Skip to main content
Log in

Ultradian rhythmicity and induced changes in salivary testosterone

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Testosterone and cortisol respond to exercise stimuli and modulate adaptation. Episodic basal secretion of these hormones may modify the responsiveness of these hormones. We sought to identify episodic steroid secretion via frequent salivary sampling and investigate any interaction between ultradian rhythmicity and induced changes in testosterone. Salivary testosterone and cortisol concentrations of seven males (age 20–40 years) were measured every 10 min between 0800 and1600 h on three consecutive days. On either the second or third day, three interventions designed to elicit a hormonal response were randomly assigned: sprint exercise (two 30-s maximal efforts on a cycle ergometer); boxing (two 30-s maximal punching efforts); and a violent video game (10 min of player vs. player combat). On the other days subjects were inactive. Testosterone data on non-intervention days suggested pulsatile secretion with a pulse interval of 47 ± 9 min (mean ± SD). The sprint intervention substantially affected hormones: it elicited a small transient elevation in testosterone (by a factor of 1.21; factor 90% confidence limits ×/÷1.21) 10 min after exercise, and a moderate elevation in cortisol peaking 50 min post-exercise (factor 2.3; ×/÷2.6). The testosterone response correlated with the change in testosterone concentration in the 10 min prior to the sprint (r = 0.78; 90% CL 0.22–0.95) and with a measure of randomness in testosterone fluctuations (r = 0.83; 0.35–0.96). Thus, the salivary testosterone response to exercise may be dependent on the underlying ultradian rhythm and aspects of its regulation. This interaction may have important implications for adaptation to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahtiainen JU, Pakarinen A, Kraemer WJ, Häkkinen K (2004) Acute hormonal responses to heavy resistance exercise in strength athletes versus nonathletes. Can J Appl Physiol 29:527–543

    CAS  PubMed  Google Scholar 

  • Altamirano F, Oyarce C, Silva P, Toyos M, Wilson C, Lavandero S, Uhlén P, Estrada M (2009) Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J Endocrinol 202:299–307

    Article  CAS  PubMed  Google Scholar 

  • Batterham AM, Hopkins WG (2006) Making meaningful inferences about magnitudes. Int J Sports Physiol Perform 1:50–57

    PubMed  Google Scholar 

  • Beaven CM, Cook CJ, Gill ND (2008a) Significant strength gains observed in rugby players following specific RE protocols based on individual salivary testosterone responses. J Strength Cond Res 22:419–425

    PubMed  Google Scholar 

  • Beaven CM, Gill ND, Cook CJ (2008b) Salivary testosterone and cortisol responses following four resistance training protocols in professional rugby players. J Strength Cond Res 22:426–432

    PubMed  Google Scholar 

  • Bhasin S, Storer TW, Berman N, Yarasheki KE, Clevenger B, Phillips J, Lee WP, Bunnell TJ, Casaburi R (1997) Testosterone replacement increases fat-free mass and muscle size in hypogonadal men. J Clin Endocrinol Metab 82:407

    Article  CAS  PubMed  Google Scholar 

  • Bird SP, Tarpenning KM, Marino FE (2006) Independent and combined effects of liquid carbohydrate/essential amino acid ingestion on hormonal and muscular adaptations following resistance training in untrained men. Eur J Appl Physiol 97:225–238

    Article  CAS  PubMed  Google Scholar 

  • Blazevich AJ, Giorgi A (2001) Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc 33:1688–1693

    Article  CAS  PubMed  Google Scholar 

  • Booth A, Shelley G, Mazur A, Tharp G, Kittok R (1989) Testosterone, winning and losing in human competition. Horm Behav 23:556–571

    Article  CAS  PubMed  Google Scholar 

  • Busko K, Opaszowski BH (2005) Hormonal responses to repeated bouts of supra-maximal cycle ergometer exertions. Phys Educ Sport 49:8–12

    Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioural sciences. Hillside, NJ

    Google Scholar 

  • Crewther BT, Lowe T, Weatherby RP (2007) Salivary hormones and anaerobic performance in healthy males. In: Australian Conference of Science and Medicine in Sport, Adelaide, Australia, pp 82

