on various animal models used in preclinical trials of cancer, their significance, and challenges associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cekanova M, Rathore K (2014) Animal models and therapeutic molecular targets of cancer: utility and limitations. Drug Des Devel Ther 8:1911–1921

    PubMed  PubMed Central  Google Scholar 

  2. Day CP, Merlino G, Van Dyke T et al (2015) Preclinical mouse cancer models: a maze of opportunities and challenges. Cell 163(1):39–53

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Dhandapani M, Goldman A (2017) Preclinical cancer models and biomarkers for drug development: new technologies and emerging tools. J Mol Biomark Diagn 8(5):356

    PubMed  PubMed Central  Google Scholar 

  4. Cagan RL, Zon LI, White RM et al (2019) Modeling cancer with flies and fish. Dev Cell 49(3):317–324

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Kirienko NV, Mani K, Fay DS et al (2010) Cancer models in caenorhabditis elegans. Dev Dyn 239(5):1413–1448

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Flisikowska T, Kind A, Schnieke A et al (2016) Pigs as models of human cancers. Theriogenology 86(1):433–437

    PubMed  CAS  Google Scholar 

  7. Curt GA (1994) The use of animal models in cancer drug discovery and development. Stem Cells 12(1):23–29

    PubMed  CAS  Google Scholar 

  8. Flanagan SP (1966) 'Nude', a new hairless gene with pleiotropic effects in the mouse. Genet Res 8(3):295–309

    PubMed  CAS  Google Scholar 

  9. Pantelouris EM, Hair J (1970) Thymus dysgenesis in nude (nu nu) mice. J Embryol Exp Morphol 24(3):615–623

    PubMed  CAS  Google Scholar 

  10. Povlsen CO, Rygaard J (1971) Heterotransplantation of human adenocarcinomas of the colon and rectum to the mouse mutant Nude. A study of nine consecutive transplantations. Acta Pathol Microbiol Scand A 79(2):159–169

    PubMed  CAS  Google Scholar 

  11. Giovanella BC, Stehlin JS, Williams LJ Jr et al (1974) Heterotransplantation of human malignant tumors in "nude" thymusless mice. II. Malignant tumors induced by injection of cell cultures derived from human solid tumors. J Natl Cancer Inst 52(3):921–930

    PubMed  CAS  Google Scholar 

  12. Karlsson EK, Lindblad-Toh K (2008) Leader of the pack: gene mapping in dogs and other model organisms. Nat Rev Genet 9(9):713–725

    PubMed  CAS  Google Scholar 

  13. Payne E, Look T (2009) Zebrafish modelling of leukaemias. Br J Haematol 146(3):247–256

    PubMed  CAS  Google Scholar 

  14. Amatruda JF, Shephard JL, Stern HM et al (2002) Zebrafish as a cancer model system. Cancer Cell 1(3):229–231

    PubMed  CAS  Google Scholar 

  15. Parng C, Seng WL, Semino C et al (2002) Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1(1 Pt 1):41–48

    PubMed  CAS  Google Scholar 

  16. Langenau DM, Traver D, Ferrando AA et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890

    PubMed  CAS  Google Scholar 

  17. Konantz M, Balci TB, Hartwig UF et al (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137

    PubMed  Google Scholar 

  18. Foley JE, Maeder ML, Pearlbeg J et al (2009) Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat Protoc 4(12):1855–1867

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Cade L, Reyon D, Hwang WY et al (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40(16):8001–8010

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Schook LB, Beever JE, Rogers J et al (2005) Swine genome sequencing consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genomics 6(4):251–255

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Carlson DF, Tan W, Lilico SG et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Innes JR, Parry HB, Berger J et al (1946) Record of lymphadenosis (lymphatic leukaemia) in a dog treated with urethane. Br Vet J 102(12):389–393

    PubMed  CAS  Google Scholar 

  23. Potter CJ, Turenchalk GS, Xu T et al (2000) Drosophila in cancer research. An expanding role. Trends Genet 16(1):33–39

    PubMed  CAS  Google Scholar 

  24. Gladstone M, Su TT (2011) Chemical genetics and drug screening in Drosophila cancer models. J Genet Genomics 38(10):497–504

    PubMed  CAS  Google Scholar 

  25. Turner PV, Brabb T, Pekow C et al (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Fox J, Barthold SD et al (eds) (2007) The mouse in biomedical research. Academic Press, London

