Skip to main content
Log in

Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue

K+-induced paralysis at 37°C

  • Muscle Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The main aim was to investigate the effects of raised [K+]o on contraction of isolated non-fatigued skeletal muscle at 37°C and 25°C to assess the physiological significance of K+ in fatigue. Mouse soleus muscles equilibrated at 25°C had good mechanical stability when temperature was elevated to 37°C. The main findings at 37°C vis-à-vis 25°C were as follows. When [K+]o was raised from 4 to 7 mM, there was greater twitch potentiation, but no significant difference in peak tetanic force. At 10 mM [K+]o there was (1) a faster time course for the decline of peak tetanic force, (2) a greater steady-state depression of twitches and tetani, (3) an increase of peak force over 50–200 Hz (whereas it decreased at 25°C), (4) significant tetanus restoration when stimulus pulse duration increased from 0.1 to 0.25 ms and (5) greater depolarisation of layer-2 fibres, with no repolarisation of surface fibres. These combined data strengthen the proposal that a large run-down of the K+ gradient contributes to severe fatigue at physiological temperatures via depolarisation and impaired sarcolemmal excitability. Moreover, terbutaline, a β2-adrenergic agonist, induced a slightly greater and more rapid, but transient, restoration of peak tetanic force at 10 mM [K+]o at 37°C vis-à-vis 25°C. A right shift of the twitch force–stimulation strength relationship at 10 mM [K+]o was partially reversed with terbutaline to confer the protective effect. Thus, catecholamines are likely to stimulate the Na+–K+ pump more powerfully at 37°C to restore excitability and attenuate, but not prevent, the detrimental effects of K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams GR, Fisher MJ, Meyer RA (1991) Hypercapnic acidosis and increased H2PO 4 concentration do not decrease force in cat skeletal muscle. Am J Physiol Cell Physiol 260:C805–C812

    CAS  Google Scholar 

  2. Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    Article  PubMed  CAS  Google Scholar 

  3. Barclay CJ (2005) Modelling diffusive O2 supply to isolated preparations of mammalian skeletal and cardiac muscle. J Muscle Res Cell Motil 26:225–235

    Article  PubMed  CAS  Google Scholar 

  4. Barnes M, Gibson LM, Stephenson DG (2001) Increased muscle glycogen content is associated with increased capacity to respond to T-system depolarisation in mechanically skinned skeletal muscle fibres from the rat. Pflügers Arch 442:101–106

    Article  PubMed  CAS  Google Scholar 

  5. Beam KG, Donaldson PL (1983) A quantitative study of potassium channel kinetics in rat skeletal muscle from 1 to 37°C. J Gen Physiol 81:485–512

    Article  PubMed  CAS  Google Scholar 

  6. Bretag AH (1987) Muscle chloride channels. Physiol Rev 87:618–723

    Google Scholar 

  7. Brooks GA, Hittelman KJ, Faulkner JA, Beyer RE (1971) Tissue temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221:427–431

    PubMed  CAS  Google Scholar 

  8. Cairns SP, Chin ER, Renaud JM (2007) Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue. J Appl Physiol 103:359–368

    Article  PubMed  Google Scholar 

  9. Cairns SP, Dulhunty AF (1993) β-Adrenergic potentiation of E–C coupling increases force in rat skeletal muscle. Muscle Nerve 16:1317–1325

    Article  PubMed  CAS  Google Scholar 

  10. Cairns SP, Flatman JA, Clausen T (1995) Relation between extracellular [K+], membrane potential and contraction in rat soleus muscle: modulation by the Na+–K+ pump. Pflügers Arch 430:909–915

    Article  PubMed  CAS  Google Scholar 

  11. Cairns SP, Hing WA, Slack JR, Mills RG, Loiselle DS (1997) Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle. Am J Physiol Cell Physiol 273:C598–C611

    CAS  Google Scholar 

  12. Cairns SP, Lindinger MI (2008) Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 586:4039–4054

    Article  PubMed  CAS  Google Scholar 

  13. Cairns SP, Ruzhynsky V, Renaud JM (2004) Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle. Am J Physiol Cell Physiol 287:C762–C770

    Article  PubMed  CAS  Google Scholar 

  14. Cairns SP, Taberner AJ, Loiselle DS (2008) Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle. J Appl Physiol 106:101–112

    Article  PubMed  Google Scholar 

  15. Cairns SP, Westerblad H, Allen DG (1993) Changes of tension and [Ca2+]i during β-adrenoceptor activation of single, intact fibres from mouse skeletal muscle. Pflügers Arch 425:150–155

