Skip to main content
Log in

The mechanisms underlying the production of discontinuous gas exchange cycles in insects

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

This review examines the control of gas exchange in insects, specifically examining what mechanisms could explain the emergence of discontinuous gas exchange cycles (DGCs). DGCs are gas exchange patterns consisting of alternating breath-hold periods and bouts of gas exchange. While all insects are capable of displaying a continuous pattern of gas exchange, this episodic pattern is known to occur within only some groups of insects and then only sporadically or during certain phases of their life cycle. Investigations into DGCs have tended to emphasise the role of chemosensory thresholds in triggering spiracle opening as critical for producing these gas exchange patterns. However, a chemosensory basis for episodic breathing also requires an as-of-yet unidentified hysteresis between internal respiratory stimuli, chemoreceptors, and the spiracles. What has been less appreciated is the role that the insect’s central nervous system (CNS) might play in generating episodic patterns of ventilation. The active ventilation displayed by many insects during DGCs suggests that this pattern could be the product of directed control by the CNS rather than arising passively as a result of self-sustaining oscillations in internal oxygen and carbon dioxide levels. This paper attempts to summarise what is currently known about insect gas exchange regulation, examining the location and control of ventilatory pattern generators in the CNS, the influence of chemoreceptor feedback in the form of O2 and CO2/pH fluctuations in the haemolymph, and the role of state-dependent changes in CNS activity on ventilatory control. This information is placed in the context of what is currently known regarding the production of discontinuous gas exchange patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Matthews and Terblanche (2015)

Fig. 2

Figures modified from (Miller 1981a; Miall and Denny 1886)

Fig. 3
Fig. 4
Fig. 5

Figure from Matthews and White (2011b)

Fig. 6

Locust and cockroach CNS organisation adapted from Niven et al. (2008). Ant CNS from Choi et al. (2009). (1) Bustami and Hustert (2000), (2) Matthews and White (2011b), (3) Myers and Retzlaff (1963), (4) Lighton and Garrigan (1995), (5) Lighton et al. (1993), (6) Lighton (1992), (7) Quinlan and Lighton (1999)

Similar content being viewed by others

References

  • Barnhart MC (1986) Control of acid-base status in active and dormant land snails, Otala lactea (Pulmonata, Helicidae). J Comp Physiol B Biochem Syst Environ Physiol 156(3):347–354

    Article  Google Scholar 

  • Beckel WE, Schneiderman HA (1957) Insect spiracle as an independent effector. Science 126(3269):352–353. doi:10.2307/1753975

    Article  CAS  PubMed  Google Scholar 

  • Berman TS, Ayali A, Gefen E (2013) Neural control of gas exchange patterns in insects: locust density-dependent phases as a test case. PLoS One 8(3):e59967. doi:10.1371/journal.pone.0059967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley TJ (2007) Control of the respiratory pattern in insects. In: Roach RC, Wagner PD, Hackett PH (eds) Hypoxia and the circulation, vol 618. Advances in experimental medicine and biology. Springer, New York, pp 211–220. doi:10.1007/978-0-387-75434-5_16

    Chapter  Google Scholar 

  • Buck J (1962) Some physical aspects of insect respiration. Annu Rev Entomol 7(1):27–56. doi:10.1146/annurev.en.07.010162.000331

    Article  Google Scholar 

  • Buck J, Friedman S (1958) Cyclic CO2 release in diapausing pupae III: CO2 capacity of the blood: carbonic anhydrase. J Insect Physiol 2(1):52–60

    Article  CAS  Google Scholar 

  • Buck J, Keister M (1955) Cyclic CO2 release in diapausing Agapema pupae. Biol Bull 109(1):144–163

    Article  Google Scholar 

  • Buck J, Keister M, Specht H (1953) Discontinuous respiration in diapausing Agapema pupae. Anat Rec 117(3):541–541

    Google Scholar 

  • Burkett BN, Schneiderman HA (1974) Roles of oxygen and carbon-dioxide in control of spiracular function in Cecropia pupae. Biol Bull 147(2):274–293

    Article  CAS  PubMed  Google Scholar 

  • Burrows M (1974) Modes of activation of motoneurons controlling ventilatory movements of the locust abdomen. Philos Trans R Soc Lond B Biol Sci 269(896):29–48

