Skip to main content
Log in

What drove reversions to quadrupedality in ornithischian dinosaurs? Testing hypotheses using centre of mass modelling

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The exceptionally rare transition to quadrupedalism from bipedal ancestors occurred on three independent occasions in ornithischian dinosaurs. The possible driving forces behind these transitions remain elusive, but several hypotheses—including the development of dermal armour and the expansion of head size and cranial ornamentation—have been proposed to account for this major shift in stance. We modelled the position of the centre of mass (CoM) in several exemplar ornithischian taxa and demonstrate that the anterior shifts in CoM position associated with the development of an enlarged skull ornamented with horns and frills for display/defence may have been one of the drivers promoting ceratopsian quadrupedality. A posterior shift in CoM position coincident with the development of extensive dermal armour in thyreophorans demonstrates this cannot have been a primary causative mechanism for quadrupedality in this clade. Quadrupedalism developed in response to different selective pressures in each ornithischian lineage, indicating different evolutionary pathways to convergent quadrupedal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander RMCN (1985) Mechanics of posture and gait of some large dinosaurs. Zool J Linn Soc-Lond 83:1–25

    Article  Google Scholar 

  • Anderson JF, Hall Martin A, Russell DA (1985) Long-bone circumference and weight in mammals, birds and dinosaurs. J Zool-Lond 207:53–61

    Article  Google Scholar 

  • Bakker RT (1978) Dinosaur feeding behaviour and the origin of flowering plants. Nature 274:661–663

    Article  Google Scholar 

  • Bates KT, Manning PL, Hodgetts D, Sellers WI (2009a) Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling. PLoS One 4:e4532

    Article  PubMed  PubMed Central  Google Scholar 

  • Bates KT, Falkingham PL, Breithaupt BH, Hodgetts D, Sellers WI, Manning PL (2009b) How big was ‘Big Al’? Quantifying the effect of soft tissue and osteological unknowns on mass predictions for Allosaurus (Dinosauria: Theropoda). Palaeontol Electron 12, 14A:33 pp. Accessed 15/11/2013.

  • Bonnan MF (2003) The evolution of manus shape in sauropod dinosaurs: implications for functional morphology, forelimb orientation, and phylogeny. J Vertebr Paleontol 23:595–613

    Article  Google Scholar 

  • Brown B, Schlaikjer EM (1940) The structure and relationships of Protoceratops. Ann NY Acad Sci 40:133–266

    Article  Google Scholar 

  • Brown CM, Evans DC, Campione NE, O’Brien LJ, Eberth DA (2013) Evidence for taphonomic size bias in the Dinosaur Park Formation (Campanian, Alberta), a model Mesozoic terrestrial alluvial-paralic system. Palaeogeogr Palaeocl 372:108–122

    Article  Google Scholar 

  • Butler RJ, Upchurch P, Norman DB (2008) The phylogeny of the ornithischian dinosaurs. J Syst Palaeontol 6:1–40

    Article  Google Scholar 

  • Butler RJ, Galton PM, Porro LB, Chiappe LM, Henderson DM, Erickson GM (2009) Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America. P Roy Soc B-Biol Sci 277:375–381

    Article  Google Scholar 

  • Campione NE, Evans DC (2012) A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol 10(60):22pp

    Google Scholar 

  • Carpenter K (1982) Skeletal and dermal armour reconstruction of Euoplocephalus tutus (Ornithischia: Ankylosauridae) from the Late Cretaceous Oldman formation of Alberta. Can J Earth Sci 19:689–697

    Article  Google Scholar 

  • Colbert EH (1962) The weights of dinosaurs. Am Mus Novit 2076:1–16

  • Colbert EH (1981) A primitive ornithischian dinosaur from the Kayenta Formation of Arizona. Bull Mus Northern Arizona 53:1–61

    Google Scholar 

  • Coombs WP (1978) The families of the ornithischian dinosaur order Ankylosauria. Palaeontology 21:143–170

