Skip to main content

Speciation

  • Chapter
  • First Online:
Biology of Gall Midges

Part of the book series: Entomology Monographs ((ENTMON))

  • 374 Accesses

Abstract

Most gall-inducing cecidomyiids are associated closely with particular plant taxa. Many examples of species radiation on a single or a few plant genera are known for mono- or oligophagous cecidomyiid genera. In the light of these examples, we consider that gall midges have diversified on a particular plant taxon under various sympatric conditions in addition to allopatric speciation. In this chapter, we show some of possible mechanisms leading to non-allopatric speciation. First, we demonstrate two case studies of mistaken oviposition. Then we refer to plant polyploidy, gall shape polymorphism including a geographic mosaic of coevolution, host range expansion, sexual isolation, ecological divergence, and host race formation. We also review two examples of allopatric speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2003) Hybridization, polyploidy, and speciation in Spartina (Poaceae). New Phytol 161:165–172

    Article  CAS  Google Scholar 

  • Arnegard ME, McGee MD, Matthews B, Marchinko KB, Conte GL, Kabir S, Bedford N, Bergek S, Chan YF, Jones FC, Kingsley DM, Peichel CL, Schluter D (2014) Genetics of ecological divergence during speciation. Nature 511:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrigo N, Barker MS (2012) Rarely successful polyploids and their legacy in plant genomes. Curr Opin Plant Biol 15:140–146

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR, Feeny PP (2008) Chemical mediation of host-plant specialization: the Papilionid paradigm. In: Tilmon KJ (ed) Specialization, speciation, and radiation. University of California Press, Berkeley, Los Angeles, London, pp 3–19

    Google Scholar 

  • Bowser M, Bowser AM, Bowser MD, Collet DM, Melvin T (2018) DNA barcoding Alaskan willow rosette gall makers (Diptera: Cecidomyiidae: Rabdophaga). Newsl Alaska Entomol Soc 11:8–14

    Google Scholar 

  • Condon MA, Steck GJ (1997) Evolution of host use in fruit flies of the genus Blepharoneura (Diptera: Tephritidae): cryptic species on sexually dimorphic host plants. Biol J Linn Soc 60:443–466

    Google Scholar 

  • Cook MA, Ozeroff SN, Fitzpatrick SM, Roitberg BD (2011) Host-associated differentiation in reproductive behaviour of cecidomyiid midges on cranberry and blueberry. Entomol Exp Appl 141:8–14

    Article  Google Scholar 

  • Coyne JA, Elwyn S, Rolán-Alvarez E (2005) Impact of experimental design on Drosophila sexual isolation studies: direct effects and comparison to field hybridization data. Evolution 59:2588–2601

    PubMed  Google Scholar 

  • Craig TP (2016) Geographic mosaic of coevolution. In: The encyclopedia of evolutionary biology, vol 2. Elsevier, Amsterdam, pp 201–207

    Chapter  Google Scholar 

  • Craig TP, Livingston-Anderson A, Itami JK (2020) A small-tiled geographic mosaic of coevolution between Eurosta solidaginis and its natural enemies and host plant. Ecosphere 11:e03182. https://doi.org/10.1002/ecs2.3182

    Article  Google Scholar 

  • Després L, Pettex E, Plaisance V, Pompanon F (2002) Speciation in the globeflower fly Chiastocheta spp. (Diptera: Anthomyiidae) in relation to host plant species, biogeography, and morphology. Mol Phylogenet Evol 22:258–268

    Article  PubMed  CAS  Google Scholar 

  • Dorchin N, Joy JB, Hilke LK, Wise MJ, Abrahamson WG (2015) Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of north American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zool J Linnean Soc 174:265–304

    Article  Google Scholar 

  • Dorchin N, Scott ER, Clarkin CE, Luongo MP, Jordan S, Abrahamson WG (2009) Behavioural, ecological and genetic evidence confirm the occurrence of host-associated differentiation in goldenrod gall-midges. J Evol Biol 22:729–739

    Article  CAS  PubMed  Google Scholar 

  • Drosopoulous S, Maryanska-Nadachowska A, Kuznetsova VG (2010) The Mediterranean: area of origin of polymorphism and speciation in the spittlebug Philaenus (Hemiptera, Aphrophoridae). Zoosyst Evol 86:125–128

    Article  Google Scholar 

  • Elsayed AK, Matsuo K, Kim W, Uechi N, Yukawa J, Gyoutoku N, Tokuda M (2018a) A new Asphondylia species (Diptera: Cecidomyiidae) and a eulophid wasp (Hymenoptera) inducing similar galls on leaf buds of Schoepfia jasminodora (Schoepfiaceae), with reference to their ecological traits and a description of the new gall midge. Entomol Sci 21:324–339