    Article  CAS  PubMed  Google Scholar 

  • Burrows M (1982) Interneurones co-ordinating the ventilatory movements of the thoracic spiracles in the locust. J Exp Biol 97(1):385–400

    Google Scholar 

  • Bustami HP, Hustert R (2000) Typical ventilatory pattern of the intact locust is produced by the isolated CNS. J Insect Physiol 46(9):1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Campbell SS, Tobler I (1984) Animal sleep: a review of sleep duration across phylogeny. Neurosci Biobehav Rev 8(3):269–300

    Article  CAS  PubMed  Google Scholar 

  • Case JF (1956) Carbon dioxide and oxygen effects on the spiracles of flies. Physiol Zool 29(2):163–171. doi:10.2307/30152206

    Article  CAS  Google Scholar 

  • Case JF (1957a) Differentiation of the effects of pH and CO2 on spiracular function of insects. J Cell Comp Physiol 49(1):103–113

    Article  CAS  PubMed  Google Scholar 

  • Case JF (1957b) The median nerves and cockroach spiracular function. J Insect Physiol 1(1):85–94

    Article  Google Scholar 

  • Chappell MA, Rogowitz GL (2000) Mass, temperature and metabolic effects on discontinuous gas exchange cycles in eucalyptus-boring beetles (Coleoptera: Cerambycidae). J Exp Biol 203(24):3809–3820

    CAS  PubMed  Google Scholar 

  • Cherniack NS, Longobardo G, Evangelista CJ (2005) Causes of Cheyne-Stokes respiration. Neurocrit Care 3(3):271–279. doi:10.1385/ncc:3:3:271

    Article  CAS  PubMed  Google Scholar 

  • Choi M-Y, Raina A, Vander Meer RK (2009) PBAN/pyrokinin peptides in the central nervous system of the fire ant, Solenopsis invicta. Cell Tissue Res 335(2):431–439. doi:10.1007/s00441-008-0721-6

    Article  CAS  PubMed  Google Scholar 

  • Chown SL, Holter P (2000) Discontinuous gas exchange cycles in Aphodius fossor (Scarabaeidae): a test of hypotheses concerning origins and mechanisms. J Exp Biol 203(2):397–403

    CAS  PubMed  Google Scholar 

  • Chown SL, Gibbs AG, Hetz SK, Klok CJ, Lighton JRB, Marais E (2006) Discontinuous gas exchange in insects: a clarification of hypotheses and approaches. Physiol Biochem Zool 79(2):333–343

    Article  CAS  PubMed  Google Scholar 

  • Contreras HL, Bradley TJ (2009) Metabolic rate controls respiratory pattern in insects. J Exp Biol 212(3):424–428. doi:10.1242/jeb.024091

    Article  CAS  PubMed  Google Scholar 

  • Contreras HL, Heinrich EC, Bradley TJ (2014) Hypotheses regarding the discontinuous gas exchange cycle (DGC) of insects. Curr Opin Insect Sci 4:48–53

    Article  PubMed  Google Scholar 

  • Davis Adrian LV, Chown Steven L, Scholtz Clarke H (1999) Discontinuous gas exchange cycles in Scarabaeus dung beetles (Coleoptera: Scarabaeidae): mass-scaling and temperature dependence. Physiol Biochem Zool 72(5):555–565

    Article  Google Scholar 

  • Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90(1):47–112. doi:10.1152/physrev.00043.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan FD, Dickman CR (2001) Respiratory patterns and metabolism in tenebrionid and carabid beetles from the Simpson Desert, Australia. Oecologia 129(4):509–517

    Article  PubMed  Google Scholar 

  • Duncan FD, Newton RD (2000) The use of the anaesthetic, enflurane, for determination of metabolic rates and respiratory parameters in insects, using the ant, Camponotus maculatus (Fabricius) as the model. J Insect Physiol 46(12):1529–1534

    Article  CAS  PubMed  Google Scholar 

  • Farley RD, Case JF, Roeder KD (1967) Pacemaker for tracheal ventilation in the cockroach, Periplaneta americana (L). J Insect Physiol 13(11):1713–1728. doi:10.1016/0022-1910(67)90166-7

