Skip to main content
Log in

Fluorescence Lifetime Tuning—A Novel Approach to Study Flip-Flop Kinetics in Supported Phospholipid Bilayers

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In the present work we introduce a straightforward fluorescent assay that can be applied in studies of the transbilayer movement (flip-flop) of fluorescent lipid analogues across supported phospholipid bilayers (SPBs). The assay is based on the distance dependent fluorescence quenching by light absorbing surfaces. Applied to SPBs this effect leads to strong differences in fluorescence lifetimes when the dye moves from the outer lipid leaflet to the leaflet in contact with the support. Herein, we present the basic principles of this novel approach, and comment on its advantages over the commonly used methods for investigating flip-flop dynamics across lipid bilayers. We test the assay on the fluorescent lipid analog Atto633-DOPE and the 3-hydroxyflavone F2N12S probe in SPBs composed of DOPC/ DOPS lipids. Moreover, we compare and discuss the flip-flop rates of the probes with respect to their lateral diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bai JN, Pagano RE (1997) Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36:8840–8848

    Article  CAS  PubMed  Google Scholar 

  2. Benda A, Benes M, Marecek V, Lhotsky A, Hermens WT, Hof M (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126

    Article  CAS  Google Scholar 

  3. Benda A, Fagul’ova V, Deyneka A, Enderlein J, Hof M (2006) Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: new perspectives in supported phospholipid bilayer research. Langmuir 22:9580–9585

    Article  CAS  PubMed  Google Scholar 

  4. Bevers EM, Comfurius P, Dekkers DWC, Zwaal RFA (1999) Lipid translocation across the plasma membrane of mammalian cells. Biochim Biophys Acta, Mol Cell Biol Lipids 1439:317–330

    Article  CAS  Google Scholar 

  5. Bevers EM, Comfurius P, Zwaal RFA (1983) Changes in membrane phospholipid distribution during platelet activation. Biochim Biophys Acta 736:57–66

    Article  CAS  PubMed  Google Scholar 

  6. Chance RR, Prock A, Silbey R (1974) Lifetime of an emitting molecule near a partially reflecting surface. J Chem Phys 60:2744–2748

    Article  CAS  Google Scholar 

  7. Chance RR, Miller AH, Prock A, Silbey R (1975) Fluorescence and energy-transfer near interfaces—complete and quantitative description of Eu+3-mirror systems. J Chem Phys 63:1589–1595

    Article  CAS  Google Scholar 

  8. Chance RR, Prock A, Silbey R (1975) Comments on classical theory of energy-transfer. J Chem Phys 62:2245–2253

    Article  CAS  Google Scholar 

  9. Classen J, Haest CWM, Tournois H, Deuticke B (1987) Gramicidin-induced enhancement of transbilayer reorientation of lipids in the erythrocyte-membrane. Biochemistry 26:6604–6612

    Article  CAS  PubMed  Google Scholar 

  10. Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goni FM (2003) Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 278:37169–37174

    Article  CAS  PubMed  Google Scholar 

  11. Crane JM, Kiessling V, Tamm LK (2005) Measuring lipid asymmetry in planar supported bilayers by fluorescence interference contrast microscopy. Langmuir 21:1377–1388

    Article  CAS  PubMed  Google Scholar 

  12. Enderlein J (1999) Single-molecule fluorescence near a metal layer. Chem Phys 247:1–9

    Article  CAS  Google Scholar 

  13. Enderlein J (2000) A theoretical investigation of single-molecule fluorescence detection on thin metallic layers. Biophys J 78(4):2151–2158

    Article  CAS  PubMed  Google Scholar 

  14. Homan R, Pownall HJ (1987) Effect of pressure on phospholipid translocation in lipid bilayers. J Am Chem Soc 109:4759–4760

    Article  CAS  Google Scholar 

  15. John K, Schreiber S, Kubelt J, Herrmann A, Muller P (2002) Transbilayer movement of phospholipids at the main phase transition of lipid membranes: Implications for rapid flip-flop in biological membranes. Biophys J 83:3315–3323

    Article  CAS  PubMed  Google Scholar 

  16. Kiessling V, Crane JM, Tamm LK (2006) Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking. Biophys J 91:3313–3326

