Skip to main content

Advertisement

Log in

The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

During the last 20 years pigs have become increasingly popular in large animal translational neuroscience research as an economical and ethical feasible substitute to non-human primates. The anatomy of the pig telencephalon is, however, not well known. We present, accordingly, a detailed description of the surface anatomy and cytoarchitecture of the Göttingen minipig telencephalon based on macrophotos and consecutive high-power microphotographs of 15 μm thick paraffin embedded Nissl-stained coronal sections. In 1-year-old specimens the formalin perfused brain measures approximately 55 × 47 × 36 mm (length, width, height) and weighs around 69 g. The telencephalic part of the Göttingen minipig cerebrum covers a large surface area, which can be divided into a neocortical gyrencephalic part located dorsal to the rhinal fissure, and a ventral subrhinal part dominated by olfactory, amygdaloid, septal, and hippocampal structures. This part of the telencephalon is named the subrhinal lobe, and based on cytoarchitectural and sulcal anatomy, can be discerned from the remaining dorsally located neocortical perirhinal/insular, pericallosal, frontal, parietal, temporal, and occipital lobes. The inner subcortical structure of the minipig telencephalon is dominated by a prominent ventricular system and large basal ganglia, wherein the putamen and the caudate nucleus posterior and dorsally are separated into two entities by the internal capsule, whereas both structures ventrally fuse into a large accumbens nucleus. The presented anatomical data is accompanied by surface renderings and high-power macrophotographs illustrating the telencephalic sulcal pattern, and the localization of the identified lobes and cytoarchitectonic areas. Additionally, 24 representative Nissl-stained telencephalic coronal sections are presented as supplementary material in atlas form on http://www.cense.dk/minipig_atlas/index.html and referred to as S1–S24 throughout the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen F, Watanabe H, Bjarkam CR, Danielsen EH, Cumming P, The DaNeX Study Group (2005) Pig brain stereotaxic standard space: mapping of cerebral blood flow normative values and effect of MPTP-lesioning. Brain Res Bull 66(1):17–29

    Article  PubMed  Google Scholar 

  • Andrews RJ, Knight RT, Kirby RP (1990) Evoked potential mapping of auditory and somatosensory cortices in the miniature swine. Neurosci Lett 114:27–31

    Article  CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1967) The comparative anatomy of the nervous system of vertebrates, including man, vol III. Hafner Publishing Company, New York

    Google Scholar 

  • Aziz TZ, Peggs D, Agarwal E, Sambrook MA, Crossman AR (1992) Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-exposed primate. Br J Neurosurg 6(6):575–582

    Article  CAS  PubMed  Google Scholar 

  • Bjarkam CR (2015) Neuroanatomi. 2. udgave. Munksgaard Danmark. ISBN 978-87-628-1206-2

  • Bjarkam CR, Pedersen M, Sørensen JC (2001) New strategies for embedding, orientation and sectioning of small brain specimens enable direct correlation to MR-images, brain atlases, or use of unbiased stereology. J Neurosci Methods 108:153–159

    Article  CAS  PubMed  Google Scholar 

  • Bjarkam CR, Cancian G, Larsen M, Rosendahl F, Ettrup KS, Zeidler D, Blankholm AD, Østergaard L, Sunde N, Sørensen JC (2004) A MRI-compatible stereotaxic localizer box enables high-precision stereotaxic procedures in pigs. J Neurosci Methods 139(2):293–298

    Article  CAS  PubMed  Google Scholar 

  • Bjarkam CR, Jorgensen RL, Jensen KN, Sunde NA, Sørensen JCH (2008a) Deep brain stimulation electrode anchoring using BioGlue®, a protective electrode covering, and a titanium microplate. J Neurosci Methods 168:151–155

    Article  CAS  PubMed  Google Scholar 

  • Bjarkam CR, Nielsen MS, Glud AN, Rosendal F, Mogensen P, Bender D, Doudet D, Møller A, Sørensen JC (2008b) Neuromodulation in a minipig model of Parkinson disease. Br J Neurosurg 22(Suppl. 1):S9–S12