    Article  CAS  PubMed  Google Scholar 

  • Fink BR (1961) Influence of cerebral activity in wakefulness on regulation of breathing. J Appl Physiol 16(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Fong AY, Zimmer MB, Milsom WK (2009) The conditional nature of the “Central Rhythm Generator” and the production of episodic breathing. Respir Physiol Neurobiol 168(1–2):179–187

    Article  PubMed  Google Scholar 

  • Förster T, Hetz SK (2010) Spiracle activity in moth pupae—the role of oxygen and carbon dioxide revisited. J Insect Physiol 56(5):492–501

    Article  CAS  PubMed  Google Scholar 

  • Gal R, Libersat F (2010) A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLOS One 5(4):e10019. doi:10.1371/journal.pone.0010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenlee KJ, Harrison JF (1998) Acid-base and respiratory responses to hypoxia in the grasshopper Schistocerca americana. J Exp Biol 201(20):2843–2855

    CAS  PubMed  Google Scholar 

  • Grieshaber BJ, Terblanche JS (2015) A computational model of insect discontinuous gas exchange: a two-sensor, control systems approach. J Theor Biol 374:138–151

    Article  CAS  PubMed  Google Scholar 

  • Groenewald B, Hetz SK, Chown SL, Terblanche JS (2012) Respiratory dynamics of discontinuous gas exchange in the tracheal system of the desert locust, Schistocerca gregaria. J Exp Biol 215(13):2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Gulinson SL, Harrison JF (1996) Control of resting ventilation rate in grasshoppers. J Exp Biol 199(2):379–389

    CAS  PubMed  Google Scholar 

  • Hadley NF, Quinlan MC (1993) Discontinuous carbon dioxide release in the Eastern lubber grasshopper Romalea guttata and its effect of respiratory transpiration. J Exp Biol 177:169–180

    Google Scholar 

  • Harrison JF (1989) Ventilatory frequency and haemolymph acid-base status during short-term hypercapnia in the locust, Schistocerca nitens. J Insect Physiol 35(11):809–814

    Article  Google Scholar 

  • Harrison JF, Hadley NF, Quinlan MC (1995) Acid-base status and spiracular control during discontinuous ventilation in grasshoppers. J Exp Biol 198(8):1755–1763

    CAS  PubMed  Google Scholar 

  • Harrison JF, Waters JS, Cease AJ, VandenBrooks JM, Callier V, Klok CJ, Shaffer K, Socha JJ (2013) How locusts breathe. Physiology 28(1):18–27. doi:10.1152/physiol.00043.2012

    Article  Google Scholar 

  • Harrison JF, Manoucheh M, Klok CJ, Campbell JB (2016) Temperature and the ventilatory response to hypoxia in Gromphadorhina portentosa (Blattodea: Blaberidae). Environ Entomol 45(2):479–483. doi:10.1093/ee/nvv217

    Article  PubMed  Google Scholar 

  • Hartung DK, Kirkton SD, Harrison JF (2004) Ontogeny of tracheal system structure: a light and electron-microscopy study of the metathoracic femur of the American locust, Schistocerca Americana. J Morphol 262(3):800–812. doi:10.1002/jmor.10281

    Article  PubMed  Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. J Comp Physiol A 158(3):413–427. doi:10.1007/bf00603625

    Article  Google Scholar 

  • Hetz SK, Bradley TJ (2005) Insects breathe discontinuously to avoid oxygen toxicity. Nature 433(7025):516–519. doi:10.1038/nature03106

    Article  CAS  PubMed  Google Scholar 

  • Hetz SK, Wasserthal LT (1993) Miniaturized pH-sensitive glass-electrodes for the continuous recording of hemolymph pH in resting butterfly pupae. Verh Der Dtsch Zool Ges 86:92

    Google Scholar 

  • Huang S-P, Sender R, Gefen E (2014) Oxygen diffusion limitation triggers ventilatory movements during spiracle closure when insects breathe discontinuously. J Exp Biol 217(13):2229–2231. doi:10.1242/jeb.102426

    Article  PubMed  Google Scholar 

  • Huber F (1960) Experimentelle Untersuchungen zur nervösen Atmungsregulation der Orthopteren (Saltatoria: Gryllidae). J Comp Physiol A 43(4):359–391