    Article  Google Scholar 

  • Elsayed AK, Yukawa J, Tokuda M (2018b) A taxonomic revision and molecular phylogeny of the eastern Palaearctic species of the genera Schizomyia Kieffer and Asteralobia Kovalev (Diptera: Cecidomyiidae: Asphondyliini), with descriptions of five new species of Schizomyia from Japan. ZooKeys 808:123–160

    Article  Google Scholar 

  • Fedorov AA (1969) Chromosome numbers of flowering plants. Komarov Botanical Institute, Academy of Sciences, U.S.S.R., Leningrad. (In Russian)

    Google Scholar 

  • Fornaguera FR (2014) The genomic basis of parallel ecological speciation. A thesis submitted for the degree of Doctor of Philosophy at the University of Queensland, Queensland

    Google Scholar 

  • Fujii T, Matsuo K, Abe Y, Yukawa J, Tokuda M (2014) An endoparasitoid avoids hyperparasitism by manipulating immobile host herbivore to modify host plant morphology. PLoS One 9:e102508. https://doi.org/10.1371/journal.pone.0102508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukatsu T, Aoki S, Kurosu U, Ishikawa H (1994) Phylogeny of Cerataphidini aphids revealed their symbiotic microorganisms and basic structure of their galls: implications for host-symbiont coevolution and evolution of sterile soldier castes. Zool Sci 11:613–623

    Google Scholar 

  • Funk DJ, Nosil P, Etges WJ (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103:3209–3213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagné RJ (1989) The plant-feeding gall midges of North America. Cornell University Press, Ithaca

    Google Scholar 

  • Gagné RJ (2008) The gall midges (Diptera: Cecidomyiidae) of hickories (Juglandaceae: Carya). Mem Am Entomol Soc 48:1–147

    Google Scholar 

  • Gagné RJ, Jaschhof M (2017) A catalog of the Cecidomyiidae (Diptera) of the world, 4th edn. Digital. 762 pp. [Cited 10 May 2020] Available from URL https://www.ars.usda.gov/ARSUserFiles/80420580/Gagne_2017_World_Cat_4th_ed.pdf

  • Gagné RJ, Moser JC (2013) The North American gall midges (Diptera: Cecidomyiidae) of hackberries (Cannabaceae: Celtis spp.). Mem Am Entomol Soc 49:1–103

    Google Scholar 

  • Gagné RJ, Waring GL (1990) The Asphondylia (Cecidomyiidae: Diptera) of creosote bush (Larrea tridentata) in North America. Proc Entomol Soc Wash 92:649–671

    Google Scholar 

  • Ganaha T, Nohara M, Sato S, Uechi Yamagishi K, Yamauchi S, Yukawa J (2007) Polymorphism of axillary bud galls induced by Rhopalomyia longitubifex (Diptera: Cecidomyiidae) on Artemisia princeps and A. montana (Asteraceae) in Japan and Korea, with the designation of new synonyms. Entomol Sci 10:209–212

    Article  Google Scholar 

  • Ganaha T, Yukawa J, Uechi N, Nohara M, Paik JC (2004) Identifications of some species of the genus Rhopalomyia (Diptera: Cecidomyiidae) inducing galls on Artemisia (Asteraceae) in Korea. Esakia 44:45–55

    Article  Google Scholar 

  • Grego CL, Weis AE, Neil NO, Bretz CK (1990) Sympatric sibling species from three phenotypically distinct Asteromyia (Diptera: Cecidomyiidae) galls on the same host plant species. Ann Entomol Soc Am 83:149–154

    Article  Google Scholar 

  • Hara M (1992) The genus Fagus and Fagus stands in the world. In: Endo Y, Hara M, Ohba T (eds) Natural history of beech forests. Natural History Museum and Institute, Chiba, pp 43–48. (In Japanese)

    Google Scholar 

  • Harrison RG (1980) Dispersal polymorphism in insects. Annu Rev Ecol Syst 11:95–118

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B Biol Sci 270:313–321

    Article  CAS  Google Scholar 

  • Hellqvist S, Larsson S (1998) Host acceptance and larval development of the gall midge Dasineura tetensi (Diptera, Cecidomyiidae) on resistant and susceptible black currant. Entomol Fennica 9:95–102

    Article  Google Scholar 

  • Hillbur Y, Celander M, Baur R, Rauscher S, Haftmann J, Franke S, Francke W (2005) Identification of the sex pheromone of the swede midge, Contarinia nasturtii. J Chem Ecol 31:1807–1828

