Skip to main content

Advertisement

Log in

The global importance and context of methane escape from the seabed

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Seabed fluid flow includes volcanic and hydrothermal fluid emissions from ocean spreading centres, island arcs, and intra-plate volcanism, and groundwater flows in some coastal areas. Of direct concern to this paper is the escape of methane from the seabed. Escaping methane may be of microbial, thermogenic or abiogenic origin. Escapes occur in all seas and oceans, in coastal waters, on continental shelves, slopes and rises, the deep oceans, and deep ocean trenches. These represent a variety of geological contexts on passive continental margins, at convergent plate margins (accretionary wedges) and transform plate boundaries. Seepage is clearly widespread, and it contributes methane to the biosphere, the hydrosphere and the atmosphere, thus making up an important part of the global carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Aharon P (1994) Geology and biology of modern and ancient submarine hydrocarbon seeps and vents: an introduction. Geo-Mar Lett 14:69–73

  • Apps JA, van de Kamp PC (1993) Energy gases of abiogenic origin in the Earth’s crust. In: Howell DG, Wiese K, Fanelli M, Zink L, Cole F (eds) The future of energy gases. US Geol Surv Prof Pap 1570:81–132

    Google Scholar 

  • Baraza J, Ercilla G (1996) Gas-charged sediments and large pockmark-like features on the Gulf of Cadiz slope (SW Spain). Mar Petrol Geol 13:253–261

    Article  Google Scholar 

  • Boetius A, Revenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    CAS  PubMed  Google Scholar 

  • Brewer PG, Paull CK, Peltzer ET, Ussler W III, Rehder G, Friederich GE (2002) Measurements of the fate of gas hydrates during transit through the ocean water column. Geophys Res Lett 29(22) DOI 10.1029/2002GL014727

  • Bryant WR, Roemer LB (1983) Structure of the continental shelf and slope of the northern Gulf of Mexico and its geohazards and engineering constraints. In: Geyer RA, Moore JR (eds) CRC Handbook of geophysical exploration at sea. CRC Press, Florida, pp 123–184

  • Cranston RE, Ginsburg GD, Soloviev VA, Lorenson TD (1994) Gas venting and hydrate deposits in the Okhotsk Sea. Bull Geol Soc Denmark 41:80–85

    CAS  Google Scholar 

  • Dando PR, Austen MC, Burke RAjr, Kendall MA, Kennicutt MCII, Judd AG, Moore DC, O’Hara SCM, Schmaljohann R, Southward AJ (1991) Ecology of a North Sea pockmark with an active methane seep. Mar Ecol Prog Ser 70:49–63

    Google Scholar 

  • Dillon WP, Max MD (2000) The U.S. Atlantic Continental Margin: the best-known gas hydrate locality. In: Max MD (ed) Natural gas hydrate in oceanic and permafrost environments. Kluwer, Dordrecht, pp 157–170

  • Dimitrov LI (2002a) Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Sci Rev 59:49–76

    Google Scholar 

  • Dimitrov LI (2002b) Mud volcanoes—a sizeable source of atmospheric methane. In: Abstr Vol 7th Int Conf Gas in Marine Sediments, 7–12 October 2002, Baku, Azerbaijan. Nafta-press, Baku, p 33

  • Dimitrov LI (2003) Mud volcanoes—a significant source of atmospheric methane. Geo-Mar Lett (in press) DOI 10.1007/s00367-003-0140-3

  • Fleischer P, Orsi TH, Richarson MD, Anderson AL (2001) Distribution of free gas in marine sediments: a global overview. Geo-Mar Lett 21:103–122

    Google Scholar 

  • Floodgate GD, Judd AG (1992) The origins of shallow gas. Cont Shelf Res 12:1145–1156

    Article  Google Scholar 

  • Fujikura K, Kojima S, Tamaki K, Maki Y, Hunt J, Okutani T (1999) The deepest chemosynthesis-based community yet discovered from the hadal zone, 7,326 m deep, in the Japan Trench. Mar Ecol Prog Ser 190:17–26

    Google Scholar 

  • García-Gil S, Vilas F, García-García (2002) Shallow gas features in incised-valley fills (Ría de Vigo, NW Spain): a case study. Cont Shelf Res 22:2303–2316

    Article  Google Scholar 

  • Ginsburg GD, Soloviev VA (1998) Submarine gas hydrates. VNIIOkeangeologia, St. Petersburg, Russia