    Google Scholar 

  • Hustert R (1975) Neuromuscular coordination and proprioceptive control of rhythmical abdominal ventilation in intact Locusta migratoria migratorioides. J Comp Physiol A 97(2):159–179

    Article  Google Scholar 

  • Janiszewski J, Kosecka-Janiszewska U, Otto D (1988) Changes in rate of abdominal ventilatory pumping induced by warming individual ganglia in the male cricket Gryllus bimaculatus (de geer). J Therm Biol 13(4):185–188

    Article  Google Scholar 

  • Kaars C (1979) Neural control of homologous behaviour patterns in two blaberid cockroaches. J Insect Physiol 25(3):209–218

    Article  Google Scholar 

  • Kestler P (1985) Respiration and respiratory water loss. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin, pp 137–183

    Google Scholar 

  • Khoo MCK (2000) Determinants of ventilatory instability and variability. Respir Physiol 122(2–3):167–182

    Article  CAS  PubMed  Google Scholar 

  • Khoo MC, Kronauer RE, Strohl KP, Slutsky AS (1982) Factors inducing periodic breathing in humans: a general model. J Appl Physiol 53(3):644–659

    Article  CAS  PubMed  Google Scholar 

  • Kien J, Altman JS (1984) Descending interneurones from the brain and suboesophageal ganglia and their role in the control of locust behaviour. J Insect Physiol 30(1):59–72

    Article  Google Scholar 

  • Kinkead R, Milsom WK (1994) Chemoreceptors and control of episodic breathing in the bullfrog (Rana catesbeiana). Respir Physiol 95(1):81–98

    Article  CAS  PubMed  Google Scholar 

  • Levy RI, Schneiderman HA (1958) Experimental solution to the paradox of discontinuous respiration in insects. Nature 182(4634):491–493

    Article  CAS  PubMed  Google Scholar 

  • Levy RI, Schneiderman HA (1966) Discontinuous respiration in insects–II. Direct measurement and significance of changes in tracheal gas composition during respiratory cycle of silkworm pupae. J Insect Physiol 12(1):83–104. doi:10.1016/0022-1910(66)90068-0

    Article  CAS  PubMed  Google Scholar 

  • Lewis GW, Miller PL, Mills PS (1973) Neuro-muscular mechanisms of abdominal pumping in the locust. J Exp Biol 59(1):149–168

    Google Scholar 

  • Lighton JRB (1988) Discontinuous CO2 emission in a small insect, the formicine ant Camponotus vicinus. J Exp Biol 134(1):363–376

    Google Scholar 

  • Lighton JRB (1992) Direct measurement of mass loss during discontinuous ventilation in two species of ants. J Exp Biol 173:289–293

    Google Scholar 

  • Lighton JR (1996) Discontinuous gas exchange in insects. Annu Rev Entomol 41:309–324

    Article  CAS  PubMed  Google Scholar 

  • Lighton JRB, Berrigan D (1995) Questioning paradigms: caste-specific ventilation in harvester ants, Messor pergandei and M. julianus (Hymenoptera: Formicidae). J Exp Biol 198(2):521–530

    CAS  PubMed  Google Scholar 

  • Lighton JRB, Garrigan D (1995) Ant breathing: testing regulation and mechanism hypotheses with hypoxia. J Exp Biol 198(7):1613–1620

    CAS  PubMed  Google Scholar 

  • Lighton JRB, Turner RJ (2008) The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus. J Exp Biol 211(4):563–567. doi:10.1242/jeb.010041

    Article  PubMed  Google Scholar 

  • Lighton JRB, Wehner R (1993) Ventilation and respiratory metabolism in the thermophilic desert ant, Cataglyphis bicolor (Hymenoptera, Formicidae). J Comp Physiol B 163(1):11–17

    Article  Google Scholar 

  • Lighton JRB, Fukushi T, Wehner R (1993) Ventilation in Cataglyphis bicolor: regulation of carbon dioxide release from the thoracic and abdominal spiracles. J Insect Physiol 39(8):687–699. doi:10.1016/0022-1910(93)90074-2