    Google Scholar 

  • Coombs WP (1979) Osteology and myology of the hindlimb in the Ankylosauria (Reptilia: Ornithischia). J Paleontol 53:666–684

    Google Scholar 

  • Dilkes DW (2001) An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae). Can J Earth Sci 38:1205–1227

    Article  Google Scholar 

  • Dodson P, Forster CA, Sampson S (2004) Ceratopsidae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. Univ California Press, Berkeley, pp 494–516

    Chapter  Google Scholar 

  • Farlow JO, Brett-Surman MK (1997) The complete dinosaur. Indiana University Press, Bloomington, 752 pp

    Google Scholar 

  • Farlow JO, Dodson P (1975) The behavioural significance of the frill and horn morphology in ceratopsian dinosaurs. Evolution 29:353–361

    Article  Google Scholar 

  • Farlow JO, Thompson CV, Rosner DE (1976) Plates of the dinosaur Stegosaurus: forced convection heat loss fins? Science 192:1123–1125

    Article  PubMed  CAS  Google Scholar 

  • Galton PM (1970a) Pachycephalosaurids—dinosaur battering rams. Discovery 6:23–32

    Google Scholar 

  • Galton PM (1970b) The posture of hadrosaurian dinosaurs. J Paleontol 44:464–473

    Google Scholar 

  • Gilmore CW (1914) Osteology of the armoured Dinosauria in the United States National Museum, with special reference to the genus Stegosaurus. U S National Museum Bulletin 89:1–143

    Google Scholar 

  • Godfrey SJ, Holmes R (1995) Cranial morphology and systematics of Chasmosaurus (Dinosauria: Ceratopsidae) from the Upper Cretaceous of Western Canada. J Vertebr Paleontol 15:726–742

    Article  Google Scholar 

  • Hatcher JB, Marsh OC, Lull RS (1907) The Ceratopsia. Monogr U S Geol Surv 39:1–295

    Google Scholar 

  • Haubold H (1990) Ein neuer dinosaurier (Ornithischia, Thyreophora) aus dem unteren Jura des nördlichen mitteleuropa. Revue de Paléobiologie 9:149–177

    Google Scholar 

  • Henderson DM (1999) Estimating the masses and centres of mass of extinct animals by 3-D mathematical slicing. Paleobiology 25:88–106

    Google Scholar 

  • Henderson DM (2003) Effects of stomach stones on the buoyancy and equilibrium of a floating crocodilian: a computational analysis. Can J Zool 8:1346–1357

    Article  Google Scholar 

  • Henderson DM (2010) Pterosaur body mass estimates from three-dimensional mathematical slicing. J Vertebr Paleontol 30:768–785

    Article  Google Scholar 

  • Hopson JA (1975) The evolution of cranial display structures in hadrosaurian dinosaurs. Paleobiology 1:21–43

    Google Scholar 

  • Horner JR, Weishampel DB, Forster CA (2004) Hadrosauridae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. Univ California Press, Berkeley, pp 438–463

    Chapter  Google Scholar 

  • Hutchinson JR, Bates KT, Molnar J, Allen V, Makovicky PJA (2011) Computational analysis of limb and body dimensions in Tyrannosaurus rex with implications for locomotion, ontogeny and growth. PLoS One 6:e26037

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Leidy J (1858) December 14th: reviewed works. P Acad Nat Sci Phila 10:213–222

    Google Scholar 

  • Lockley MG, Wright JL (2001) In Mesozoic Vertebrate Life, eds Tanke DH, Carpenter K (Indiana University Press, Bloomington), pp. 428–442.