    Google Scholar 

  27. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108(2):135–144

    PubMed  Google Scholar 

  28. Yee NS (2015) Animal models of cancer biology. Cancer Growth Metastasis 8(Suppl 1):115–118

    PubMed  PubMed Central  Google Scholar 

  29. Khan AQ, Siveen KS (2019) Role of animal research in human malignancies. In: Azmi A (ed) Animal models in cancer drug discovery. Elsevier, St Louis, pp 1–29

    Google Scholar 

  30. Ishida K, Tomita H, Hirata A et al (2017) Current mouse models of oral squamous cell carcinoma: genetic and chemically induced models. Oral Oncol 73:16–20

    PubMed  CAS  Google Scholar 

  31. Weidner C, Steinfath M, Opitz E et al (2016) Defining the optimal animal model for translational research using gene set enrichment analysis. EMBO Mol Med 8(8):831–838

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Gengenbacher N, Singhal M, Augustin HG et al (2017) Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer 17(12):751–765

    PubMed  CAS  Google Scholar 

  33. Lubet RA, Zhang Z, Wang Y et al (2004) Chemoprevention of lung cancer in transgenic mice. Chest 125(5):144S–147S

    PubMed  CAS  Google Scholar 

  34. Thompson HJ, Singh M (2000) Rat models of premalignant breast disease. J Mammary Gland Biol Neoplasia 5(4):409–420

    PubMed  CAS  Google Scholar 

  35. Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19(6):643–664

    PubMed  CAS  Google Scholar 

  36. Vitale G, Gaudenzi G, Circelli L et al (2017) Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer 24(1):R1–R12

    PubMed  CAS  Google Scholar 

  37. Jean-Quartier C, Jeanquartier F, Jurisica I et al (2018) In silico cancer research towards 3R. BMC Cancer 18(1):408–408

    PubMed  PubMed Central  Google Scholar 

  38. Kersten K, De Visser KE, Van Miltenburg MH et al (2017) Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med 9(2):137–153

    PubMed  CAS  Google Scholar 

  39. Honek J (2017) Preclinical research in drug development. Medical Writing 26:5–8

    Google Scholar 

  40. Prahallad A, Sun C, Huang S et al (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483(7387):100–103

    PubMed  CAS  Google Scholar 

  41. Marangoni E, Vincent-Salmon A, Auger N et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998

    PubMed  CAS  Google Scholar 

  42. Myers JN, Holsinger FC, Jasser SA et al (2002) An orthotopic nude mouse model of oral tongue squamous cell carcinoma. Clin Cancer Res 8(1):293–298

    PubMed  Google Scholar 

  43. Sennino B, Ishiguro-Oonuma T, Wei Y et al (2012) Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov 2(3):270–287

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Kim EJ, Shin M, Park H et al (2009) Oral administration of 3,3’-diindolylmethane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. J Nutr 139(12):2373–2379

    PubMed  CAS  Google Scholar 

  45. Johansen C, Vestergaard C, Kragballe K et al (2009) MK2 regulates the early stages of skin tumor promotion. Carcinogenesis 30(12):2100–2108

    PubMed  CAS  Google Scholar 

  46. Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7(5):469–483

    PubMed  CAS  Google Scholar 

  47. Jonkers J, Meuwissen R, Van der Gulden H et al (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29(4):418–425

    PubMed  CAS  Google Scholar 

  48. Szadvari I, Krizanova O, Babula P et al (2016) Athymic nude mice as an experimental model for cancer treatment. Physiol Res 65(Suppl 4):S441–S453

    PubMed  CAS  Google Scholar 

  49. Okada S, Vaeteewoottacharn K, Kariya R et al (2019) Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cells 8(8):E889

    PubMed  Google Scholar 

  50. Wartha K, Herting F, Hasmann M et al (2014) Fit-for purpose use of mouse models to improve predictivity of cancer therapeutics evaluation. Pharmacol Ther 142(3):351–361

    PubMed  CAS  Google Scholar 

  51. Clohessy JG, Pandolfi PP et al (2015) Mouse hospital and co-clinical trial project--from bench to bedside. Nat Rev Clin Oncol 12(8):491–498

    PubMed  Google Scholar 

  52. Girotti MR, Gremel G, Lee R et al (2016) Application of sequencing, liquid biopsies, and patient-derived xenografts for personalized medicine in melanoma. Cancer Discov 6(3):286–299

    PubMed  CAS  Google Scholar 

  53. Bieerkehazhi S, Chen Z, Zhao Y et al (2017) Novel Src/Abl tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abl signaling. Oncotarget 8(1):1469–1480