    Article  PubMed  CAS  Google Scholar 

  16. Chemical Rubber Company Handbook 65th Ed. (1984–85). Table F-45

  17. Clausen T (2003) Na+–K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324

    PubMed  CAS  Google Scholar 

  18. Clausen T, Andersen SLV, Flatman JA (1993) Na+–K+ pump stimulation elicits recovery of contractility in K+-paralysed rat muscle. J Physiol 472:521–536

    PubMed  CAS  Google Scholar 

  19. Clausen T, Everts ME (1991) K+-induced inhibition of contractile force in rat skeletal muscle: role of active Na+–K+ transport. Am J Physiol Cell Physiol 261:C799–C807

    CAS  Google Scholar 

  20. Clausen T, Kohn PG (1977) The effect of insulin on the transport of sodium and potassium in rat soleus muscle. J Physiol 265:19–42

    PubMed  CAS  Google Scholar 

  21. Conte Camerino D, De Luca A, Mambrini M, Vrbovà G (1989) Membrane ionic conductances in normal and denervated skeletal muscle of the rat during development. Pflügers Arch 413:568–570

    Article  PubMed  CAS  Google Scholar 

  22. Coupland ME, Puchert E, Ranatunga KW (2001) Temperature dependence of active tension in mammalian (rabbit psoas) muscle fibres: effect of inorganic phosphate. J Physiol 536:879–891

    Article  PubMed  CAS  Google Scholar 

  23. Crank J (1990) The mathematics of diffusion. Oxford Scientific, Oxford

    Google Scholar 

  24. Debold EP, Dave H, Fitts RH (2004) Fiber type and temperature dependence of inorganic phosphate: implications for fatigue. Am J Physiol Cell Physiol 287:C673–C681

    Article  PubMed  CAS  Google Scholar 

  25. De Ruiter CJ, Jones DA, Sargeant AJ, De Haan A (1999) Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol 84:1137–1150

    Article  PubMed  Google Scholar 

  26. Eaton DC (1972) Potassium ion accumulation near a pace-making cell of Aplysia. J Physiol 224:421–440

    PubMed  CAS  Google Scholar 

  27. Edwards JN, Macdonald WA, van der Poel C, Stephenson DG (2007) O •−2 production at 37°C plays a critical role in depressing tetanic force of isolated rat and mouse skeletal muscle. Am J Physiol Cell Physiol 293:C650–C660

    Article  PubMed  CAS  Google Scholar 

  28. Gallant EM, Donaldson SK (1989) Skeletal muscle excitation–contraction coupling II. Plasmalemma voltage control of intact bundle contractile properties in normal and malignant hyperthermic muscles. Pflügers Arch 414:24–30

    Article  PubMed  CAS  Google Scholar 

  29. Gosmanov AR, Lindinger MI, Thomason DB (2003) Riding the tides: K+ concentration and volume regulation by muscle Na+–K+–2Cl cotransport activity. NIPS 18:196–200

    PubMed  CAS  Google Scholar 

  30. Ha TNV, Posterino GS, Fryer MW (1999) Effects of terbutaline on force and intracellular calcium in slow-twitch skeletal muscle fibres of the rat. Br J Pharmacol 126:1717–1724

    Article  PubMed  CAS  Google Scholar 

  31. Hansen AK, Clausen T, Nielsen OB (2005) Effects of lactic acid and catecholamines on contractility in fast-twitch muscles exposed to hyperkalemia. Am J Physiol Cell Physiol 289:C104–C112

    Article  PubMed  CAS  Google Scholar 

  32. Harris EJ, Burn GP (1949) The transfer of sodium and potassium ions between muscle and surrounding medium. Trans Faraday Soc XLV:508–528

    Article  Google Scholar 

  33. Harrison AP, Flatman JA (1999) Measurement of force and both surface and deep M wave properties in isolated rat soleus muscles. Am J Physiol Regul Integr Comp Physiol 46:R1646–R1653

    Google Scholar 

  34. Hicks A, McComas AJ (1989) Increased sodium pump activity following repetitive stimulation of rat soleus muscles. J Physiol 414:337–349

    PubMed  CAS  Google Scholar 

  35. Holmberg E, Waldeck B (1980) On the possible role of potassium ions in the action of terbutaline on skeletal muscle contractions. Acta Pharmacol Toxicol 46:141–149

    Article  CAS  Google Scholar 

  36. Juel C (1986) Potassium and sodium shifts during in vitro isometric muscle contraction, and the time course of the ion-gradient recovery. Pflügers Arch 406:458–463