  • Dabbs JM (1990) Salivary testosterone measurements: reliability across hours, days and weeks. Physiol Behav 48:83–86

    Article  CAS  PubMed  Google Scholar 

  • Ellison PT, Bribiescas RG, Bentley GR, Campbell BC, Lipson SF, Panter-Brick C, Hill K (2002) Population variation in age-related decline in male salivary testosterone. Hum Reprod 17:3251–3253

    Article  CAS  PubMed  Google Scholar 

  • Erskine J, Smillie I, Leiper J, Ball D, Cardinale M (2007) Neuromuscular and hormonal responses to a single session of whole body vibration exercise in healthy young men. Clin Physiol Funct Imaging 27:242–248

    Article  PubMed  Google Scholar 

  • Frungieri MB, Zitta K, Pignataro OP, Gonzalez-Calvar SI, Camandra RS (2002) Interactions between testicular serotoninergic, catecholaminergic, and corticotropin-releasing hormone systems modulating cAMP and testosterone production in the golden hamster. Neuroendocrinology 76:35–46

    Article  CAS  PubMed  Google Scholar 

  • Gozansky WS, Lynn JS, Laudenslager ML, Kohrt WM (2005) Salivary cortisol determined by immunoassay is preferable to total cortisol for assessment of dynamic hypothalamic–pituitary–adrenal axis activity. Clin Endocrinol 63:336–341

    Article  CAS  Google Scholar 

  • Granger DA, Schwartz EB, Booth A, Arentz M (1999) Salivary testosterone determination in studies of child health and development. Horm Behav 35:18–27

    Article  CAS  PubMed  Google Scholar 

  • Hansen S, Kvorning T, Kjaer M, Sjogaard G (2001) The effect of short-term strength training on human skeletal muscle: the importance of physiologically elevated hormone levels. Scand J Med Sci Sports 11:347–354

    Article  CAS  PubMed  Google Scholar 

  • Henley DE, Leendertz JA, Russell GM, Wood SA, Taheri S, Woltersdorf WW, Lightman SL (2009) Development of an automated blood sampling system for use in humans. J Med Eng Technol 33:199–208

    Article  CAS  PubMed  Google Scholar 

  • Hopkins WG, Marshall SW, Batterham AM, Hanin J (2009) Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 41:3–12

    Google Scholar 

  • Ingram JR, Crockford JN, Matthews LR (1999) Ultradian, circadian and seasonal rhythms in cortisol secretion and adrenal responsiveness to ACTH and yarding in unrestrained red deer (Cervus elaphus) stags. J Endocrinol 162:289–300

    Article  CAS  PubMed  Google Scholar 

  • Jensen J, Oftebro H, Breigan B, Johnsson A, Ohlin K, Meen HD, Stromme SB, Dahl HA (1991) Comparison of changes in testosterone concentrations after strength and endurance exercise in well trained men. Eur J Appl Physiol 63:467–471

    Article  CAS  Google Scholar 

  • Johnson ML, Pipes L, Veldhuis PP, Farhy LS, Boyd DG, Evans WS (2008) AutoDecon, a deconvolution algorithm for identification and characterization of luteinizing hormone secretory bursts: description and validation using synthetic data. Anal Biochem 381:8–17

    Article  CAS  PubMed  Google Scholar 

  • Kadi F (2008) Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br J Pharmacol 154:522–528

    Article  CAS  PubMed  Google Scholar 

  • Kanaley JA, Weltman JY, Pieper KS, Weltman A, Hartman ML (2001) Cortisol and growth hormone responses to exercise at different times of day. J Clin Endocrinol Metab 86:2881–2889

    Article  CAS  PubMed  Google Scholar 

  • Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26:833–876

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum C, Hellhammer DH (2000) Encyclopaedia of stress. Academic Press, San Diego

    Google Scholar 

  • Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361

    Article  PubMed  Google Scholar 

  • Kraemer WJ, Marchitelli L, Gordon SE, Harman E, Dziados JE, Mello R, Frykman P, McCurry D, Fleck SJ (1990) Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol 69:1442–1450