    Article  PubMed  Google Scholar 

  • Bjarkam CR, Cancian G, Glud AN, Ettrup KS, Østergaard L, Sørensen JC (2009) Isocentric MRI-guided stereotaxic procedures in pigs based on a stereotaxic localizer box fitted with an adapted Leksell frame and use of related clinical computer-planning software. J Neurosci Methods 183(2):119–126

    Article  PubMed  Google Scholar 

  • Bjarkam CR, Glud AN, Margolin L, Reinhart K, Franklin R, Deding D, Ettrup KS, Fitting LM, Nielsen MS, Sørensen JC, Cunningham MG (2010) Safety and function of a new clinical intracerebral microinjection instrument (IMI) for stem cells and therapeutics examined in the Göttingen minipig. Stereotact Funct Neurosurg 88(1):56–63

    Article  PubMed  Google Scholar 

  • Bjarkam CR, Orlowski D, Tvilling L, Bech J, Glud AN, Sørensen JCH (2016) Exposure of the pig CNS for histological analysis; a manual to decapitation, skull opening and brain removal. J Vis Exp (under review)

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. J.A. Barth, Leipzig

    Google Scholar 

  • Cajal SR (1904) Textura del sistema nervioso del hombre y de los vertebrados. Tomo II, segunda parte, Madrid [Translated by Pasik P and Pasik T, and presented as Cajal SR, Texture of the nervous system of man and the vertebrates, vol III. Springer, Wien (2002)]

  • Campbell AW (1905) Histological studies on the localisation of cerebral function. University Press, Cambridge

    Google Scholar 

  • Chaillou E, Tillet Y (2005) Nutrition and hypothalamic neuropeptides in sheep: histochemical studies. Histol Histopathol 20(4):1209–1225

    CAS  PubMed  Google Scholar 

  • Craner SL, Ray RH (1991a) Somatosensory cortex of the neonatal pig: I. Topographic organization of the primary somatosensory cortex (SI). J Comp Neurol 306:24–38

    Article  CAS  PubMed  Google Scholar 

  • Craner SL, Ray RH (1991b) Somatosensory cortex of the neonatal pig: II. Topographic organization of the secondary somatosensory cortex (SII). J Comp Neurol 306:39–48

    Article  CAS  PubMed  Google Scholar 

  • Cumming P, Gillings NM, Jensen SB, Bjarkam CR, Gjedde A (2003) Kinetics of the uptake and distribution of the dopamine D2/3 agonist (R)-N-[1-11C]n-propylnorapomorphine in brain of healthy and MPTP-poisoned Gottingen miniature pigs. Nucl Med Biol 30(5):547–553

    Article  CAS  PubMed  Google Scholar 

  • Dalmose A, Bjarkam CR, Sørensen JC, Jørgensen TM, Djurhuus JC (2004) Effects of high frequency deep brain stimulation on urine storage and voiding function in conscious minipigs. Neurourol Urodyn 23(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Dalmose A, Bjarkam CR, Djurhuus JC (2005) Stereotactic electrical stimulation of the pontine micturition center in the pig. Br J Urol 95:886–889

    Article  Google Scholar 

  • Danielsen EH, Smith DF, Poulsen PH, Østergaard L, Gee A, Ishizu K, Venkatachalam TK, Bender D, Hansen S, Gjedde A, Scheel-Krüger J, Møller A (1998) Positron emission tomography of living brain in minipigs and domestic pigs. Scand J Lab Anim Sci Suppl 25(1):127–135

    Google Scholar 

  • Danielsen EH, Cumming P, Andersen F, Bender D, Brevig T, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Johansen J, Johansen TE, Dahl-Jørgensen A, Jørgensen HA, Meyer M, Munk O, Pedersen EB, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Østergaard L, Zimmer J, Gjedde A, Møller A (2000) The DaNEX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson’s disease: Preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 9:247–259

    Article  Google Scholar 

  • Dinopoulos A, Karamanlidis AN, Papadopoulos G, Antonopoulos J, Michaloudi H (1985) Thalamic projections to motor, prefrontal and somatosensory cortex in sheep studied by means of the horseradish peroxidase retrograde transport method. J Comp Neurol 241:63–81

    Article  CAS  PubMed  Google Scholar 

  • Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JC, Cunningham MG, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M (2014) Pig models of neurodegenerative disorders: utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 522(12):2784–2801

