Skip to main content
Log in

Caffeine ingestion improves power output decrement during 3-min all-out exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of caffeine ingestion on the 3-min all-out test (3MT) performance and plasma electrolytes in athletes.

Methods

Fifteen collegiate male basketball players were recruited and completed two trials separated by at least 1 week in caffeine (CAF, 6 mg kg−1) and placebo conditions. During the first visit, participants performed an incremental cycling test to determine their 3MT resistance. After a familiarization trial, participants performed a CAF or PL trial according to a randomized crossover design. One hour after ingesting capsules, the participants performed the 3MT to estimate the end-test power (EP) and work done above EP (WEP). Blood samples for sodium (Na+), potassium (K+), pH, and lactate concentrations were drawn pretest, 1 h after ingestion, and posttest.

Results

Significant differences in WEP (CAF vs. PL, 13.4 ± 3.0 vs. 12.1 ± 2.7 kJ, P < 0.05) but not in EP (CAF vs. PL, 242 ± 37 vs. 244 ± 42 W, P > 0.05) were determined between the conditions. Compared with the PL condition, the CAF condition yielded significantly higher power outputs (60–150 s), a lower fatigue rate during the 3MT (CAF vs. PL, 0.024 ± 0.007 vs. 0.029 ± 0.006 s−1, P < 0.05), a significantly higher lactate concentration after the 3MT, and significantly lower K+ concentrations at 1 h after caffeine ingestion. There were no significant interaction effects for pH and Na+ concentrations.

Conclusions

Caffeine ingestion did not change EP but improved WEP and the rate of decline in power output during short-term, severe exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3MT:

3-Minute all-out test

CAF:

Caffeine treatment

CI:

Confidence intervals

CNS:

Central nervous system

CP:

Critical power

EP:

End-test power

ES:

Effect size

FR:

Fatigue rate

GET:

Gas exchange threshold

HR:

Heart rate

HRpeak:

Peak heart rate

K+ :

Potassium

Na+ :

Sodium

PL:

Placebo treatment

RPE:

Rating of perceived exertion

SD:

Standard deviation

\(\dot{V}{\text{O}}_{2}\) :

Oxygen uptake

\(\dot{V}{\text{O}}_{2}\)max:

Maximal oxygen uptake

\(\dot{V}{\text{O}}_{2}\)peak:

Peak oxygen uptake

Wʹ:

Curvature constant

WEP:

Work done above EP

References

  • Astorino TA, Roberson DW (2010) Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res 24(1):257–265. doi:10.1519/JSC.0b013e3181c1f88a

    Article  PubMed  Google Scholar 

  • Astorino TA, Terzi MN, Roberson DW, Burnett TR (2011) Effect of caffeine intake on pain perception during high-intensity exercise. Int J Sport Nutr Exerc Metab 21(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43(6):839–844. doi:10.1002/mus.21995

    Article  CAS  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6):2020–2027

    CAS  PubMed  Google Scholar 

  • Bell DG, Jacobs I, Ellerington K (2001) Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Med Sci Sports Exerc 33(8):1399–1403

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom HC, Housh TJ, Zuniga JM, Traylor DA, Camic CL, Lewis RW Jr, Schmidt RJ, Johnson GO (2013) The relationships among critical power determined from a 3-min all-out test, respiratory compensation point, gas exchange threshold, and ventilatory threshold. Res Q Exerc Sport 84(2):232–238

    Article  PubMed  Google Scholar 

  • Black CD, Waddell DE, Gonglach AR (2015) Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc 47(6):1145–1158. doi:10.1249/MSS.0000000000000513

    Article  CAS  PubMed  Google Scholar 

  • Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand J Rehab Med 2:92–98

    CAS  Google Scholar 

  • Burnley M, Doust JH, Vanhatalo A (2006) A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38(11):1995–2003

    Article  PubMed  Google Scholar 

  • Cheng CF, Yang YS, Lin HM, Lee CL, Wang CY (2012) Determination of critical power in trained rowers using a three-minute all-out rowing test. Eur J Appl Physiol 112(4):1251–1260. doi:10.1007/s00421-011-2081-2

    Article  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Laurence Erlbaum Associates, New Jersey

    Google Scholar 

  • Collomp K, Ahmaidi S, Audran M, Chanal JL, Prefaut C (1991) Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test. Int J Sports Med 12(5):439–443

    Article  CAS  PubMed  Google Scholar 

  • Collomp K, Ahmaidi S, Chatard JC, Audran M, Prefaut C (1992) Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol 64(4):377–380