  • Maidment SCR, Barrett PM (2011) A new specimen of Chasmosaurus belli (Ornithischia: Ceratopsidae), a revision of the genus, and the utility of postcrania in the taxonomy and systematics of ceratopsid dinosaurs. Zootaxa 2963:1–47

    Google Scholar 

  • Maidment SCR, Barrett PM (2012) Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs. P Roy Soc B-Biol Sci 279:3765–3771

    Article  Google Scholar 

  • Maidment SCR, Barrett PM (2014) Osteological correlates for quadrupedality in ornithischian dinosaurs. Acta Palaeontol Pol 59:53–70

    Google Scholar 

  • Maidment SCR, Norman DB, Barrett PM, Upchurch P (2008) Systematics and phylogeny of Stegosauria (Dinosauria: Ornithischia). J Syst Palaeontol 6:367–407

    Article  Google Scholar 

  • Maidment SCR, Linton DH, Upchurch P, Barrett PM (2012) Limb-bone scaling indicates diverse stance and gait in quadrupedal ornithischian dinosaurs. PLoS One 7:e36904

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maidment SCR, Bates KT, Barrett PM. (In press) Three-dimensional computational modelling of pelvic locomotor muscle moment arms in Edmontosaurus (Dinosauria, Hadrosauridae) and comparisons with other archosaurs. In: Evans DC, Eberth DA (eds) Hadrosaurs. Indiana University Press, Bloomington.

  • Mallison H (2014) Osteoderm placement has a low impact on the centre of mass of stegosaurs. Foss Rec 17:33–39. doi:10.5194/fr-17-33-2014

    Article  Google Scholar 

  • Mallon JC, Holmes R (2010) Description of a complete and fully articulated chasmosaurine postcranium previously assigned to Anchiceratops (Dinosauria: Ceratopsidae). In: Ryan MJ, Chinnery-Allegier BJ, Eberth DA (eds) New perspectives on horned dinosaurs. Indiana University Press, Bloomington, pp 189–202

    Google Scholar 

  • Marsh OC (1877) A new order of extinct Reptilia (Stegosauria) from the Jurassic of the Rocky Mountains. Am J Sci 3rd series 14:34–35.

  • Marsh OC (1881) Principal characters of American Jurassic dinosaurs. Part IV: spinal cord, pelvis, and limbs of Stegosaurus. Am J Sci 3rd series 21:167–170.

  • Milsom WK (1975) Development of buoyancy control in juvenile Atlantic loggerhead turtles. Caretta c caretta Copeia 1974:758–762

    Article  Google Scholar 

  • Molnar RE (1977) Analogies in the evolution of combat and display structures in ornithopods and ungulates. Evol Theory 3:165–190

  • Nesbitt SJ, Sidor CA, Irmis RB, Angelczyk KD, Smith RMH, Tsuji LA (2010) Ecologically distinct dinosaurian sister group shows early diversification of Ornithodira. Nature 464:95–98

    Article  PubMed  CAS  Google Scholar 

  • Nopcsa F (1928) Palaeontological notes on reptiles. Geol Hung 1:1–84

    Google Scholar 

  • Norman DB (1980) On the ornithischian dinosaur Iguanodon bernissatensis from the Lower Cretaceous of Bernissart (Belgium). Mémoires de l'Institut Royal des Sciences Naturelles de Belgique 178:1–103

    Google Scholar 

  • Osborn HF (1923) Two Lower Cretaceous dinosaurs of Mongolia. Am Mus Novit 95:1–10

    Google Scholar 

  • Ostrom JH (1962) The cranial crests of hadrosaurian dinosaurs. Postilla 62:1–29

    Google Scholar 

  • Owen RA (1861) A monograph on the fossil Reptilia of the Liassic formations: part one. A monograph of a fossil dinosaur (Scelidosaurus harrisonii) of the Lower Lias. Palaeontographical Soc Monogr 1:1–14

    Google Scholar 

  • Owen RA (1875) Monograph on the fossil Reptilia of the Mesozoic formations: part two. (Genera Bothriospondylus, Cetiosaurus, Omosaurus). Palaeontographical Society Monographs 29:15–94