    Article  PubMed  Google Scholar 

  • Ettrup K, Sørensen JC, Bjarkam CR (2010) The anatomy of the Göttingen minipig hypothalamus. J Chem Neuroanat 39(3):151–165

    Article  PubMed  Google Scholar 

  • Ettrup KS, Glud AN, Orlowski D, Fitting LM, Meier K, Soerensen JC, Bjarkam CR, Olsen Alstrup AAK (2011a) Basic surgical techniques in the Göttingen minipig: intubation, transurethral bladder catheterization, femoral vessel catheterization, and transcardial perfusion. J Vis Exp 52:2652

    Google Scholar 

  • Ettrup KS, Tornøe J, Sørensen JC, Bjarkam CR (2011b) A surgical device for minimally invasive implantation of experimental deep brain stimulation leads in large research animals. J Neurosci Methods 200(1):41–46

    Article  PubMed  Google Scholar 

  • Ettrup KS, Sørensen JC, Rodell A, Alstrup AKO, Bjarkam CR (2012) Hypothalamic deep brain stimulation influences autonomic and limbic circuitry involved in the regulation of aggression and cardiocerebrovascular control in the Göttingen minipig. Stereotact Funct Neurosurg 90(5):281–291

    Article  CAS  PubMed  Google Scholar 

  • Fang M, Li J, Rudd JA, Wai SM, Yew JCC, Yew DT (2006) fMRI mapping of cortical centers following visual stimulation in postnatal pigs of different ages. Life Sci 78:1197–1201

    Article  CAS  PubMed  Google Scholar 

  • Fast R, Rodell A, Gjedde A, Mouridsen K, Alstrup AK, Bjarkam CR, West MJ, Berendt M, Møller A (2013) PiB fails to map amyloid deposits in cerebral cortex of aged dogs with canine cognitive dysfunction. Front Aging Neurosci 5:99

    Article  PubMed  PubMed Central  Google Scholar 

  • Fèlix B, Lèger M-E, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP (1999) Stereotaxic atlas of the pig brain. Brain Res Bull 49(1/2):1–138

    Article  PubMed  Google Scholar 

  • Fjord-Larsen L, Kusk P, Tornøe J, Juliusson B, Torp M, Bjarkam CR, Nielsen MS, Aa Haandberg, Sørensen JC, Wahlberg LU (2010) Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain. Mol Ther 18(12):2164–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glud AN, Hedegaard C, Nielsen MS, Sørensen JC, Bendixen C, Jensen PH, Larsen K, Bjarkam CR (2010) Direct gene transfer in the Göttingen minipig CNS using stereotaxic lentiviral microinjections. Acta Neurobiol Exp 70:1–8

    Google Scholar 

  • Glud AN, Hedegaard C, Nielsen MS, Sørensen JC, Bendixen C, Jensen PH, Mogensen PH, Larsen K, Bjarkam CR (2011) Direct MRI-guided stereotaxic viral mediated gene transfer of alpha-synuclein in the Göttingen minipig CNS. Acta Neurobiol Exp (Wars) 71(4):508–518

    Google Scholar 

  • Hadziselimovic H, Dilberovic F (1977) Appearance of the wild boar brain. Acta Anat 98:14–20

    Article  CAS  PubMed  Google Scholar 

  • Herec S (1967) Structure of the olfactory tubercle and nucleus of the diagonal tract of Broca in the pig. Folia Morph 26(4):452–458

    Google Scholar 

  • Herre W (1936) Untersuchungen an hirnen von wild- und hausschweinen. Verhandlungen der Deutschen Zoologischen Gesellschaft, pp 200–211

  • Holm IE, Geneser FA (1989) Histochemical demonstration of zinc in the hippocampal region of the domestic pig: I. Entorhinal area, parasubiculum, and presubiculum. J Comp Neurol 287:145–163

    Article  CAS  PubMed  Google Scholar 

  • Holm IE, Geneser FA (1991a) Histochemical demonstration of zinc in the hippocampal region of the domestic pig: II. Subiculum and hippocampus. J Comp Neurol 305:71–82

    Article  CAS  PubMed  Google Scholar 

  • Holm IE, Geneser FA (1991b) Histochemical demonstration of zinc in the hippocampal region of the domestic pig: III. The dentate area. J Comp Neurol 308:409–417