    PubMed  Google Scholar 

  54. Gómez-Cuadrado L, Tracey N, Ma R et al (2017) Mouse models of metastasis: progress and prospects. Dis Model Mech 10(9):1061–1074

    PubMed  PubMed Central  Google Scholar 

  55. Guo W, Zhang S, Liu S et al (2015) Establishment of a novel orthotopic model of breast cancer metastasis to the lung. Oncol Rep 33(6):2992–2998

    PubMed  CAS  Google Scholar 

  56. Suggitt M, Bibby MC (2005) 50 years of preclinical anticancer drug screening: empirical to target-driven approaches. Clin Cancer Res 11(3):971–981

    PubMed  CAS  Google Scholar 

  57. Hanahan D, Wagner EF, Palmiter RD et al (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21(18):2258–2270

    PubMed  CAS  Google Scholar 

  58. Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221

    PubMed  CAS  Google Scholar 

  59. Andersen NJ, Boguslawski EB, Kuk CY et al (2015) Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol 47(1):71–80

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Heyer J, Kwong LN, Lowe SW et al (2010) Non-germline genetically engineered mouse models for translational cancer research. Nat Rev Cancer 10(7):470–480

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Tratar UL, Horvat S, Cemazar M (2018) Transgenic Mouse Models in Cancer Research. Front Oncol 8:268–268

    Google Scholar 

  62. Attardi LD, Jacks T (1999) The role of p53 in tumour suppression: lessons from mouse models. Cell Mol Life Sci 55(1):48–63

    PubMed  CAS  Google Scholar 

  63. Langheinrich U, Hennen E, Stott G et al (2002) Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12(23):2023–2028

    PubMed  CAS  Google Scholar 

  64. Patton EE, Widlund HR, Kutok JL et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254

    PubMed  CAS  Google Scholar 

  65. Haldi M, Ton C, Seng WL et al (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9(3):139–151

    PubMed  Google Scholar 

  66. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2(11):2918–2923

    PubMed  CAS  Google Scholar 

  67. Stoletov K, Valerie M, Lester RD et al (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104(44):17406–17411

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Corkery DP, Dellaire G, Berman JN et al (2011) Leukaemia xenotransplantation in zebrafish--chemotherapy response assay in vivo. Br J Haematol 153(6):786–789

    PubMed  CAS  Google Scholar 

  69. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6(4):339–346

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Postovit LM, Seftor EA, Seftor RE et al (2007) Targeting nodal in malignant melanoma cells. Expert Opin Ther Targets 11(4):497–505

    PubMed  CAS  Google Scholar 

  71. Yen J, White RM, Stemple DL (2014) Zebrafish models of cancer: progress and future challenges. Curr Opin Genet Dev 24(100):38–45

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18(8):781–792

    PubMed  CAS  Google Scholar 

  73. MacEwen EG, Patnaik AK, Harvey HJ et al (1982) Estrogen receptors in canine mammary tumors. Cancer Res 42(6):2255–2259

    PubMed  CAS  Google Scholar 

  74. Uva P, Aurisicchio L, Watters J et al (2009) Comparative expression pathway analysis of human and canine mammary tumors. BMC Genomics 10:135

    PubMed  PubMed Central  Google Scholar 

  75. Pinho SS, Carvalho S, Cabral J et al (2012) Canine tumors: a spontaneous animal model of human carcinogenesis. Transl Res 159(3):165–172

    PubMed  Google Scholar 

  76. Nieto A, Pѐrez-Alenza MD, Castillo D et al (2003) BRCA1 expression in canine mammary dysplasias and tumours: relationship with prognostic variables. J Comp Pathol 128(4):260–268

    PubMed  CAS  Google Scholar 

  77. Antuofermo E, Miller MA, Pirino S et al (2007) Spontaneous mammary intraepithelial lesions in dogs--a model of breast cancer. Cancer Epidemiol Biomark Prev 16(11):2247–2256

    CAS  Google Scholar 

  78. Withrow SJ, Vail DM, Page RL et al (2013) Withrow & MacEwen’s small animal clinical oncology. Saunders, St Louis

    Google Scholar 

  79. Gardner HL, Fenger JM, London CA et al (2016) Dogs as a model for cancer. Annu Rev Anim Biosci 4:199–222

    PubMed  CAS  Google Scholar 

  80. LaRue SM, Withrow SJ, Powers BE et al (1989) Limb-sparing treatment for osteosarcoma in dogs. J Am Vet Med Assoc 195(12):1734–1744

    PubMed  CAS  Google Scholar 

  81. Withrow SJ, Thrall DE, Straw RC et al (1993) Intra-arterial cisplatin with or without radiation in limb-sparing for canine osteosarcoma. Cancer 71(8):2484–2490