    Article  CAS  Google Scholar 

  • Crowe MJ, Leicht AS, Spinks WL (2006) Physiological and cognitive responses to caffeine during repeated, high-intensity exercise. Int J Sport Nutr Exerc Metab 16(5):528–544

    Article  CAS  PubMed  Google Scholar 

  • Davis JK, Green JM (2009) Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sports Med 39(10):813–832. doi:10.2165/11317770-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  • Dekerle J, Vanhatalo A, Burnley M (2008) Determination of critical power from a single test. Sci Sports 23:231–238. doi:10.1016/j.scispo.2007.06.015

    Article  Google Scholar 

  • Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2012) The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci 30(2):115–120. doi:10.1080/02640414.2011.632431

    Article  PubMed  Google Scholar 

  • Dodd SL, Brooks E, Powers SK, Tulley R (1991) The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. Eur J Appl Physiol 62(6):424–429

    Article  CAS  Google Scholar 

  • Doherty M (1998) The effects of caffeine on the maximal accumulated oxygen deficit and short-term running performance. Int J Sport Nutr Exerc Metab 8(2):95–104

    Article  CAS  Google Scholar 

  • Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15(2):69–78

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94

    CAS  PubMed  Google Scholar 

  • Forbes SC, Candow DG, Little JP, Magnus C, Chilibeck PD (2007) Effect of Red Bull energy drink on repeated Wingate cycle performance and bench-press muscle endurance. Int J Sport Nutr Exerc Metab 17(5):433–444

    Article  CAS  PubMed  Google Scholar 

  • Fukuda DH, Smith AE, Kendall KL, Stout JR (2010) The possible combinatory effects of acute consumption of caffeine, creatine, and amino acids on the improvement of anaerobic running performance in humans. Nutr Res 30(9):607–614. doi:10.1016/j.nutres.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  • Gaesser GA, Rich RG (1985) Influence of caffeine on blood lactate response during incremental exercise. Int J Sports Med 6(4):207–211

    Article  CAS  PubMed  Google Scholar 

  • Ganio MS, Klau JF, Casa DJ, Armstrong LE, Maresh CM (2009) Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res 23(1):315–324. doi:10.1519/JSC.0b013e31818b979a

    Article  PubMed  Google Scholar 

  • Gliottoni RC, Motl RW (2008) Effect of caffeine on leg-muscle pain during intense cycling exercise: possible role of anxiety sensitivity. Int J Sport Nutr Exerc Metab 18(2):103–115

    Article  CAS  PubMed  Google Scholar 

  • Gliottoni RC, Meyers JR, Arngrimsson SA, Broglio SP, Motl RW (2009) Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. Int J Sport Nutr Exerc Metab 19(2):150–161

    Article  CAS  PubMed  Google Scholar 

  • Goldstein ER, Ziegenfuss T, Kalman D, Kreider R, Campbell B, Wilborn C, Taylor L, Willoughby D, Stout J, Graves BS, Wildman R, Ivy JL, Spano M, Smith AE, Antonio J (2010) International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr 7(1):5. doi:10.1186/1550-2783-7-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonglach AR, Ade CJ, Bemben MG, Larson RD, Black CD (2016) Muscle pain as a regulator of cycling intensity: effect of caffeine ingestion. Med Sci Sports Exerc 48(2):287–296. doi:10.1249/MSS.0000000000000767

    Article  CAS  PubMed  Google Scholar 

  • Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78(3):867–874

    CAS  PubMed  Google Scholar 

  • Greer F, McLean C, Graham TE (1998) Caffeine, performance, and metabolism during repeated Wingate exercise tests. J Appl Physiol 85(4):1502–1508

    CAS  PubMed  Google Scholar 

  • Hopkins W (2006) Estimating sample size for magnitude-based inferences. Sportscience 10:63–70

    Google Scholar 

  • Jenkins NT, Trilk JL, Singhal A, O’Connor PJ, Cureton KJ (2008) Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab 18(3):328–342

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Sexton PJ, Placek AM, Murray SR, Pettitt RW (2011) Reliability analysis of the 3-min all-out exercise test for cycle ergometry. Med Sci Sports Exerc 43(12):2375–2380. doi:10.1249/MSS.0b013e318224cb0f

    Article  PubMed  Google Scholar 

  • Kalmar JM (2005) The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc 37(12):2113–2119

    Article  CAS  PubMed  Google Scholar 

  • Kalmar JM, Cafarelli E (1999) Effects of caffeine on neuromuscular function. J Appl Physiol 87(2):801–808