    Article  CAS  PubMed  Google Scholar 

  • Huang BH, Huang CW, Huang CL, Liao PC (2017) Continuation of the genetic divergence of ecological speciation by spatial environmental heterogeneity in island endemic plants. Sci Rep 7:5465. https://doi.org/10.1038/s41598-017-05900-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito M, Yahara T, King RM, Watanabe K, Oshita S, Yokoyama J, Crawford DJ (2000) Molecular phylogeny of Eupatorieae (Asteraceae) estimated from cpDNA RFLP and its implication for the polyploid origin hypothesis of the tribe. J Plant Res 113:91–96

    Article  CAS  Google Scholar 

  • Jaschhof M, Jaschhof C (2013) The Porricondylinae (Diptera: Cecidomyiidae) of Sweden with notes on extralimital species. Stud Dipterol Suppl 20:1–392

    Google Scholar 

  • Johnson B (1966) Wing polymorphism in aphids iii. The influence of the host plant. Entomol Exp Appl 9:213–222

    Article  Google Scholar 

  • Joy JB, Crespi BJ (2007) Adaptive radiation of gall-inducing insects within a single host-plant species. Evolution 61:784–795

    Article  CAS  PubMed  Google Scholar 

  • Kamioka T, Iwasa Y (2017) Evolution of density-dependent wing polymorphism in insects. Evol Ecol Res 8:335–348

    Google Scholar 

  • Khemakhem MM, Marrakchi M, Makni H (2005) Genetic diversity of Mayetiola destructor and Mayetiola hordei (Diptera: Cecidomyiidae) by inter-simple sequence repeats (ISSRs). Afr J Biotechnol 4:601–606

    Article  Google Scholar 

  • Kiritani K (1970) Studies on the adult polymorphism in the southern green stink bug, Nezara viridula (Hemiptera: Pentatomidae). Res Popul Ecol 12:19–34

    Article  Google Scholar 

  • Larsson S, Ekbom B (1995) Oviposition mistakes in herbivorous insects: confusion or a step towards a new host plant. Oikos 72:155–160

    Article  Google Scholar 

  • Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L (2015) Phylogenetic relationships of American willows (Salix L., Salicaceae). PLoS One 10:e0121965. https://doi.org/10.1371/journal.pone.0121965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy A, Feldman M (2002) The impact of polyploidy on grass genome evolution. Plant Physiol 130:1587–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SF, Tokuda M, Yang MM (2020) Leaf gall polymorphism and molecular phylogeny of a new Bruggmanniella species (Diptera: Cecidomyiidae: Asphondyliini) associated with Litsea acuminate (Lauraceae) in Taiwan, with ecological comparisons and a species description. Entomol Sci 23:10–22

    Article  Google Scholar 

  • Liu B, Wendel JF (2002) Non-Mendelian phenomena in allopolyploid genome evolution. Curr Genomics 3:1–17

    Article  Google Scholar 

  • Loskutova OA, Zhiltzova LA (2016) Wing and body size polymorphism in populations of the stonefly Arcynopteryx dichroa McL. (Plecoptera: Perlodidae) in the Ural Mountains, Russia. Polar Res. https://doi.org/10.3402/polar.v35.26596

  • Lunds Universitet (2018) Final report summary – genes and speciation (genetics of ecological speciation in birds). Sölvegatan, Lund, Sweden. [Cited 25 November 2018]. https://cordis.europa.eu/result/rcn/60107_en.html

  • Maeda N, Sato S, Yukawa J (1982) Polymodal emergence pattern of the machilus leaf gall midge, Daphnephila machilicola Yukawa (Diptera, Cecidomyiidae). Kontyû 50:44–50

    Google Scholar 

  • Makni H, Marrakchi M, Pasteur N (2000) Biochemical characterization of sibling species in Tunisian Mayetiola (Diptera: Cecidomyiidae). Biochem Syst Ecol 28:101–109

    Article  CAS  Google Scholar 

  • Masaki S, Shimizu T (1995) Variability in wing form in crickets. Res Popul Ecol 37:119–128

    Article  Google Scholar 

  • Matsubayashi KW, Ohshima I, Nosil P (2010) Ecological speciation in phytophagous insects. Entomologia Exp Applicata 134:1–27

    Article  Google Scholar 

  • Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP (2011) Recently formed polyploid plants diversify at lower rates. Science 333:1257