    CAS  PubMed  Google Scholar 

  • Kraemer WJ, Loebel CC, Volek JS, Ratamess NA, Newton RU, Wickham RB, Gothshalk LA, Duncan SA, Mazzetti SA, Gomez AL, Rubin MR, Nindl BC, Hakkinen K (2001) The effect of heavy resistance exercise on the circadian rhythm of salivary testosterone in men. Eur J Appl Physiol 84:13–18

    Article  CAS  PubMed  Google Scholar 

  • Kvorning T, Anderson M, Brixen K, Madsen K (2006) Suppression of endogenous testosterone production attenuates the response to strength training: a randomized, placebo-controlled, and blinded intervention study. Am J Physiol Endocrinol Metab 291:E1325–E1332

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Selvage DJ, Hansen K, Rivier C (2004) Site of action of acute alcohol administration in stimulating the rat hypothalamic–pituitary–adrenal axis: comparison between the effect of systemic and intracerebroventricular injection of this drug in pituitary and hypothalamic responses. Endocrinology 145:4470–4479

    Article  CAS  PubMed  Google Scholar 

  • Mazur A, Booth A (1998) Testosterone and dominance in men. Behav Brain Sci 21:353–397

    Article  CAS  PubMed  Google Scholar 

  • Mazur A, Booth A, Dabbs JM (1992) Testosterone and chess competition. Soc Psychol Quart 55:70–77

    Article  Google Scholar 

  • Mazur A, Susman EJ, Edelbrock S (1997) Sex difference in testosterone response to a video game contest. Evol Human Behav 18:317–326

    Article  Google Scholar 

  • Merran K, Hattersley A, Mould G, Bloom SR (1993) Venepuncture causes rapid rise in plasma ACTH. Br J Clin Pract 47:246–247

    Google Scholar 

  • Nahoul K, Roger M (1990) Age-related decline of plasma bioavailable testosterone in adult men. J Steroid Biochem Mol Biol 35:293–299

    CAS  Google Scholar 

  • Obminski Z, Stupnicki R (1997) Comparison of the testosterone-to-cortisol ratio values obtained from hormonal assays in saliva and serum. J Sports Med Phys Fitness 37:50–55

    CAS  PubMed  Google Scholar 

  • Pincus SM, Mulligan T, Iranmaresh A, Gheorghiu S, Godschalk M, Veldhuis JD (1996) Older males secrete luteinizing hormone and testosterone more irregularly, and jointly more asynchronously, than younger males. Proc Natl Acad Sci 93:14100–14105

    Article  CAS  PubMed  Google Scholar 

  • Pruessner JC, Wolf OT, Hellhammer DH, Buske-Kirschbaum A, von Auer K, Jobst S, Kaspers F, Kirschbaum C (1997) Free cortisol levels after awakening: a reliable biological marker for the assessment of adrenocortical activity. Life Sci 61:2539–2549

    Article  CAS  PubMed  Google Scholar 

  • Roney JR, Lukaszewski AW, Simmons ZL (2007) Rapid endocrine responses of young men to social interactions with young women. Horm Behav 52:326–333

    Article  CAS  PubMed  Google Scholar 

  • Sarnyai Z, Veldhuis JD, Mello NK, Mendelson JH, Eros-Sarnyai M, Mercer G, Gelles H, Kelly M (1995) The concordance of pulsatile ultradian release of adrenocorticotropin and cortisol in male Rhesus monkeys. J Clin Endocrinol Metab 80:54–59

    Article  CAS  PubMed  Google Scholar 

  • Schlatt S, Pohl CR, Ehmcke J, Ramaswamy S (2008) Age-related changes in diurnal rhythms and levels on gonadotropins, testosterone, and inhibin B in male rhesus monkeys (Macaca mulatta). Biol Reprod 79:93–99

    Article  CAS  PubMed  Google Scholar 

  • Schürmeyer TH, Brademann G, Von Zur Mühlen A (1996) Effect of cyproheptadine on episodic ACTH and cortisol secretion. Eur J Clin Invest 26:397–403

    Article  PubMed  Google Scholar 

  • Selvage DJ, Rivier C (2003) Importance of the paraventricular nucleus of the hypothalamus as a component of a neural pathway between the brain and the testes that modulates testosterone secretion independently of the pituitary. Endocrinology 144:594–598

