Skip to main content

Advertisement

Log in

An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The purposes of this investigation were twofold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWCFT) from electromyographic (EMG) amplitude data could be applied to the frequency domain of the signal to derive a new fatigue threshold for cycle ergometry called the mean power frequency fatigue threshold (MPFFT), and (2) to compare the power outputs associated with the PWCFT, MPFFT, ventilatory threshold (VT), and respiratory compensation point (RCP). Sixteen men [mean (SD) age = 23.4 (3.2) years] performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences for PWCFT [mean (SD) = 168 (36) W] versus MPFFT [208 (37) W] and VT [152 (33) W] versus RCP [205 (84) W], but no mean differences for PWCFT versus VT or MPFFT versus RCP. The mean difference between PWCFT and MPFFT may be due to the effects of specific metabolites that independently influence the time and frequency domains of the EMG signal. These findings indicated that the PWCFT model could be applied to the frequency domain of the EMG signal to estimate MPFFT. Furthermore, the current findings suggested that the PWCFT may demarcate the moderate from heavy exercise domains, while the MPFFT demarcates heavy from severe exercise intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Kumagai K, Brechue WF (2000) Fascicle length of leg muscles is greater in sprinters than distance runners. Med Sci Sport Exerc 32:1125–1129

    Article  CAS  Google Scholar 

  • Band DM, Linton RA, Kent R, Kurer FL (1985) The effect of peripheral chemodenervation on the ventilatory response to potassium. Respir Physiol 60:217–225

    Article  CAS  PubMed  Google Scholar 

  • Basmajian JV, DeLuca CJ (1985) Muscles alive: their functions revealed by electromyography. Williams & Wilkins, Baltimore

    Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  • Bouclin R, Charbonneau E, Renaud JM (1995) Na+ and K+ effect on contractility of frog sartorius muscle: implication for the mechanism of fatigue. Am J Physiol 268:C1528–C1536

    CAS  PubMed  Google Scholar 

  • Casaburi R, Storer TW, Sullivan CS, Wasserman K (1995) Evaluation of blood lactate elevation as an intensity criterion for exercise training. Med Sci Sports Exerc 27:852–862

    CAS  PubMed  Google Scholar 

  • Darabi S, Dehghan MH, Refahi S, Kiani E (2009) Ventilation, potassium and lactate during incremental exercise in men athletes. Res J Biol Sci 4:427–429

    Google Scholar 

  • Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ (2003) The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol 95:1901–1907

    CAS  PubMed  Google Scholar 

  • deVries HA, Moritani T, Nagata A, Magnussen K (1982) The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics 25:783–791

    Article  CAS  PubMed  Google Scholar 

  • deVries HA, Tichy MW, Housh TJ, Smyth KD, Tichy AM, Housh DJ (1987) A method for estimating physical working capacity at the fatigue threshold. Ergonomics 30:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • deVries HA, Housh TJ, Johnson GO, Evans SA, Tharp GD, Housh DJ, Hughes RA (1990) Factors affecting the estimation of physical working capacity at the fatigue threshold. Ergonomics 33:25–33

    Article  CAS  PubMed  Google Scholar 

  • Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

    Article  CAS  PubMed  Google Scholar 

  • Fortune E, Lowery MM (2007) The effect of extracellular potassium concentration on muscle fiber conduction velocity examined using model simulation. Conf Proc IEEE Eng Med Biol Soc 2007:2726–2729

    CAS  PubMed  Google Scholar 

  • Gaesser GA, Poole DC (1996) The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24:35–71

    Article  CAS  PubMed  Google Scholar 

  • Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30

    Article  CAS  PubMed  Google Scholar 

  • Hagberg JM, Coyle EF, Carroll JE, Miller JM, Martin WH, Brooke MH (1982) Exercise hyperventilation in patients with McArdle’s disease. J Appl Physiol 52:991–994

    CAS  PubMed  Google Scholar 

  • Heald DE (1975) Influence of ammonium ions on mechanical and electrophysiological responses of skeletal muscle. Am J Physiol 229:1174–1179

    CAS  PubMed  Google Scholar 

  • Hendrix CR, Housh TJ, Johnson GO, Mielke M, Camic CL, Zuniga JM, Schmidt RJ (2009) A new EMG frequency-based fatigue threshold test. J Neurosci Methods 181:45–51

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Merletti R, Stegeman D, Blok J, Rau G, Disselhorst-Klug C, Hägg GM (1999) SENIAM European recommendations for surface electromyography: results of the SENIAM project. Roessingh Research and Development, Enschede

    Google Scholar 

  • Hong Y, Li JX, Fong D (2008) Effect of prolonged walking with backpack loads on trunk muscle activity and fatigue in children. J Electromyogr Kinesiol 18:990–996