    PubMed  CAS  Google Scholar 

  82. Rowell JL, McCarthy DO, Alvarez CE et al (2011) Dog models of naturally occurring cancer. Trends Mol Med 17(7):380–388

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8(2):147–156

    PubMed  CAS  Google Scholar 

  84. Dow SW, Elmslie RE, Wilson AP et al (1998) In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J Clin Invest 101(11):2406–2414

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Hogge GS, Burkholder JK, Culp J et al (1998) Development of human granulocyte-macrophage colony-stimulating factor-transfected tumor cell vaccines for the treatment of spontaneous canine cancer. Hum Gene Ther 9(13):1851–1861

    PubMed  CAS  Google Scholar 

  86. Hansen K, Khanna C (2004) Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur J Cancer 40(6):858–880

    PubMed  CAS  Google Scholar 

  87. Swindle MM, Smith AC (2015) Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques. Taylor & Francis, Boca Raton

    Google Scholar 

  88. Swindle MM, Makin A, Herron AJ et al (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356

    PubMed  CAS  Google Scholar 

  89. Watson AL, Carlson DF, Largaespada DA et al (2016) Engineered swine models of cancer. Front Genet 7:78

    PubMed  PubMed Central  Google Scholar 

  90. Ganderu NC, Harvy W, Mortensen JT et al (2012) The minipig as nonrodent species in toxicology--where are we now? Int J Toxicol 31(6):507–528

    Google Scholar 

  91. Myers MJ, Farrell DE, Howard KD et al (2001) Identification of multiple constitutive and inducible hepatic cytochrome P450 enzymes in market weight swine. Drug Metab Dispos 29(6):908–915

    PubMed  CAS  Google Scholar 

  92. Flisikowski K, Fliskowska T, Sikorska A et al (2017) Germline gene polymorphisms predisposing domestic mammals to carcinogenesis. Vet Comp Oncol 15(2):289–298

    PubMed  CAS  Google Scholar 

  93. Yamakawa H, Nagai T, Harasawa R et al (1999) Production of transgenic pig carrying MMTV/v-Ha-ras. J Reprod Dev 45(2):111–118

    CAS  Google Scholar 

  94. Leuchs S, Saalfrank A, Merkl C et al (2012) Inactivation and inducible oncogenic mutation of p53 in gene targeted pigs. PLoS One 7(10):e43323–e43323

    PubMed  PubMed Central  CAS  Google Scholar 

  95. Li S, Flisikowska T, Kurome M et al (2014) Dual fluorescent reporter pig for Cre recombination: transgene placement at the ROSA26 locus. PLoS One 9(7):e102455

    PubMed  PubMed Central  Google Scholar 

  96. Luo Y, Li J, Liu Y et al (2011) High efficiency of BRCA1 knockout using rAAV-mediated gene targeting: developing a pig model for breast cancer. Transgenic Res 20(5):975–988

    PubMed  CAS  Google Scholar 

  97. Flisikowska T, Merkl C, Landmann M et al (2012) A porcine model of familial adenomatous polyposis. Gastroenterology 143(5):1173–1175

    PubMed  CAS  Google Scholar 

  98. Li S, Edlinger M, Saalfrank A et al (2015) Viable pigs with a conditionally-activated oncogenic KRAS mutation. Transgenic Res 24(3):509–517

    PubMed  CAS  Google Scholar 

  99. Xu C, Wu S, Schook LB et al (2019) Translating human cancer sequences into personalized porcine cancer models. Front Oncol 9:105–105

    PubMed  PubMed Central  Google Scholar 

  100. Banfi S, Borsani G, Rossi E et al (1996) Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nat Genet 13(2):167–174

    PubMed  CAS  Google Scholar 

  101. Perrimon N, Pitsouli C, Shilo BZ et al (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4(8):a005975

    PubMed  PubMed Central  Google Scholar 

  102. Harrison DA, Binari R, Nahreini TS et al (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. Embo J 14(12):2857–2865

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Karim FD, Chang HC, Therrien M et al (1996) A screen for genes that function downstream of Ras1 during Drosophila eye development. Genetics 143(1):315–329

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444(7116):230–234

    PubMed  CAS  Google Scholar 

  105. Yadav AK, Srikrishna S, Gupta SC et al (2016) Cancer drug development using drosophila as an in vivo tool: from bedside to bench and back. Trends Pharmacol Sci 37(9):789–806