    Article  CAS  PubMed  Google Scholar 

  • Shah OJ, Kimball SR, Jefferson LS (2000) Acute attenuation of translational initiation and protein synthesis by glucocorticoids in skeletal muscle. Am J Physiol Endocrinol Metab 278:E76–E82

    CAS  PubMed  Google Scholar 

  • Sharma R, Khera S, Mohan A, Gupta N, Ray RB (2006) Assessment of computer game as a psychological stressor. Indian J Physiol Pharmacol 50:367–374

    PubMed  Google Scholar 

  • Sterne JAC, Smith GD (2001) Sifting the evidence—what’s wrong with significance tests. Br Med J 322:226–231

    Article  CAS  Google Scholar 

  • Strawford A, Barbieri T, Van Loan M, Parks E, Catlin D, Barton N, Neese R, Christiansen M, King J, Hellerstein MK (1999) Resistance exercise and supraphysiologic androgen therapy in eugonadal men with HIV-related weight loss. J Am Med Assoc 281:1282–1290

    Article  CAS  Google Scholar 

  • van den Berg G, Pincus SM, Veldhuis JD, Frölich M, Roelfsema F (1997) Greater disorderliness of ACTH and cortisol release accompanies pituitary-dependent Cushing’s disease. Eur J Endocrinol 136:394–400

    Article  PubMed  Google Scholar 

  • Veldhuis JD (1999) Recent insights into neuroendocrine mechanisms of aging of the human male hypothalamic–pituitary–gonadal axis. J Androl 20:1–17

    CAS  PubMed  Google Scholar 

  • Veldhuis JD, Carlson ML, Johnson ML (1987) The pituitary gland secretes in bursts: Appraising the nature of glandular secretory impulses by simultaneous multiple-parameter deconvolution of plasma hormone concentrations. Proceedings of the National Academy of Sciences 84:7686–7690

    Article  CAS  Google Scholar 

  • Veldhuis J, Keenan DM, Pincus SM (2008) Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev 29:823–864

    Article  CAS  PubMed  Google Scholar 

  • Veldhuis J, Keenan DM, Liu PY, Iranmanesh A (2009) The aging male hypothalamic–pituitary–gonadal axis: Pulsatility and feedback. Mol Cell Endocrinol 299:14–22

    Article  CAS  PubMed  Google Scholar 

  • Viru A, Viru M (2004) Cortisol—essential adaptation hormone in exercise. Int J Sports Med 25:461–464

    Article  CAS  PubMed  Google Scholar 

  • Vittek J, L’Hommedieu DG, Gordon GG, Rappaport SA, Southren AL (1985) Direct radioimmunoassay (RIA) of salivary testosterone: correlation with free and total serum testosterone. Life Sci 37:711–716

    Article  CAS  PubMed  Google Scholar 

  • Windle RJ, Wood SA, Shanks N, Lightman SL, Ingram CD (1998) Ultradian rhythm of basal corticosterone release in the female rat: dynamic interaction with the response to acute stress. Endocrinology 139:443–450

    Article  CAS  PubMed  Google Scholar 

  • Winters SJ, Troen P (1986) Testosterone and estradiol are co-secreted episodically by the human testis. J Clin Invest 78:870–873

    Article  CAS  PubMed  Google Scholar 

  • Wood P (2009) Salivary steroid assays—research or routine? Ann Clin Biochem 46:183–196

    Article  CAS  PubMed  Google Scholar 

  • Young EA, Carlson NE, Brown MB (2001) Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology 25:267–276

    Article  CAS  PubMed  Google Scholar 

  • Young EA, Abelson J, Lightman SL (2004) Cortisol pulsatility and its role in stress regulation and health. Front Neuroendocrinol 25:69–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the participants for their dedication and contribution to the smooth running of the experimental protocol. Funding for the project was supplied by the New Zealand Rugby Union, the Tertiary Education Commission, and the New Zealand Institute for Plant and Food Research Ltd.

Conflict of interest statement

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Martyn Beaven.

Additional information

Communicated by Susan Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaven, C.M., Ingram, J.R., Gill, N.D. et al. Ultradian rhythmicity and induced changes in salivary testosterone. Eur J Appl Physiol 110, 405–413 (2010). https://doi.org/10.1007/s00421-010-1518-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1518-3

Keywords

Navigation