    Article  CAS  PubMed  Google Scholar 

  • Mishima M, Sato S, Tsuda K, Yukawa J (2014) Sexual isolation between two known intraspecific populations of Hartigiola (Diptera: Cecidomyiidae) that induce leaf galls on upper and lower surfaces of Fagus crenata (Fagales: Fagaceae), indicating possible diversification into sibling species. Ann Entomol Soc Am 107:789–798

    Article  Google Scholar 

  • Mishima M, Yukawa J (2007) Dimorphism of leaf galls induced by Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) on Neolitsea sericea (Lauraceae), representing geographic variations in Kyushu, Japan. Bull Kyushu Univ Museum 5:57–64

    Google Scholar 

  • Neger FW (1908) Ambrosiapiltze. Berichte der Deutsche Botanische Gesellschaft 26:735–754

    Google Scholar 

  • Neger FW (1910) Ambrosiapiltze – III Weitere Beobachtungen an Ambrosiagallen. Berichte der Deutsche Botanische Gesellschaft 28:455–480

    Google Scholar 

  • Newsholme C (1992) Willows: the genus Salix. Timber Press, Inc, Portland

    Google Scholar 

  • Nijveldt WC, Yukawa J (1982) A taxonomic study on Salix-inhabiting gall midges in Japan (Diptera, Cecidomyiidae). Bull Kitakyushu Museum Nat Hist 4:23–56

    Google Scholar 

  • Nosil P (2012) Ecological Speciation. Oxford University Press, Oxford

    Book  Google Scholar 

  • O'Connor TK, Laport RG, Whiteman NK (2019) Polyploidy in creosote bush (Larrea tridentata) shapes the biogeography of specialist herbivores. J Biogeogr 2019:1–14

    Google Scholar 

  • Ohi T, Kajita T, Murata J (2003) Distinct geographic structure as evidenced by chloroplast DNA haplotypes and ploidy level in Japanese Aucuba (Aucubaceae). Am J Bot 90:1645–1652

    Article  PubMed  Google Scholar 

  • Olvido AE, Elvington ES, Mousseau TA (2003) Relative effects of climate and crowding on wing polymorphism in the southern ground cricket, Allonemobius socius (Orthoptera: Gryllidae). Fla Entomol 86:158–164

    Article  Google Scholar 

  • Orra MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506

    Article  Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Pellicer J, Garnatje T, Vallés J (2011) Artemisia (Asteraceae): understanding its evolution using cytogenetic and molecular systematic tools, with emphasis on subgenus Dracunculus. Rec Adv Pharm Sci 2011:199–222

    Google Scholar 

  • Pogson GH (2016) Studying the genetic basis of speciation in high gene flow marine invertebrates. Curr Zool 62:643–653

    Article  PubMed  PubMed Central  Google Scholar 

  • Price PW (2003) Macroevolutionary theory on macroecological patterns. Cambridge University Press, Cambridge

    Google Scholar 

  • Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211

    Article  Google Scholar 

  • Roff D (1986) Evolution of wing polymorphism and its impact on life cycle adaptation in insects. In: Taylor F, Karban R (eds) The evolution of insect life cycles. Springer-Verlag, New York, pp 204–221

    Chapter  Google Scholar 

  • Rolán-Alvarez E, Caballero A (2000) Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54:30–36

    PubMed  Google Scholar 

  • Rossi AM, Stiling P, Cattell MV, Bowdish TI (1999) Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecol Entomol 24:95–102

    Article  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Sato S, Harris KM, Collet DM, Kim W, Yukawa J (2020) Genetic variation in intraspecific populations of Rabdophaga rosaria (Diptera: Cecidomyiidae) indicating possible diversification scenarios into sibling species along with host range expansion on willows (Salicaceae: Salix). Zool J Linnean Soc 189:1426–1437

    Article  Google Scholar 

  • Sato S, Tsuda K, Yukawa J (2010) Decline in spring emergents of gall midge (Diptera: Cecidomyiidae) inducing leaf galls on Fagus crenata (Fagaceae) in Kyushu. Jpn J Environ Entomol Zool 21:7–13. (In Japanese with English summary)

    Google Scholar 

  • Sato S, Yukawa J (2001) Absence record of Fagus gall midges (Diptera: Cecidomyiidae) on Ulleung Island, Korea and in North America. Esakia 41:17–25

    Article  Google Scholar 

  • Sato S, Yukawa J (2004) Redescription of Hartigiola faggalli (Monzen) comb. n. (Diptera: Cecidomyiidae) inducing leaf galls on Fagus crenata (Fagaceae) in Japan. Esakia 44:13–26

    Article  Google Scholar 

  • Sato S, Yukawa J (2008) Descriptions of two new Mikiola species (Diptera: Cecidomyiidae) that induce leaf galls on Fagus crenata (Fagaceae) in Japan. Stud Dipterol 15:151–164