    Article  CAS  PubMed  Google Scholar 

  17. Klymchenko AS, Oncul S, Didier P, Schaub E, Bagatolli L, Duportail G, Mely Y (2009) Visualization of lipid domains in giant unilamellar vesicles using an environment-sensitive membrane probe based on 3-hydroxyflavone. Biochim Biophys Acta, Biomembr 1788:495–499

    Article  CAS  Google Scholar 

  18. Kol MA, de Kroon A, Rijkers DTS, Killian JA, de Kruijff B (2001) Membrane-spanning peptides induce phospholipid flop: a model for phospholipid translocation across the inner membrane of E-coli. Biochemistry 40:10500–10506

    Article  CAS  PubMed  Google Scholar 

  19. Kornberg RD, McConnell HM (1971) Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry 10:1111–1120

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Conboy JC (2005) 1, 2-diacyl-phosphatidylcholine flip-flop measured directly by sum-frequency vibrational spectroscopy. Biophys J 89:2522–2532

    Article  CAS  PubMed  Google Scholar 

  21. Przybylo M, Sykora J, Humpolickova J, Benda A, Zan A, Hof M (2006) Lipid diffusion in giant unilamellar vesicles is more than 2 times faster than in supported phospholipid bilayers under identical conditions. Langmuir 22:9096–9099

    Article  CAS  PubMed  Google Scholar 

  22. Rothman JE, Kennedy EP (1977) Asymmetrical distribution of phospholipids in membrane of bacillus-megaterium. J Mol Biol 110:603–618

    Article  CAS  PubMed  Google Scholar 

  23. Seigneuret M, Zachowski A, Hermann A, Devaux PF (1984) Asymmetric lipid fluidity in human-erythrocyte membrane—new spin-label evidence. Biochemistry 23:4271–4275

    Article  CAS  PubMed  Google Scholar 

  24. Sheynis T, Sykora J, Benda A, Kolusheva S, Hof M, Jelinek R (2003) Bilayer localization of membrane-active peptides studied in biomimetic vesicles by visible and fluorescence spectroscopies. Eur J Biochem 270:4478–4487

    Article  CAS  PubMed  Google Scholar 

  25. Shynkar VV, Klymchenko AS, Kunzelmann C, Duportail G, Muller CD, Demchenko AP, Freyssinet JM, Mely Y (2007) Fluorescent biomembrane probe for ratiometric detection of apoptosis. J Am Chem Soc 129:2187–2193

    Article  CAS  PubMed  Google Scholar 

  26. Tamm LK, McConnell HM (1985) Supported phospholipid-bilayers. Biophys J 47:105–113

    Article  CAS  PubMed  Google Scholar 

  27. Tilley L, Cribier S, Roelofsen B, Denkamp J, Vandeenen LLM (1986) Atp-dependent translocation of amino phospholipids across the human-erythrocyte membrane. Febs Lett 194:21–27

    Article  CAS  PubMed  Google Scholar 

  28. Vandeenen LLM (1981) Topology and dynamics of phospholipids in membranes. Febs Lett 123:3–15

    Article  CAS  Google Scholar 

  29. Vandermeer BW, Fugate RD, Sims PJ (1989) Complement proteins C5b-9 induce transbilayer migration of membrane phospholipids. Biophys J 56:935–946

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Alexander Deyneka (Institute of Physics, ASCR, Czech Republic) for modifications and characterization of the ITO supports, Dr. Andrey S. Klymchenko, (Université de Strasbourg, Laboratoire Biophotonique et Pharmacologie, Illkirch, Cedex, France) for the synthesis of the F2N12S probe and Prof. Dr. Jörg Enderlein (Universität Göttingen, Germany) for providing us with the source code for theoretical calculations of dipole-interface interactions. We would like to acknowledge the Grant Agency of the Academy of Sciences of the Czech Republic (M.H. and P.J. via MEM/09/E006) and the Ministry of Education, Youth and Sports of the Czech Republic (A.K., A.B. and J.S. via LC06063) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kułakowska, A., Jurkiewicz, P., Sýkora, J. et al. Fluorescence Lifetime Tuning—A Novel Approach to Study Flip-Flop Kinetics in Supported Phospholipid Bilayers. J Fluoresc 20, 563–569 (2010). https://doi.org/10.1007/s10895-009-0581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0581-9

Keywords

Navigation