    Article  Google Scholar 

  • Lorenzi-Filho G, Rankin F, Bies IAN, Bradley TD (1999) Effects of inhaled carbon dioxide and oxygen on Cheyne-Stokes respiration in patients with heart failure. Am J Respir Crit Care Med 159(5):1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Marais E, Chown SL (2003) Repeatability of standard metabolic rate and gas exchange characteristics in a highly variable cockroach, Perisphaeria sp. J Exp Biol 206(24):4565–4574. doi:10.1242/jeb.00700

    Article  PubMed  Google Scholar 

  • Marais E, Klok CJ, Terblanche JS, Chown SL (2005) Insect gas exchange patterns: a phylogenetic perspective. J Exp Biol 208(23):4495–4507

    Article  PubMed  Google Scholar 

  • Matthews PGD, Terblanche JS (2015) Evolution of the mechanisms underlying insect respiratory gas exchange. In: Advances in insect physiology, vol 49. Academic Press, Oxford, pp 1–24. doi:10.1016/bs.aiip.2015.06.004

    Google Scholar 

  • Matthews PGD, White CR (2011a) Discontinuous gas exchange in insects: Is it all in their heads? Am Nat 177(1):130–134. doi:10.1086/657619

    Article  PubMed  Google Scholar 

  • Matthews PGD, White CR (2011b) Regulation of gas exchange and haemolymph pH in the cockroach Nauphoeta cinerea. J Exp Biol 214(18):3062–3073. doi:10.1242/jeb.053991

    Article  CAS  PubMed  Google Scholar 

  • Matthews PGD, White CR (2012) Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae). Physiol Biochem Zool 85(2):174–182

    Article  CAS  PubMed  Google Scholar 

  • Matthews PGD, White CR (2013) Reversible brain inactivation induces discontinuous gas exchange in cockroaches. J Exp Biol 216(11):2012–2016. doi:10.1242/jeb.077479

    Article  PubMed  Google Scholar 

  • Matthews PGD, Snelling EP, Seymour RS, White CR (2012) A test of the oxidative damage hypothesis for discontinuous gas exchange in the locust Locusta migratoria. Biol Lett 8(4):682–684. doi:10.1098/rsbl.2012.0137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArthur MD, Milsom WK (1991) Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and golden-mantled (Spermophilus lateralis) ground squirrels. Physiol Zool 64(4):940–959

    Article  Google Scholar 

  • Miall LC, Denny A (1886) The structure and life-history of the cockroach (Periplaneta orientalis); an introduction to the study of insects. In: Miall LC, Alfred Denny L (eds). Reeve & co., London. doi:10.5962/bhl.title.3782

    Chapter  Google Scholar 

  • Mill PJ, Hughes GM (1966) The nervous control of ventilation in dragonfly larvae. J Exp Biol 44(2):297–316

    CAS  PubMed  Google Scholar 

  • Miller PL (1960) Respiration in the desert locust: I. The control of ventilation. J Exp Biol 37(2):224–236

    CAS  Google Scholar 

  • Miller PL (1962) Spiracle control in adult dragonflies (Odonata). J Exp Biol 39(4):513–535

    Google Scholar 

  • Miller PL (1966) The regulation of breathing in insects. In: Beament JWL, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, vol 3. Academic Press, London, pp 279–354

    Google Scholar 

  • Miller PL (1971) Rhythmic activity in the insect nervous system: thoracic ventilation in non-flying beetles. J Insect Physiol 17(3):395–405. doi:10.1016/0022-1910(71)90019-9

    Article  Google Scholar 

  • Miller PL (1973) Spatial and temporal changes in the coupling of cockroach spiracles to ventilation. J Exp Biol 59(1):137–148

    Google Scholar 

  • Miller PL (1981a) Respiration. In: Bell WJ, Adiyodi KG (eds) The American cockroach. Chapman and Hall, London, pp 87–116

    Chapter  Google Scholar 

  • Miller PL (1981b) Ventilation in active and in inactive insects. In: Herreid II CF, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York, pp 367–390. doi:10.1007/978-1-4684-4064-5_14

    Chapter  Google Scholar 

  • Myers TB (1958) Some aspects of tracheal ventilation in the cockroach, Byrsotria fumigata (Guerin). Unpublished Doctoral Dissertation, The Ohio State University, Ohio

  • Myers TB, Fisk FW (1962) Breathing movements of the cuban burrowing cockroach. Ohio J Sci 62(5):253–257