    Google Scholar 

  • Schilling MP, Mullen SP, Kronforst M, Safran RJ, Nosil P, Feder JF, Gompert Z, Flaxman SM (2018) Transitions from single- to multi-locus processes during speciation with gene flow. Genes 9:274. https://doi.org/10.3390/genes9060274

    Article  CAS  PubMed Central  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Nat Acad Sci USA 106(suppl. 1):9955–9962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz D, McPheron BA (2007) When ecological isolation breaks down: sexual isolation is an incomplete barrier to hybridization between Rhagoletis species. Evol Ecol Res 9:829–841

    Google Scholar 

  • Sekimura T, Nijhout HF (2017) Diversity and evolution of butterfly wing patterns: an integrative approach. Springer Open, Singapore

    Book  Google Scholar 

  • Skuhravá M (1986) Family Cecidomyiidae. In: Soós A, Papp L (eds) Catalogue of Palaearctic Diptera: Sciaridae and Cecidomyiidae. Akadémiai Kiadó, Budapest. Vol. 4, pp 72–297

    Google Scholar 

  • Skuhravá M, Karimpour Y, Sadeghi H, Gol A, Joghataie M (2014) Gall midges (Diptera: Cecidomyiidae) of Iran: annotated list and zoogeographical analysis. Acta Societatis Zoologicae Bohemoslovaca 78:269–301

    Google Scholar 

  • Socha R (2001) Latitudinal gradient in response of wing polymorphism to photoperiod in a flightless bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol 98:167–169

    Article  Google Scholar 

  • Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA (2014) Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol 202:1105–1117

    Article  PubMed  Google Scholar 

  • Soltis DE, Soltis PS (2003) Tate JA (2003) advances in the study of polyploidy since plant speciation. New Phytol 161:173–191

    Article  CAS  Google Scholar 

  • Stelter H (1970) Untersuchungen über Gallmücken XIV. Rhabdophaga rosaria (H. Loew, 1850) Kieffer, 1913 syn.: Cecidomyia cinerearum Hardy, 1850. Deutsche Entomologische Zeitschrift N.F 17:215–225

    Article  Google Scholar 

  • Stern DL (1995) Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proc R Soc Lond Ser B 260:85–89

    Article  Google Scholar 

  • Stiling P, Rossi AM (1995) Coastal insect herbivore communities are affected more by local environmental conditions than by plant genotype. Ecol Entomol 20:184–190

    Article  Google Scholar 

  • Stiling P, Rossi AM (1997) Deme formation in a dispersive gall-forming midge. In: Mopper S, Strauss SY (eds) Genetic structure and local adaptation in natural insect populations. Chapman & Hall, New York, pp 22–36

    Google Scholar 

  • Stokes K, Stiling P, Gilg MR, Rossi AM (2012) The gall midge Asphondylia borrichiae (Diptera: Cecidomyiidae): an indigenous example of host-associated genetic divergence in sympatry. Environ Entomol 45:1246–1254

    Article  Google Scholar 

  • Stone GN, Cook JM (1998) The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proc R Soc Lond Ser B 265:979–988

    Article  Google Scholar 

  • Sun Y, Shaw PC, Fung KP (2007) Molecular authentication of Radix Puerariae lobatae and Radix Puerariae thomsonii by ITS and 5S rRNA spacer sequencing. Biol Pharm Bull 30:173–175

    Article  CAS  PubMed  Google Scholar 

  • Sunose T (1979) Two colour types of the euonymus gall midge, Masakimyia pustulae Yukawa and Sunose (Diptera: Cecidomyiidae). Kontyû 47:352–357

    Google Scholar 

  • Sunose T (1983) Redescription of Asphondylia morivorella (Naito), comb. n. (Diptera: Cecidomyiidae), with notes on its bionomics. Appl Entomol Zool 18:22–29

    Article  Google Scholar 

  • Sunose T (1985a) Geographical distribution of two gall types of Masakimyia pustulae Yukawa & Sunose (Diptera, Cecidomyiidae) and reproductive isolation between them by a parasitoid. Kontyû 53:677–689

    Google Scholar 

  • Sunose T (1985b) Population regulation of the euonymus gall midge Masakimyia pustulae Yukawa and Sunose (Diptera: Cecidomyiidae) by hymenopterous parasitoids. Res Popul Ecol 27:287–300

    Article  Google Scholar 

  • Tabuchi K, Amano H (2003a) Polymodal emergence pattern and parasitoid composition of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) on Ilex crenata and I. integra (Aquifoliaceae). Appl Entomol Zool 38:493–500