    Article  PubMed  CAS  Google Scholar 

  37. Juel C (1988) The effect of β2-adrenoceptor activation on ion-shifts and fatigue in mouse soleus muscles stimulated in vitro. Acta Physiol Scand 134:209–216

    Article  PubMed  CAS  Google Scholar 

  38. Kjeldsen K, Nørgaard A, Clausen T (1984) The age-dependent changes in the number of 3H–ouabain binding sites in mammalian skeletal muscle. Pflügers Arch 402:100–108

    Article  PubMed  CAS  Google Scholar 

  39. Kwieciński H, Lehmann-Horn F, Rüdel R (1984) The resting membrane parameters of human intercostal muscle at low, normal, and high extracellular potassium. Muscle Nerve 7:60–65

    Article  PubMed  Google Scholar 

  40. Lännergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    PubMed  Google Scholar 

  41. Macdonald WA, Nielsen OB, Clausen T (2008) Effects of calcitonin gene-related peptide on rat soleus muscle excitability: mechanisms and physiological significance. Am J Physiol Regul Integr Comp Physiol 295:R1214–R1223

    Article  PubMed  CAS  Google Scholar 

  42. McArdle JJ, D’Alonzo AJ (1981) Effects of terbutaline, a β2-adrenergic agonist, on the membrane potentials of innervated and denervated fast- and slow-twitch muscles. Exp Neurol 71:134–143

    Article  PubMed  CAS  Google Scholar 

  43. McArdle JJ, Michelson L, D’Alonzo AJ (1980) Action potentials in fast- and slow-twitch mammalian muscles during reinnervation and development. J Gen Physiol 75:655–672

    Article  PubMed  CAS  Google Scholar 

  44. McKenna MJ, Bangsbo J, Renaud JM (2008) Muscle K+, Na+, and Cl disturbances and Na+–K+ pump inactivation: implications for fatigue. J Appl Physiol 104:288–295

    Article  PubMed  CAS  Google Scholar 

  45. Nielsen OB, de Paoli FV (2007) Regulation of Na+–K+ homeostasis and excitability in contracting muscles: implications for fatigue. Appl Physiol Nutr Metab 32:974–984

    Article  PubMed  CAS  Google Scholar 

  46. Nielsen OB, Hilsted L, Clausen T (1998) Excitation-induced force recovery in potassium-inhibited rat soleus muscle. J Physiol 512:819–829

    Article  PubMed  CAS  Google Scholar 

  47. Pate E, Bhimani M, Franks-Skiba K, Cook R (1995) Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 486:689–694

    PubMed  CAS  Google Scholar 

  48. Pedersen TH, Clausen T, Nielsen OB (2003) Loss of force by high extracellular [K+] in rat muscle: effect of temperature, lactic acid and β2-agonist. J Physiol 551:277–286

    Article  PubMed  CAS  Google Scholar 

  49. Pedersen TH, de Paoli F, Nielsen OB (2005) Increased excitability of acidified skeletal muscle: role of chloride conductance. J Gen Physiol 125:237–246

    Article  PubMed  CAS  Google Scholar 

  50. Prakash YS, van der Heijden HFM, Gallant EM, Sieck GC (1999) Effect of β-adrenoceptor activation on [Ca2+]i regulation in murine skeletal myotubes. Am J Physiol Cell Physiol 276:C1038–C1045

    CAS  Google Scholar 

  51. Quiñonez M, González F, Morgado-Valle C, DiFranco M (2010) Effects of membrane depolarization and changes in extracellular [K+] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil 31:13–33

    Article  PubMed  Google Scholar 

  52. Ranatunga KW (1980) Influence of temperature on isometric tension development in mouse fast- and slow-twitch skeletal muscles. Exp Neurol 70:211–218

    Article  PubMed  CAS  Google Scholar 

  53. Ranatunga KW, Sharpe B, Turnbull B (1987) Contractions of a human skeletal muscle at different temperatures. J Physiol 390:383–395

    PubMed  CAS  Google Scholar 

  54. Ranatunga KW, Wylie SR (1983) Temperature-dependent transitions in isometric contractions of rat muscle. J Physiol 339:87–95

    PubMed  CAS  Google Scholar 

  55. Rich MM, Pinter MJ (2001) Crucial role of sodium channel fast inactivation in muscle fibre inexcitability in a rat model of critical illness myopathy. J Physiol 547:555–566

    Article  Google Scholar 

  56. Roots H, Ball G, Talbot-Ponsonby J, King M, McBeath K, Ranatunga KW (2009) Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. J Appl Physiol 106:378–384