    Article  CAS  PubMed  Google Scholar 

  • Igarashi S, Kamiya T (1972) Atlas of the vertebrate brain. University of Tokyo Press, Tokyo

    Google Scholar 

  • Jelsing J, Hay-Schmidt A, Dyrby T, Hemmingsen R, Uylings HBM, Pakkenberg B (2006a) The prefrontal cortex in the Göttingen minipig brain defined by neural projection criteria and cytoarchitecture. Brain Res Bull 70:322–336

    Article  PubMed  Google Scholar 

  • Jelsing J, Nielsen R, Olsen AK, Grand N, Hemmingsen R, Pakkenberg B (2006b) The postnatal development of neocortical neurons and glial cells in the Göttingen minipig and the domestic pig brain. J Exp Biol 209:1454–1462

    Article  PubMed  Google Scholar 

  • Jensen KN, Deding D, Sørensen JC, Bjarkam CR (2009) Long-term implantation of deep brain stimulation electrodes in the pontine micturition centre of the Göttingen minipig. Acta Neurochir 151(7):785–794

    Article  PubMed  Google Scholar 

  • Kruska D (1970) Vergleichend cytoarchitektonische untersuchungen an gehirnen von wild- und Hausschweinen. Z Anat Entwickl Gesch 131:291–324

    Article  CAS  Google Scholar 

  • Kruska D (1972) Volumenvergleich optischer hirnzentren bei wild- und hausschweinen. Z Anat Entwickl Gesch 138:265–282

    Article  CAS  Google Scholar 

  • Kruska D, Stephan H (1973) Volumenvergleich allokortikaler hirnzentren bei wild- und hausschweinen. Acta Anat 84:387–415

    Article  CAS  PubMed  Google Scholar 

  • Kyllar M, Stembirik J, Putnová I, Stehlik L, Odehnalová S, Buchtová M (2014) Radiography, computed tomography and magnetic resonance imaging of craniofacial structures in pig. Anat Histol Embryol 43(6):435–452

    Article  CAS  PubMed  Google Scholar 

  • Larsen M, Bjarkam CR, Stoltenberg M, Sørensen JC, Danscher G (2003) An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histol Histopathol 18(4):1125–1130

    CAS  PubMed  Google Scholar 

  • Larsen M, Bjarkam CR, Østergaard K, West MJ, Sørensen JC (2004) The anatomy of the porcine subthalamic nucleus evaluated with immunohistochemistry and design based stereology. Anat Embryol 208(3):239–247

    Article  PubMed  Google Scholar 

  • Lind MN, Moustgaard A, Jelsing J, Vajta G, Cumming P, Hansen AK (2007) The use of pigs in neuroscience: modeling brain disorders. Neurosci Biobehav Rev 31:728–751

    Article  CAS  PubMed  Google Scholar 

  • Lunau H (1956) Vergleichend-metrische untersuchungen am allocortex von wild- und hausschweinen. Zeitschrift für Mikroskopisch-Anatomische Forschung 62:673–698

    CAS  PubMed  Google Scholar 

  • Mikkelsen M, Moller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: a behavioral, biochemical, and histological study. Neurotoxicol Teratol 21:169–175

    Article  CAS  PubMed  Google Scholar 

  • Nielsen MS, Sørensen JC, Bjarkam CR (2009) The substantia nigra pars compacta of the Göttingen minipig: an anatomical and stereological study. Brain Struct Funct 213(4–5):481–488

    Article  PubMed  Google Scholar 

  • Nielsen MS, Glud AN, Møller A, Mogensen P, Bender D, Sørensen JC, Doudet D, Bjarkam CR (2016) Continuous MPTP intoxication in the Göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp 76:198–210

    Google Scholar 

  • Palmieri G, Farina V, Panu R, Asole A, Sanna L, De Riu PL, Gabbi C (1987) Course and termination of the pyramidal tract in the pig. Arch Anat Microsc 75(3):167–176

    CAS  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  • Plogmann D, Kruska D (1990) Volumetric comparison of auditory structures in the brains of european wild boars (Sus scrofa) and domestic pigs (Sus scrofa f. dom.). Brain Behav Evol 35:146–155