    CAS  PubMed  Google Scholar 

  • Kolbe T, Dennis SC, Selley E, Noakes TD, Lambert MI (1995) The relationship between critical power and running performance. J Sports Sci 13(3):265–269

    Article  CAS  PubMed  Google Scholar 

  • Lee CL, Cheng CF, Lin JC, Huang HW (2012) Caffeine’s effect on intermittent sprint cycling performance with different rest intervals. Eur J Appl Physiol 112(6):2107–2116. doi:10.1007/s00421-011-2181-z

    Article  CAS  PubMed  Google Scholar 

  • Lindinger MI, Graham TE, Spriet LL (1993) Caffeine attenuates the exercise-induced increase in plasma [K+] in humans. J Appl Physiol 74(3):1149–1155

    CAS  PubMed  Google Scholar 

  • McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104(1):288–295

    Article  CAS  PubMed  Google Scholar 

  • Mohr M, Nielsen JJ, Bangsbo J (2011) Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol 111(5):1372–1379. doi:10.1152/japplphysiol.01028.2010

    Article  CAS  PubMed  Google Scholar 

  • Monod H, Scherrer J (1965) The work capacity of a synergic muscular group. Ergonomics 8:329–338

    Article  Google Scholar 

  • Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24(5):339–350

    Article  CAS  PubMed  Google Scholar 

  • Motl RW, O’Connor PJ, Dishman RK (2003) Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. J Pain 4(6):316–321

    Article  CAS  PubMed  Google Scholar 

  • Motl RW, O’Connor PJ, Tubandt L, Puetz T, Ely MR (2006) Effect of caffeine on leg muscle pain during cycling exercise among females. Med Sci Sports Exerc 38(3):598–604

    Article  CAS  PubMed  Google Scholar 

  • Naharudin MN, Yusof A (2013) Fatigue index and fatigue rate during an anaerobic performance under hypohydrations. PLoS One 8(10):e77290. doi:10.1371/journal.pone.0077290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plaskett CJ, Cafarelli E (2001) Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. J Appl Physiol 91(4):1535–1544

    CAS  PubMed  Google Scholar 

  • Poole DC, Ward SA, Gardner GW, Whipp BJ (1988) Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31:1265–1279

    Article  CAS  PubMed  Google Scholar 

  • Santos Rde A, Kiss MA, Silva-Cavalcante MD, Correia-Oliveira CR, Bertuzzi R, Bishop DJ, Lima-Silva AE (2013) Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PLoS One 8(9):e75399. doi:10.1371/journal.pone.0075399

    Article  CAS  PubMed Central  Google Scholar 

  • Shimoda M, Kawakami Y (2005) Critical power determination with ergometry rowing: relation to rowing performance. Int J Sport Health Sci 3:21–26

    Article  Google Scholar 

  • Simmonds MJ, Minahan CL, Sabapathy S (2010) Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur J Appl Physiol 109(2):287–295. doi:10.1007/s00421-009-1351-8

    Article  PubMed  Google Scholar 

  • Smith JC, Dangelmaier BS, Hill DW (1999) Critical power is related to cycling time trial performance. Int J Sports Med 20(6):374–378

    Article  CAS  PubMed  Google Scholar 

  • Vanhatalo A, Doust JH, Burnley M (2007) Determination of critical power using a 3-min all-out cycling test. Med Sci Sports Exerc 39(3):548–555

    Article  PubMed  Google Scholar 

  • Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML (2010) Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc 42(7):1375–1387. doi:10.1249/MSS.0b013e3181cabbd8

    Article  CAS  PubMed  Google Scholar 

  • Wiles JD, Coleman D, Tegerdine M, Swaine IL (2006) The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. J Sports Sci 24(11):1165–1171

    Article  PubMed  Google Scholar 

  • Woolf K, Bidwell WK, Carlson AG (2008) The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab 18(4):412–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the participants who contributed their time and effort to undertake this study and to Polypact International Co., Ltd., who sponsored the consumable materials of Cortex metabolic analysis system. This work is particularly supported by “Aim for the Top University Plan” of National Taiwan Normal University and the Ministry of Education, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Lun Lee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Communicated by Anni Vanhatalo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CF., Hsu, WC., Kuo, YH. et al. Caffeine ingestion improves power output decrement during 3-min all-out exercise. Eur J Appl Physiol 116, 1693–1702 (2016). https://doi.org/10.1007/s00421-016-3423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-016-3423-x

Keywords

Navigation