    Article  PubMed  Google Scholar 

  • Housh TJ, deVries HA, Johnson GO, Evans SA, McDowell S (1991) The effect of ammonium chloride and sodium bicarbonate ingestion on the physical working capacity at the fatigue threshold. Eur J Appl Physiol 62:189–192

    Article  CAS  Google Scholar 

  • Juel C (1988) Muscle action potential propagation velocity changes during activity. Muscle Nerve 11:714–719

    Article  CAS  PubMed  Google Scholar 

  • Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, Asano K (1982) Relationships of the anaerobic threshold with the 5 km, 10 km, and 10 mile races. Eur J Appl Physiol Occup Physiol 49:13–23

    Article  CAS  PubMed  Google Scholar 

  • Kwanty ED, Thomas DH, Kwanty HG (1970) An application of signal processing techniques to the study of myoelectric signals. IEEE Trans Biomed Eng 17:303–313

    Article  Google Scholar 

  • Lindstrom L, Magnusson R, Petersén I (1970) Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 10:341–356

    CAS  PubMed  Google Scholar 

  • Linton RA, Band DM (1985) The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir Physiol 59:65–70

    Article  CAS  PubMed  Google Scholar 

  • MacLaren DP, Gibson H, Parry-Billings M, Edwards RH (1989) A review of metabolic and physiological factors in fatigue. Exerc Sport Sci Rev 17:29–66

    CAS  PubMed  Google Scholar 

  • Malek M, Coburn JW, Weir JP, Beck TW, Housh TJ (2006) The effects of innervation zone on electromyographic amplitude and mean power frequency during incremental cycle ergometry. J Neurosci Meth 155:126–133

    Article  Google Scholar 

  • McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295

    Article  CAS  PubMed  Google Scholar 

  • McLoughlin P, Popham P, Linton RA, Bruce RC, Band DM (1994) Exercise-induced changes in plasma potassium and the ventilatory threshold in man. J Physiol 479:139–147

    PubMed  Google Scholar 

  • Mills KR (1982) Power spectral analysis of electromyogram and compound muscle action potential during muscle fatigue and recovery. J Physiol 326:401–409

    CAS  PubMed  Google Scholar 

  • Moritani T, Nagata A, Muro M (1982) Electromyographic manifestations of muscular fatigue. Med Sci Sport Exerc 14:198–202

    Article  CAS  Google Scholar 

  • Paterson DJ, Nye PC (1988) The effect of beta adrenergic blockade on the carotid body response to hyperkalaemia in the cat. Respir Physiol 74:229–237

    Article  CAS  PubMed  Google Scholar 

  • Paterson DJ, Friedland JS, Bascom DA, Clement ID, Cunningham DA, Painter R, Robbins PA (1990) Changes in arterial K+ and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. J Physiol 429:339–348

    CAS  PubMed  Google Scholar 

  • Petrofsky JS (1979) Frequency and amplitude analysis of the EMG during exercise on the bicycle ergometer. Eur J Appl Physiol 41:1–15

    Article  CAS  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    CAS  PubMed  Google Scholar 

  • Rosendal L, Blangsted AK, Kristiansen J, Søgaard K, Langberg H, Sjøgaard G, Kjaer M (2004) Interstitial muscle lactate, pyruvate and potassium dynamics in the trapezius muscle during repetitive low-force arm movements, measured with microdialysis. Acta Physiol Scand 182:379–388

    Article  CAS  PubMed  Google Scholar 

  • Taylor AD, Bronks R, Bryant AL (1997) The relationship between electromyography and work intensity revisited: a brief review with references to lacticacidosis and hyperammonia. Electromyogr Clin Neurophysiol 37:387–398

    CAS  PubMed  Google Scholar 

  • Tucker K, Falla D, Graven-Nielson T, Farina D (2009) Electromyography mapping of the erector spinae muscle with varying load and during sustained contraction. J Electromyogr Kinesiol 19:373–379

    Article  CAS  PubMed  Google Scholar 

  • van Dieën JH, Westebring-van der Putten EP, Kingma I, de Looze MP (2009) Low-level activity of the trunk extensor muscles causes electromyographic manifestations of fatigue in absence of decreased oxygenation. J Electromyogr Kinesiol 19:398–406

    Article  PubMed  Google Scholar 

  • Weir LL, Weir JP, Housh TJ, Johnson GO (1997) Effect of an aerobic training program on physical working capacity at heart rate threshold. Eur J Appl Physiol Occup Physiol 75:351–356

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG, Lännergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton L. Camic.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camic, C.L., Housh, T.J., Johnson, G.O. et al. An EMG frequency-based test for estimating the neuromuscular fatigue threshold during cycle ergometry. Eur J Appl Physiol 108, 337–345 (2010). https://doi.org/10.1007/s00421-009-1239-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-009-1239-7

Keywords

Navigation