    Google Scholar 

  • Paul GS (1997) Dinosaur models: the good, the bad and using them to estimate the mass of dinosaurs. In: Wolberg DL, Stump E, Rosenberg GD (eds) DinoFest international proceedings. The Academy of Natural Sciences, Philadelphia, pp 129–154

    Google Scholar 

  • Rosenbaum JN, Padian K (2000) New material of the basal thyreophoran Scutellosaurus lawleri from the Kayenta Formation (Lower Jurassic) of Arizona. Paleobios 20:13–23

    Google Scholar 

  • Ryan MJ, Evans DC (2005) In: Currie PJ, Koppelhus EB (eds) Dinosaur Provincial Park: a spectacular ancient ecosystem revisited. Indiana University Press, Bloomington, pp 312–348

    Google Scholar 

  • Seebacher F (2001) A new method to calculate allometric length-mass relationships of dinosaurs. J Vertebr Paleontol 21:51–60

    Article  Google Scholar 

  • Sellers WI, Manning PL, Lyson T, Stevens KA, Margetts L (2009) Virtual paleontology: gait reconstruction of extinct vertebrates using high performance computing. Palaeontol. Electron. 12, 11A:26 pp. Accessed 15/11/2013.

  • Sellers WI, Hepworth-Bell J, Falkingham PL, Bates KT, Brassey CA, Egerton VM, Manning PL (2012) Minimum convex hull mass estimations of complete mounted skeletons. Biol Letters 8:842–845

    Article  CAS  Google Scholar 

  • Sereno PC (1990) In: Carpenter K, Currie PJ (eds) Dinosaur systematics: approaches and perspectives. Cambridge Univ. Press, Cambridge, pp 203–210

    Chapter  Google Scholar 

  • Sereno PC (2010) Taxonomy, cranial morphology and relationships of parrot-beaked dinosaurs (Ceratopsia: Psittacosaurus). In: Ryan MJ, Chinnery-Allegier BJ, Eberth DA (eds) New perspectives on horned dinosaurs. Indiana Univ. Press, Bloomington, pp 21–58

    Google Scholar 

  • Sereno PC, Zhao X, Brown L, Lin T (2007) New psittacosaurid highlights skull enlargement in horned dinosaurs. Acta Palaeontol Pol 52:275–284

    Google Scholar 

  • Thulborn RA (1993) Mimicry in ankylosaurid dinosaurs. Rec S Aus Mus 27:151–158

    Google Scholar 

  • Vickaryous MK, Maryańska T, Weishampel DB (2004) In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. Univ. California Press, Berkeley, pp 363–393

    Chapter  Google Scholar 

  • Yates AM, Bonnan MF, Neveling J, Chinsamy A, Blackbeard MG (2010) A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism. P Roy Soc B-Biol Sci 277:787–794

    Article  Google Scholar 

  • You H-L, Dodson P (2004) In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn. Univ. California Press, Berkeley, pp 478–493

    Google Scholar 

  • Zhao Q, Benton MJ, Sullivan C, Sander PM, Xu X (2013) Histology and postural change during the growth of the ceratopsian dinosaur Psittacosaurus lujiatunensis. Nat Commun 4:2079. doi:10.1038/ncomms3079

    PubMed  Google Scholar 

Download references

Acknowledgments

SCRM was funded by the Natural Environment Research Council grant number NE/G001898/1 awarded to PMB during the course of this work. Thanks to K. T. Bates (University of Liverpool) for discussion. The manuscript was greatly improved by the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susannah C. R. Maidment.

Additional information

Communicated by: Robert R. Reisz

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maidment, S.C.R., Henderson, D.M. & Barrett, P.M. What drove reversions to quadrupedality in ornithischian dinosaurs? Testing hypotheses using centre of mass modelling. Naturwissenschaften 101, 989–1001 (2014). https://doi.org/10.1007/s00114-014-1239-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1239-2

Keywords

Navigation