    Article  PubMed  CAS  Google Scholar 

  57. Ruff RL (1996) Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types. Acta Physiol Scand 156:159–168

    Article  PubMed  CAS  Google Scholar 

  58. Ruff RL (1999) Effects of temperature on slow and fast inactivation of rat skeletal muscle Na+ channels. Am J Physiol Cell Physiol 277:C937–C947

    CAS  Google Scholar 

  59. Saltin B, Gagge AP, Stolwijk JAJ (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25:679–688

    PubMed  CAS  Google Scholar 

  60. Segal SS, Faulkner JA (1985) Temperature-dependent physiological stability of rat skeletal muscle in vitro. Am J Physiol Cell Physiol 248:C265–C270

    CAS  Google Scholar 

  61. Segal SS, Faulkner JA, White TP (1986) Skeletal muscle fatigue in vitro is temperature dependent. J Appl Physiol 61:660–665

    PubMed  CAS  Google Scholar 

  62. Wiseman RW, Beck TW, Chase PB (1996) Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Physiol Cell Physiol 271:C878–C886

    CAS  Google Scholar 

  63. Westerblad H, Bruton JD, Lännergren J (1997) The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500:193–204

    PubMed  CAS  Google Scholar 

  64. Yensen C, Matar W, Renaud JM (2002) K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 283:C169–C177

    PubMed  CAS  Google Scholar 

  65. Zhang S-J, Bruton JD, Katz A, Westerblad H (2006) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572:551–559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Astra Pharmaceuticals for the donation of terbutaline, along with Dane Gerneke and Peter Mellow for graphical assistance. The work was supported by a grant from the Lotteries Grant Board of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon P. Cairns.

Appendix

Appendix

We quantified the expected effects of temperature on K+ diffusion into isolated whole soleus muscles based on the following assumptions and approximations.

  1. 1.

    The diffusion constant of K+ in a 0.15 M solution at 25°C is D K+(s) = 1.846 × 10−5 cm2 s−1 (estimated by linear interpolation between the values at 0.1 M = 1.844 × 10−5 and 1.0 M = 1.892 × 10−5): Table F-45 [16].

  2. 2.

    The diffusion constant of K+ in muscle is given by:

    $${D_{{{\rm{K}} + ({\rm{m}})}} = {\phi \over {{\gamma}^{2} }}D_{{{\rm{K}} + ({\rm{s}})}} }$$

    where ϕ is the fraction of muscle occupied by extracellular space and γ = π/2 is the tortuosity factor for a muscle composed of parallel cylindrical fibres (i.e. the increase of length of the diffusion path imposed by the cellular nature of whole muscle) [32]. Thus

    $$ {D_{{{\rm{K}} + \left( {\rm{m}} \right) }}} = {1}.{5}0{6} \times {1}{0^{{ - {6}}}}\,{\hbox{c}}{{\hbox{m}}^{{2}}}\,{{\hbox{s}}^{{ - {1}}}}\,{\hbox{at}}\,{25}^\circ {\hbox{C}}. $$
  3. 3.

    The Q10 of K+ diffusivity is 1.2 (in the temperature range 14–25°C) [26].

  4. 4.

    Hence, the K+ diffusion constant at 37°C is:

    $$ {D_{{{\rm{K + }}}}} = 1.506\, \times \,{10^{{ - 6}}}\, \times 1.2^{\frac{{\left( {37 - 25} \right)}}{{10}} } {\hbox{c}}{{\hbox{m}}^{{2}}}\,{{\hbox{s}}^{{ - 1}}} = 1.867\,{\hbox{c}}{{\hbox{m}}^2}\,{{\hbox{s}}^{{ - 1}}} $$
  5. 5.

    Mouse soleus muscle can be approximated by a cylinder of radius 0.5 mm.

From these latter two values and using Fig. 5.3 (P 74) of Crank [23], it is possible to estimate the time required for [K+]o to reach 90% of its final value at a depth of 60 μm from the surface (i.e. in layer-2 fibres) in response to a step change of concentration from 4 mM to 10 mM on the muscle surface. We calculate these time intervals to be about 4 min at 25°C and 3 min at 37°C. By contrast, the time required to reach 90% on the axis is calculated to be 10 min at 37°C and 13 min at 25°C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cairns, S.P., Leader, J.P. & Loiselle, D.S. Exacerbated potassium-induced paralysis of mouse soleus muscle at 37°C vis-à-vis 25°C: implications for fatigue. Pflugers Arch - Eur J Physiol 461, 469–479 (2011). https://doi.org/10.1007/s00424-011-0927-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0927-4

Keywords

Navigation