  • Gold T (1999) The deep hot biosphere. Copernicus, New York

  • Gold T, Soter S (1980) The deep-earth gas hypothesis. Sci Am 242:154–161

    CAS  PubMed  Google Scholar 

  • Gontz AM, Belknap DF, Daniel F, Kelley JT (2001) Evidence for changes in the Belfast Bay pockmark field, Maine. In: Abstr Vol 36th Annu Meet Geol Soc Am NE Sect

  • Haq BU (1991) Sequence stratigraphy, sea-level change, and significance for the deep sea. Int Assoc Sediment Spec Publ 12:3–39

    Google Scholar 

  • Hart BS, Hamilton TS (1993) High-resolution acoustic mapping of shallow gas in unconsolidated sediments beneath the Strait of Georgia, British Columbia. Geo-Mar Lett 13:49–55

    Google Scholar 

  • Hedberg HD (1980) Methane generation and petroleum migration. In: Roberts WH III, Cordell RJ (eds) Problems of petroleum migration. AAPG Stud Geol 10:179–206

    Google Scholar 

  • Hill JM, Halka JP, Conkwright R, Koczot K, Coleman S (1992) Distribution and effects of shallow gas on bulk estuarine sediment properties. Cont Shelf Res 12:1219–1229

    Article  Google Scholar 

  • Hornafius JS, Quigley D, Luyendyk BP (1999) The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): quantification of emissions. J Geophys Res 104:20703–20711

    CAS  Google Scholar 

  • Hovland M, Judd AG (1988) Seabed pockmarks and seepages: impact on geology, biology and the marine environment. Graham & Trotman, London

    Google Scholar 

  • Judd AG, Long D, Sankey M (1994) Pockmark formation and activity, U.K. Block 15/25, North Sea. Bull Geol Soc Denmark 14:34–49

    Google Scholar 

  • Judd A, Davies G, Wilson J, Holmes R, Baron G, Bryden I (1997) Contributions to atmospheric methane by natural seepages on the U.K. continental shelf. Mar Geol 140:427–455

    Article  CAS  Google Scholar 

  • Judd AG, Jukes V, Leddra MJ (2002a) MAGIC: a GIS database of MArine Gas seeps and their IndiCators. Russian Geol Geophys 43:599–604

    Google Scholar 

  • Judd AG, Hovland M, Dimitrov LI, García-Gil S, Jukes V (2002b) The geological methane budget at continental margins and its influence of climate change. Geofluids 2:109–126

    Article  CAS  Google Scholar 

  • Karisiddaiah SM, Veerayya M (2002) Occurrence of pockmarks and gas seepages along the central western continental margin of India. Current Sci 82:52–57

    Google Scholar 

  • Kelley JT, Dickson SM, Belknap DF, Bernhardt WA, Henderson M (1994) Giant sea-bed pockmarks: evidence for gas escape from Belfast Bay, Maine. Geology 22:59–62

    Article  Google Scholar 

  • Kopf AJ (2002) Significance of mud volcanism. Rev Geophys 40:2-1–2-52 1005 DOI 10.1029/200rg000093

    Article  Google Scholar 

  • Kulger HG (1933) Contribution to the knowledge of sedimentary volcanism in Trinidad. J Inst Petrol Tech Trinidad 19:743–760

    Google Scholar 

  • Kvenvolden KA (1998) A primer on the geological occurrence of gas hydrate. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:9–30

    CAS  Google Scholar 

  • Kvenvolden KA, Lorenson TD, Reeburgh WS (2001) Attention turns to naturally occurring methane seepage. EOS 82:457

    Google Scholar 

  • Leifer I, Judd AG (2002) Oceanic methane layers: the hydrocarbon seep bubble deposition hypothesis Terra Nova 14:417–424

    Google Scholar 

  • Leifer I, Patro RK (2002) A bubble mechanism for methane transport from the shallow seabed to the surface: a review and sensitivity study. Cont Shelf Res 22:2409–2428

    Article  Google Scholar 

  • Long D, Lammers S, Linke P (1998) Possible hydrate mounds within large sea-floor craters in the Barents Sea. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. Geol Soc Lond Spec Publ 137:223–237

    CAS  Google Scholar 

  • Manley PL, Flood RD (1989) Anomalous sound velocities in near-surface, organic-rich, gassy sediments in the central Argentinean Basin. Deep-Sea Res I 36:611–623

    Google Scholar 

  • Martens CS, Klump JV (1984) Biogeochemical cycling in an organic-rich coastal marine basin. 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochim Cosmochim Acta 48:1987–2004

    Article  CAS  Google Scholar 

  • Martens CS, Albert DB, Alperin MJ (1998) Biogeochemical processes controlling methane in gassy coastal sediments. Part 1. A model coupling organic matter flux to gas production, oxidation and transport. Cont Shelf Res 18:1741–1770