    Google Scholar 

  • Myers T, Retzlaff E (1963) Localisation and action of the respiratory center in the Cuban burrowing cockroach. J Insect Physiol 9(5):607–614

    Article  Google Scholar 

  • Niven JE, Graham CM, Burrows M (2008) Diversity and evolution of the insect ventral nerve cord. Annu Rev Entomol 53(1):253–271. doi:10.1146/annurev.ento.52.110405.091322 doi

    Article  CAS  PubMed  Google Scholar 

  • Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto D, Campan R (1978) Descending interneurons from the cricket subesophageal ganglion. Naturwissenschaften 65(9):491–493. doi:10.1007/bf00702845

    Article  Google Scholar 

  • Otto D, Hennig RM (1993) Interneurons descending from the cricket subesophageal ganglion control stridulation and ventilation. Naturwissenschaften 80(1):36–38

    Article  Google Scholar 

  • Otto D, Janiszewski J (1989) Interneurones originating in the suboesophageal ganglion that control ventilation in two cricket species: effects of the interneurones (SD-AE neurones) on the motor output. J Insect Physiol 35(6):483–491

    Article  Google Scholar 

  • Otto D, Weber T (1982) Interneurons descending from the cricket cephalic ganglia that discharge in the pattern of two motor rhythms. J Comp Physiol A 148(2):209–219

    Article  Google Scholar 

  • Paim U, Beckel WE (1963) The influence of oxygen and carbon dioxide on the spiracles of a wood-boring insect, Orthosoma brunneum (Forster) (Coleoptera: Cerambycidae). Can J Zool 41:1149–1167

    Article  CAS  Google Scholar 

  • Pearson KG (1980) Burst generation in coordinating interneurons of the ventilatory system of the locust. J Comp Physiol 137(4):305–313. doi:10.1007/bf00657111

    Article  Google Scholar 

  • Pipa R, Delcomyn F (1981) Nervous system. In: Bell WJ, Adiyodi KG (eds) The American cockroach. Springer, Netherlands, Dordrecht, pp 175–215. doi:10.1007/978-94-009-5827-2_8

    Chapter  Google Scholar 

  • Punt A (1950) The respiration of insects. Physiol Comp Et Oecol 2(1):59–74

    Google Scholar 

  • Quinlan MC, Gibbs AG (2006) Discontinuous gas exchange in insects. Respir Physiol Neurobiol 154(1–2):18–29

    Article  CAS  PubMed  Google Scholar 

  • Quinlan MC, Hadley NF (1993) Gas exchange, ventilatory patterns, and water loss in two lubber grasshoppers: quantifying cuticular and respiratory transpiration. Physiol Zool 66(4):628–642

    Article  Google Scholar 

  • Quinlan MC, Lighton JRB (1999) Respiratory physiology and water relations of three species of Pogonomyrmex harvester ants (Hymenoptera: Formicidae). Physiol Entomol 24(4):293–302. doi:10.1046/j.1365-3032.1999.00140.x

    Article  Google Scholar 

  • Ramirez J-M (1998) Reconfiguration of the respiratory network at the onset of locust flight. J Neurophysiol 80(6):3137–3147

    Article  CAS  PubMed  Google Scholar 

  • Ramirez JM, Pearson KG (1989a) Alteration of the respiratory system at the onset of locust flight: I. Abdominal pumping. J Exp Biol 142(1):401–424

    Google Scholar 

  • Ramirez JM, Pearson KG (1989b) Distribution of intersegmental interneurones that can reset the respiratory rhythm of the locust. J Exp Biol 141(1):151–176

    Google Scholar 

  • Rebuck AS, Woodley WE (1975) Ventilatory effects of hypoxia and their dependence on PCO2. J Appl Physiol 38(1):16–19

    Article  CAS  PubMed  Google Scholar 

  • Roeder KD, Tozian L, Weiant EA (1960) Endogenous nerve activity and behaviour in the mantis and cockroach. J Insect Physiol 4(1):45–62. doi:10.1016/0022-1910(60)90067-6

    Article  Google Scholar 

  • Schimpf NG, Matthews PGD, White CR (2012) Cockroaches that exchange respiratory gases discontinuously survive food and water restriction. Evol Int J org Evol 66(2):597–604. doi:10.1111/j.1558-5646.2011.01456.x