    Article  Google Scholar 

  • Tabuchi K, Amano H (2003b) Host-associated differences in emergence pattern, reproductive behavior and life history of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) between populations on Ilex crenata and I. integra (Aquifoliaceae). Appl Entomol Zool 38:501–508

    Article  Google Scholar 

  • Takasu K, Yukawa J (1984) Two-year life history of the neolitsea leaf gall midge, Pseudasphondylia neolitseae Yukawa (Diptera, Cecidomyiidae). Kontyû 52:596–604

    Google Scholar 

  • Takizawa Y (1983) Life history of the beech leaf gall-midge, Oligotrophus faggalli (Diptera: Cecidomyiidae) in the Tohoku district, Japan. Nichirin Kantou Shiron 44:125–126. (In Japanese)

    Google Scholar 

  • Thompson JN (1999) Specific hypotheses on the geographic mosaic of coevolution. Am Nat 153S:S1–S14

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL

    Book  Google Scholar 

  • Tokuda M (2012) Biology of Asphondyliini (Diptera: Cecidomyiidae). Entomol Sci 15:361–383

    Article  Google Scholar 

  • Tokuda M, Tabuchi K, Yukawa J, Amano H (2004) Inter- and intraspecific comparisons between Asteralobia gall midges (Diptera: Cecidomyiidae) causing axillary bud galls on Ilex species (Aquifoliaceae): species identification, host range, and mode of speciation. Ann Entomol Soc Am 97:954–970

    Article  Google Scholar 

  • Tokuda M, Uechi N, Yukawa J (2002) Distribution of Asteralobia gall midges (Diptera: Cecidomyiidae) causing axillary bud galls on Ilex species (Aquifoliaceae) in Japan. Esakia 42:19–31

    Article  Google Scholar 

  • Tokuda M, Yang MM, Yukawa J (2008) Taxonomy and molecular phylogeny of Daphnephila gall midges (Diptera: Cecidomyiidae) inducing complex leaf galls on Lauraceae, with descriptions of five new species associated with Machilus thunbergii in Taiwan. Zool Sci 25:533–545

    Article  CAS  Google Scholar 

  • Tokuda M, Yukawa J (2005) Two new and three known Japanese species of genus Pseudasphondylia Monzen (Diptera: Cecidomyiidae: Asphondyliini) and their life history strategies. Ann Entomol Soc Am 98:259–272

    Article  Google Scholar 

  • Uechi N, Kim WG, Tokuda M, Fujii T, Kikuchi H, Kakizaki M, Iwasaki A, Paik JC, Yukawa J (2018) Genetic and ecological differences between Asphondylia yushimai and the ivy gall midge, Asphondylia sp. (Diptera: Cecidomyiidae) with a new distribution record of the former from Hokkaido and South Korea. Appl Entomol Zool 53:363–371

    Article  Google Scholar 

  • Uechi N, Tokuda M, Yukawa J (2002) Distribution of Asphondylia gall midges (Diptera; Cecidomyiidae) in Japan. Esakia 42:1–10

    Article  Google Scholar 

  • Uechi N, Yukawa J (2004) Description of Asphondylia itoi sp. n. (Diptera: Cecidomyiidae) inducing fruit galls on Distylium racemosum (Hamamelidaceae) in Japan. Esakia 44:27–43

    Article  Google Scholar 

  • Uechi N, Yukawa J (2006a) Life history patterns and host ranges of the genus Asphondylia (Diptera: Cecidomyiidae). In: Ozaki K, Yukawa J, Ohgushi T, Price PW (eds) Galling arthropods and their associates: ecology and evolution. Springer-Verlag, Tokyo, pp 275–285

    Chapter  Google Scholar 

  • Uechi N, Yukawa J (2006b) Host range and life history of Asphondylia sphaera Monzen (Diptera: Cecidomyiidae): use of short-term alternate hosts. Ann Entomol Soc Am 99:1165–1171

    Article  Google Scholar 

  • Uechi N, Yukawa J, Usuba S (2005) Discovery of an additional winter host of the soybean pod gall midge, Asphondylia yushimai (Diptera: Cecidomyiidae) in Japan. Appl Entomol Zool 40:597–607

    Article  Google Scholar 

  • Uechi N, Yukawa J, Usuba S, Gyoutoku N, Mitamura T (2012) Findings of new cecidomyiid galls induced by Asphondylia segregates (Diptera: Cecidomyiidae) in Japan. Esakia 52:51–57