    Article  Google Scholar 

  • Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42

    Article  CAS  Google Scholar 

  • Milliman JD, Qin YS, Butenko J (1985) Geohazards in the Yellow Sea and East China Sea. In: Proc Offshore Technology Conf, May 1985, Houston, Texas, Pap 4965

  • Nelson CH, Thor DR, Sandstrom MW, Kvenvolden KA (1979) Modern biogenic gas-generated craters (sea-floor ‘pockmarks’) on the Bering Shelf, Alaska. Geol Soc Am Bull 90:1144–1152

    CAS  Google Scholar 

  • Olu K, Duperret A, Sibuet M, Foucher J-P, Fiala-Médiono A (1996) Structure and distribution of cold seep communities along the Peruvian active margin: relationship to geological and fluid patterns. Mar Ecol Prog Ser 132:109–125

    Google Scholar 

  • Orange DL, Greene HG, Reed D, Martin JB, McHugh CM, Ryan WBF, Maher N, Stakes D, Barry J (1999) Widespread fluid expulsion on a translational continental margin: mud volcanoes, fault zones, headless canyons, and organic-rich substrate in Monterey Bay, California. Geol Soc Am Bull 111:992–1009

    Article  Google Scholar 

  • Orange DL, Yun J, Maher N, Barry J, Greene G (2002) Tracking California seafloor seeps with bathymetry, backscatter and ROVs. Cont Shelf Res 22:2273–2290

    Article  Google Scholar 

  • Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann AC, Corso WP, Golubic S, Hook JE, Sike E, Currey J (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967

    CAS  Google Scholar 

  • Pellenbarg RE, Max MD (2000) Introduction, physical properties, and natural occurrences of hydrate. In: Max MD (ed) Natural gas hydrate in oceanic and permafrost environments. Kluwer, Dordrecht, pp 1–8

  • Reeburgh WS, Whalen SC, Alperin AJ (1993) The role of methylotrophy in the global methane budget. In: Murrell JA, Kelley DP (eds) Microbial growth on C-1 compounds. Intercept, Andover, UK, pp 1–14

  • Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10

    Article  CAS  Google Scholar 

  • Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567

    Google Scholar 

  • Sokolov VA, Buniat-Zade ZA, Goedekian AA, Dadashev FG (1969) The origin of gases of mud volcanoes and the regularities of their powerful eruptions. In: Schenck PA, Havemar I (eds) Advances in organic geochemistry. Pergamon, Oxford, England, pp 473–483

  • Solheim A, Elverhøi A (1993) A pockmark field in the central Barents Sea: gas from petrogenic source? Geo-Mar Lett 13:235–243

    Google Scholar 

  • Sondhi VP (1947) The Makran Earthquake, 28th November 1945; the birth of new islands. Indian Miner 1:147–158

    CAS  Google Scholar 

  • Stanley DJ, Warne AG (1994) Worldwide initiation of Holocene marine deltas by deceleration of sea level rise. Science 265:228–231

    Google Scholar 

  • Suess E, Bohrmann G, von Huene R, Linke P, Wallmann K, Lammers S, Sahling H, Winckler G, Orange D (1998) Fluid venting in the eastern Aleutian subduction zone. J Geophys Res 103:2597–2614

    CAS  Google Scholar 

  • Suess E, Torres ME, Bohrmann G, Collier RW, Greinert J, Linke P, Rehder G, Trehu A, Wallmann K, Winckler G, Zuelger E (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    CAS  Google Scholar 

  • Taylor DI (1992) Nearshore shallow gas around the U.K. coast. Cont Shelf Res 12:1135–1144

    Article  Google Scholar 

  • Thatje S, Gerdes D, Rachor E, (1999) A seafloor crater in the German Bight and its effects on the benthos. Helgol Mar Res 53:36–44

    Google Scholar 

  • Whiticar MJ (2002) Diagenetic relationships of methanogenesis, nutrients, acoustic turbidity, pockmarks and freshwater seepages in Eckernförde Bay. Mar Geol 182:29–53

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The MAGIC GIS database used in the compilation of this paper was developed by Veronica Jukes as part of her MPhil research at the University of Sunderland. I thank Bob Garrison, Charlie Paull and Tom Lorenson for their helpful comments which significantly improved the original draft of this paper. Louise Tizzard assisted with the preparation of the diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Judd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Judd, A.G. The global importance and context of methane escape from the seabed. Geo-Mar Lett 23, 147–154 (2003). https://doi.org/10.1007/s00367-003-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-003-0136-z

Keywords

Navigation