    PubMed  CAS  Google Scholar 

  106. Rizzo P, Osipo C, Foreman K et al (2008) Rational targeting of Notch signaling in cancer. Oncogene 27(38):5124–5131

    PubMed  CAS  Google Scholar 

  107. Roti G, Carlton A, Ross KN et al (2013) Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 23(3):390–405

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Mirzoyan Z, Sollazo M, Allocca M et al (2019) Drosophila melanogaster: a model organism to study cancer. Front Genet 10:51

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Kobet RA, Pan X, Zhang B et al (2014) Caenorhabditis elegans: a model system for anti-cancer drug discovery and therapeutic target identification. Biomol Ther (Seoul) 22(5):371–383

    CAS  Google Scholar 

  110. O’Reilly LP, Luke CJ, Perlmutter DH et al (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69-70:247–253

    PubMed  Google Scholar 

  111. Kimble J, Crittenden SL (2007) Controls of germline stem cells, entry into meiosis, and the sperm/oocyte decision in Caenorhabditis elegans. Annu Rev Cell Dev Biol 23:405–433

    PubMed  CAS  Google Scholar 

  112. Klerkx EP, Alarcón P, Waters K et al (2009) Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans. Dev Biol 335(1):12–21

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Arya U, Das CK, Subramaniam JR et al (2010) Caenorhabditis elegans for preclinical drug discovery. Curr Sci 99(12):1669–1680

    CAS  Google Scholar 

  114. Ledford H (2011) Translational research: 4 ways to fix the clinical trial. Nature 477(7366):526–528

    PubMed  CAS  Google Scholar 

  115. Arrowsmith J (2011) Trial watch: phase III and submission failures: 2007-2010. Nat Rev Drug Discov 10(2):87

    PubMed  CAS  Google Scholar 

  116. Cook N, Jodrell DI, Tuveson DA et al (2012) Predictive in vivo animal models and translation to clinical trials. Drug Discov Today 17(5–6):253–260

    PubMed  Google Scholar 

  117. Uhlѐn M, Bjȍrling E, Agaton C et al (2005) A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4(12):1920–1932

    Google Scholar 

  118. Weinstein JN, Collisson EA, Mills GB et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113–1120

    PubMed  PubMed Central  Google Scholar 

  119. Fabregat A, Sidiropoulos K, Garapati P et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46(D1):D649–D655

    PubMed  CAS  Google Scholar 

  120. Kanehisa M, Furumichi M, Tanabe M et al (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45(D1):D353–D361

    PubMed  CAS  Google Scholar 

  121. Carbon S, Dietze H, Mungall CJ et al (2017) Expansion of the gene ontology knowledgebase and resources. Nucleic Acid Res 45(D1):D331–D338

    CAS  Google Scholar 

  122. Hess KR (2011) Statistical design considerations in animal studies published recently in cancer research. Cancer Res 71(2):625–625

    PubMed  CAS  Google Scholar 

  123. Everitt JI (2015) The future of preclinical animal models in pharmaceutical discovery and development: a need to bring in cerebro to the in vivo discussions. Toxicol Pathol 43(1):70–77

    PubMed  Google Scholar 

  124. Sneddonn LU, Halsey LG, Bury NR et al (2017) Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 220(Pt 17):3007–3016

    Google Scholar 

  125. Chapman KL, Holzgrefe H, Black LE et al (2013) Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regul Toxicol Pharmacol 66(1):88–103

    PubMed  CAS  Google Scholar 

  126. Herter-Sprie GS, Kung AL, Wong KK et al (2013) New cast for a new era: preclinical cancer drug development revisited. J Clin Invest 123(9):3639–3645

    PubMed  PubMed Central  CAS  Google Scholar 

  127. Ruggeri BA, Camp F, Miknyoczki S (2014) Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem Pharmacol 87(1):150–161

    PubMed  CAS  Google Scholar 

  128. Berman JN, Chiu PP, Dellaire G (2014) Preclinical animal models for cancer genomics. In: Cancer genomics. Acadmic Press, Elsevier, St Louis, pp 109–131

    Google Scholar 

Download references

Conflict of Interest

The author declares no conflict of interest in this book chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Soni, S., Bandyopadhayaya, S., Mandal, C.C. (2020). Animal Models Systems of Cancer for Preclinical Trials. In: Kumar, M., Sharma, A., Kumar, P. (eds) Pharmacotherapeutic Botanicals for Cancer Chemoprevention . Springer, Singapore. https://doi.org/10.1007/978-981-15-5999-0_12

Download citation

Publish with us

Policies and ethics