    Article  CAS  PubMed  Google Scholar 

  • Røhl L, Sakoh M, Simonsen CZ, Vestergaard-Poulsen P, Sangill R, Sørensen JC, Bjarkam CR, Stødkilde-Jørgensen H, Gyldensted C, Østergaard L (2002) Time evolution of cerebral perfusion and ADC measured by MRI in a porcine stroke model. J Magn Reson Imaging 15(2):123–129

    Article  PubMed  Google Scholar 

  • Rose JE (1942) A cytoarchitectural study of the sheep cortex. J Comp Neurol 76(1):1–55

    Article  Google Scholar 

  • Rosendal F, Bjarkam CR, Larsen M, Hansen HE, Madsen M, Sørensen JC, Mortensen J (2005) Does chronic low dose treatment with ciclosporin influence the brain? A histopathological study in pigs. Transplant Proc 37(8):3305–3308

    Article  CAS  PubMed  Google Scholar 

  • Saikali S, Meurice P, Sauleau P, Eliat P-A, Bellaud P, Randuineau G, Vérin M, Malbert C-H (2010) A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J Neurosci Methods 192:102–109

    Article  PubMed  Google Scholar 

  • Salinas-Zeballos M-E, Zeballos GA, Gootman PM (1986) A stereotaxic atlas of the developing swine (Sus scrofa) forebrain. In: Tumbleson ME (ed) Swine in biomedical research. Plenum Press, New York, pp 887–906

    Google Scholar 

  • Sauleau P, Lapouble E, Val-Laillet D, Malbert CH (2009) The pig model in brain imaging and neurosurgery. Animal 3(8):1138–1151

    Article  CAS  PubMed  Google Scholar 

  • Sisson S, Grossman JD (1956) The anatomy of the domestic animals, 4th edn. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Solnitzky O (1938) The thalamic nuclei of Sus scrofa. J Comp Neurol 69:121–169

    Article  Google Scholar 

  • Sørensen JC, Bjarkam CR, Simonsen CZ, Danielsen E, Geneser FA (2000) Oriented sectioning of irregular tissue blocks in relation to computerized scanning modalities. Results from the domestic pig brain. J Neurosci Methods 104:93–98

    Article  PubMed  Google Scholar 

  • Sørensen JC, Nielsen MS, Rosendal F, Deding D, Ettrup KS, Jensen KN, Jørgensen RL, Glud AN, Meier K, Fitting LM, Møller A, Alstrup AK, Ostergaard L, Bjarkam CR (2011) Development of neuromodulation treatments in a large animal model—do neurosurgeons dream of electric pigs? Prog Brain Res 194:97–103

    Article  PubMed  Google Scholar 

  • Stephan H (1951) Vergleichende untersuchungen über den feinbau des hirnes von wild- und haustieren. Zoologisches Jahrbuch, Abteilung für Anatomie und Ontogenie 71:487–586

    Google Scholar 

  • Szteyn S, Galert D, Dynowski J, Hoczyk W (1980) The stereotaxic configuration of hypothalamus nerve centers in the pig. Anatomischer Anzeiger 147:12–32

    CAS  PubMed  Google Scholar 

  • Watanabe H, Andersen F, Simonsen CZ, Evans SM, Gjedde A, Cumming P, The DaNex Study Group (2001) MR-based statistical atlas of the Göttingen minipig brain. Neuroimage 14:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Woolsey CN, Fairman DF (1946) Contralateral, ipsilateral, and bilateral representation of cutaneous receptors in somatic areas I and II of the cerebral cortex of pig, sheep, and other mammals. Surgery 19:684–702

    CAS  PubMed  Google Scholar 

  • Yoshikawa T (1968) The brain of the pig (Yorkshire breed). In: Atlas of the brains of domestic animals. University of Tokyo Press, Tokyo

Download references

Acknowledgements

The authors acknowledge with gratitude the skillful assistance of Mrs. F. Gün, Ms. D. Jensen, Ms. K. S. Bech and Mr. A. Meier. The Danish Medical Research Council, and the Lundbeck Foundation supported financially the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten R. Bjarkam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bjarkam, C.R., Glud, A.N., Orlowski, D. et al. The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy. Brain Struct Funct 222, 2093–2114 (2017). https://doi.org/10.1007/s00429-016-1327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1327-5

Keywords

Navigation