    Article  Google Scholar 

  • Uechi N, Yukawa J, Yamaguchi D (2004) Host alternation by gall midges of the genus Asphondylia (Diptera: Cecidomyiidae). In: Evenhuis NL, Kaneshiro KY (eds) D. Elmo Hardy memorial volume. Contributions to the systematics and evolution of diptera. Bishop Museum Press, Honolulu, pp 53–66. Bishop Museum Bulletin in Entomology 12

    Google Scholar 

  • Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF (2015) The wondrous cycle of polyploidy in plants. Am J Bot 102:1753–1756

    Article  CAS  PubMed  Google Scholar 

  • Windenfalk O, Gyllenstrand N, Sylvén E, Solbreck C (2002) Identity and phylogenetic status of two sibling gall midge species (Diptera: Cecidomyiidae: Contarinia) on the perennial herb Vincetoxicum hitundinaria. Syst Entomol 27:519–528

    Article  Google Scholar 

  • Yamauchi S, Ikenaga H, Yukawa J (1982) Midge galls collected from the south-west islands of Japan. Satsuma 31:1–23. (In Japanese with English summary)

    Google Scholar 

  • Yang SY, Chen MY, Yang JT (2000) Plant galls in Taiwan. Taiwan Council of Agriculture, Taipei. (In Chinese)

    Google Scholar 

  • Yukawa J (1971) A revision of the Japanese gall midges (Diptera: Cecidomyiidae). Mem Fac Agric Kagoshima Univ 8:1–203

    Google Scholar 

  • Yukawa J (1974) Descriptions of new Japanese gall midge (Diptera, Cecidomyiidae, Asphondyliidi) causing leaf galls on Lauraceae. Kontyû 42:293–304

    Google Scholar 

  • Yukawa J (1983) Arthropod community centred upon the neolitsea leaf gall midge, Pseudasphondylia neolitseae Yukawa (Diptera, Cecidomyiidae) and its host plant, Neolitsea sericea (Blume) Koidz. (Lauraceae). Mem Fac Agric Kagoshima Univ 19:89–96

    Google Scholar 

  • Yukawa J (2000) Synchronization of gallers with host plant phenology. Popul Ecol 42:105–113

    Article  Google Scholar 

  • Yukawa J (2014) Family Cecidomyiidae. In: Nakamura T, Saigusa T, Suwa M (eds) Catalogue of the insects of Japan. Entomological Society of Japan, Fukuoka, pp 126–160. (In Japanese)

    Google Scholar 

  • Yukawa J, Akimoto K (2006) Influence of synchronization between adult emergence and host plant phenology on the population density of Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) inducing leaf galls on Neolitsea sericea (Lauraceae). Popul Ecol 48:13–21

    Article  Google Scholar 

  • Yukawa J, Fujimoto K, Ganaha-Kikumura T, Wanggyu K (2019a) Effects of typhoons on an arthropod community centered upon a leaf gall midge, Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) and its host plant, Neolitsea sericea (Lauraceae) through leaf fall and late-season shoot production. Ecol Res 35:252–264

    Article  Google Scholar 

  • Yukawa J, Harris KM, Kim W (2020) Descriptions of two new species of the genus Lasioptera (Diptera: Cecidomyiidae) that infest tomato in the Mediterranean region and Hokkaido, Japan. Appl Entomol Zool 55:129–140

    Article  Google Scholar 

  • Yukawa J, Ichinose M, Wanggyu K, Uechi N, Gyotoku N, Fujii T (2016a) Lower development threshold temperatures and thermal constants for four species of Asphondylia (Diptera: Cecidomyiidae) in Japan and their larval developmental delay caused by heat stress. Appl Entomol Zool 57:71–80

    Article  Google Scholar 

  • Yukawa J, Ikenaga H, Sato S, Tokuda M, Ganaha-Kikumura T, Uechi N, Matsuo K, Mishima M, Tung GH, Paik JC, Ren BQ, Don XO (2012) Description and ecological traits of a new species of Pitydiplosis (Diptera: Cecidomyiidae) that induces leaf galls on Pueraria (Fabaceae) in East Asia, with a possible diversification scenario of intraspecific groups. Entomol Sci 15:81–98

    Article  Google Scholar 

  • Yukawa J, Kiritani K (1965) Polymorphism in the southern green stink bug. Pacific Insects 7:639–642

    Google Scholar 

  • Yukawa J, Masuda H (1996) Insect and mite galls of Japan in colors. Zenkoku Nôson Kyôiku Kyôkai, Tokyo. (In Japanese with English explanations for color plates)

    Google Scholar 

  • Yukawa J, Matoba I, Matoba M, Takasu H (2018a) Cecidomyiid galls found in Wakayama prefecture. Nanki Seibutsu 60:1–15