    Article  Google Scholar 

  • Schimpf NG, Matthews PGD, White CR (2013) Discontinuous gas exchange exhibition is a heritable trait in speckled cockroaches Nauphoeta cinerea. J Evol Biol 26(7):1588–1597. doi:10.1111/jeb.12093

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Perry SF (1999) Stereological determination of tracheal volume and diffusing capacity of the tracheal walls in the stick insect Carausius morosus (Phasmatodea, Lonchodidae). Physiol Biochem Zool 72(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Schneiderman HA (1960) Discontinuous respiration in insects: role of the spiracles. Biol Bull 119(3):494–528

    Article  Google Scholar 

  • Schneiderman HA, Williams CM (1955) An experimental analysis of the discontinuous respiration of the Cecropia silkworm. Biol Bull 109(1):123–143

    Article  Google Scholar 

  • Schöneich S, Hedwig B (2011) Neural basis of singing in crickets: central pattern generation in abdominal ganglia. Naturwissenschaften 98(12):1069–1073. doi:10.1007/s00114-011-0857-1

    Article  CAS  PubMed  Google Scholar 

  • Schreuder JE, De Wilde J (1952) Analysis of the dyspnoeic action of carbon dioxide in the cockroach (Periplaneta americana L.). Physiol Comp Oecol 2:355–361

    Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Skatrud JB, Dempsey JA (1983) Interaction of sleep state and chemical stimuli in sustaining rhythmic ventilation. J Appl Physiol 55(3):813–822

    Article  CAS  PubMed  Google Scholar 

  • Snelling EP, Seymour RS, Runciman S, Matthews PGD, White CR (2011) Symmorphosis and the insect respiratory system: allometric variation. J Exp Biol 214(19):3225–3237. doi:10.1242/jeb.058438

    Article  PubMed  Google Scholar 

  • Snyder GK, Ungerman G, Breed M (1980) Effects of hypoxia, hypercapnia, and pH on ventilation rate in Nauphoeta cinerea. J Insect Physiol 26(10):699–702

    Article  CAS  Google Scholar 

  • Socha JJ, Lee W-K, Harrison JF, Waters JS, Fezzaa K, Westneat MW (2008) Correlated patterns of tracheal compression and convective gas exchange in a carabid beetle. J Exp Biol 211(21):3409–3420. doi:10.1242/jeb.019877

    Article  CAS  PubMed  Google Scholar 

  • Tyrer NM, Gregory GE (1982) A guide to the neuroanatomy of locust suboesophageal and thoracic ganglia. Philos Trans R Soc Lond Ser B Biol Sci 297(1085):91–123

    Article  Google Scholar 

  • Wasserthal LT (1996) Interaction of circulation and tracheal ventilation in holometabolous insects. Adv Insect Physiol 26:297–351

    Article  Google Scholar 

  • Wigglesworth VB (1935) The regulation of respiration in the flea, Xenopsylla cheopis, Roths (Pulicidae). Proc R Soc Lond Ser B Biol Sci 118(810):397–419

    Article  CAS  Google Scholar 

  • Wigglesworth VB (1974) Insect physiology, 7th edn. Springer, New York. http://dx.doi.org/10.1007/978-1-4899-3202-0

  • Williams CM, Pelini SL, Hellmann JJ, Sinclair BJ (2010) Intra-individual variation allows an explicit test of the hygric hypothesis for discontinuous gas exchange in insects. Biol Lett 6(2):274–277. doi:10.1098/rsbl.2009.0803

    Article  PubMed  Google Scholar 

  • Wobschall A, Hetz SK (2004) Oxygen uptake by convection and diffusion in diapausing moth pupae (Attacus atlas). Int Congr Ser 1275:157–164

    Article  Google Scholar 

Download references

Acknowledgements

My sincere thanks to Ian Hume for the invitation to write this review, and to the three anonymous reviewers for their comments and constructive criticism that greatly improved an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. D. Matthews.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthews, P.G.D. The mechanisms underlying the production of discontinuous gas exchange cycles in insects. J Comp Physiol B 188, 195–210 (2018). https://doi.org/10.1007/s00360-017-1121-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-017-1121-6

Keywords

Navigation