    Google Scholar 

  • Yukawa J, Miyamoto K (1979) Redescription of Asphondylia sphaera Monzen (Diptera, Cecidomyiidae), with notes on its bionomics. Mem Fac Agric Kagoshima Univ 15:99–106

    Google Scholar 

  • Yukawa J, Miyamoto K, Yamaguchi T, Takesaki K, Uechi N, Matsuo K (2016b) Key factor/key stage analysis of long-term life table data for Asphondylia sphaera (Diptera: Cecidomyiidae) that induces fruit galls on Ligustrum japonicum (Oleaceae). Ecol Entomol 41:516–526

    Article  Google Scholar 

  • Yukawa J, Nakagawa K, Saigou T, Awa T, Fukuda T, Higashi M (2013) Adult behavior of an ambrosia gall midge Illiciomyia yukawai (Diptera: Cecidomyiidae) and synchronization between its emergence and host plant phenology. Entomol Sci 16:400–412

    Google Scholar 

  • Yukawa J, Nishida R, Fukuda H, Inoue R (2019b) Aristolochiaceae- and Asteraceae-feeding by larvae of Papilio xuthus L. (Lepidoptera: Papilionidae) in Japan: a review. Entomol Sci 22:355–364

    Article  Google Scholar 

  • Yukawa J, Ohsaki N (1988a) Separation of the aucuba fruit midge, Asphondylia aucubae sp. nov. from the ampelopsis fruit midge, Asphondylia baca Monzen (Diptera, Cecidomyiidae). Kontyû 56:365–376

    Google Scholar 

  • Yukawa J, Ohsaki N (1988b) Adult behaviour of the aucuba fruit midge, Asphondylia aucubae Yukawa & Ohsaki (Diptera: Cecidomyiidae). Kontyû 56:645–652

    Google Scholar 

  • Yukawa J, Rohfritsch O (2005) Biology and ecology of gall-inducing Cecidomyiidae (Diptera). In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publications, Enfield, pp 273–304

    Google Scholar 

  • Yukawa J, Sunose T (1976) Description of a new gall midges (Diptera, Cecidomyiidae) on Euonymus, with notes on its bionomics. Kontyû 44:159–168

    Google Scholar 

  • Yukawa J, Takahashi K, Ohsaki N (1976) Population behaviour of the neolitsea leaf gall midge, Pseudasphondylia neolitseae Yukawa (Diptera, Cecidomyiidae). Kontyû 44:358–365

    Google Scholar 

  • Yukawa J, Tokuda M, Uechi N, Yasuda K, Ganaha-Kikumura T. Matsuo K, Shimizu Y, Yamaguchi D (2019c) Ecological divergence among morphologically and genetically related Asphondylia species (Diptera: Cecidomyiidae), with new life history data for three congeners including the Alpinia fruit gall midge. Entomol Sci 22:437–449

    Google Scholar 

  • Yukawa J, Tokuda M, Yamagishi K (2014) Host plant ranges and distribution records of identified and unidentified species of the genus Lasioptera (Diptera: Cecidomyiidae) in Japan. Esakia 54:1–15

    Article  Google Scholar 

  • Yukawa J, Uechi N, Horikiri M, Tuda M (2003) Description of the soybean pod gall midge, Asphondylia yushimai sp. n. (Diptera: Cecidomyiidae), a major pest of soybean and findings of host alternation. Bull Entomol Res 93:73–86

    Article  CAS  PubMed  Google Scholar 

  • Yukawa J, Uechi N, Tokuda M, Sato S (2005) Radiation of gall midges (Diptera: Cecidomyiidae) in Japan. Basic Appl Ecol 5:453–461

    Article  Google Scholar 

  • Yukawa J, Yamamura K, Fujimoto K, Tokuda M, Muroya S, Maki T, Sadoshima T, Fukuda T (2018b) Key-factors and key-stages that determine the leaf longevity of an evergreen broad-leaved tree, Neolitsea sericea (Lauraceae) at different growing sites in southern Japan. Ecol Res 33:175–190

    Article  Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Annu Rev Entomol 42:207–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang CX, Brisson JA, Xu HJ (2019) Molecular mechanisms of wing polymorphism in insects. Annu Rev Entomol 64:297–314

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yukawa, J., Tokuda, M., Sato, S., Ganaha-Kikumura, T., Uechi, N. (2021). Speciation. In: Yukawa, J., Tokuda, M. (eds) Biology of Gall Midges. Entomology Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-33-6534-6_2

Download citation

Publish with us

Policies and ethics