Skip to main content
Log in

Organ data from the developing Göttingen minipig: first steps towards a juvenile PBPK model

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

The Göttingen minipig is the most commonly used pig breed in preclinical drug development in Europe and has recently also been explored for physiologically based pharmacokinetic modelling. To develop such a model, not only physiological data from adult animals but also data from juvenile animals are required, especially when using this model for paediatric drug development. Therefore, the aim of our study was to document body and organ weights (brain, heart, lungs, liver, gastrointestinal tract, spleen and kidney), lengths of the small and large intestines and pH values of the gastrointestinal tract in Göttingen minipigs from the foetal stage until the age of 5 months. Postnatal organ and body weights were fitted to regression models to find suitable equations that could be used to estimate organ weights as a function of body weight in the neonatal and juvenile Göttingen minipig. Most organs followed a non-linear growth curve during the first 5 months of life. In general, relative organ weights were the highest during the first week of life, during which the gastric pH was more alkaline than at 28 days of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rostami-Hodjegan A (2012) Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther 92(1):50–61. doi:10.1038/clpt.2012.65

    Article  CAS  PubMed  Google Scholar 

  2. Barrett JS, Della Casa Alberighi O, Laer S, Meibohm B (2012) Physiologically based pharmacokinetic (PBPK) modeling in children. Clin Pharmacol Ther 92(1):40–49

    Article  CAS  PubMed  Google Scholar 

  3. Suenderhauf C, Parrott N (2013) A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 30(1):1–15. doi:10.1007/s11095-012-0911-5

    Article  CAS  PubMed  Google Scholar 

  4. Alcorn J, McNamara PJ (2003) Pharmacokinetics in the newborn. Adv Drug Deliv Rev 55(5):667–686

    Article  CAS  PubMed  Google Scholar 

  5. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE (2003) Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med 349(12):1157–1167. doi:10.1056/NEJMra035092

    Article  CAS  PubMed  Google Scholar 

  6. Walthall K, Cappon GD, Hurtt ME, Zoetis T (2005) Postnatal development of the gastrointestinal system: a species comparison. Birth Defects Res B Dev Reprod Toxicol 74(2):132–156. doi:10.1002/bdrb.20040

    Article  CAS  PubMed  Google Scholar 

  7. Casteleyn C, Rekecki A, Van der Aa A, Simoens P, Van den Broeck W (2010) Surface area assessment of the murine intestinal tract as a prerequisite for oral dose translation from mouse to man. Lab Anim 44(3):176–183. doi:10.1258/la.2009.009112

    Article  CAS  PubMed  Google Scholar 

  8. Lin JH, Chiba M, Baillie TA (1999) Is the role of the small intestine in first-pass metabolism overemphasized? Pharmacol Rev 51(2):135–158

    CAS  PubMed  Google Scholar 

  9. Kaminsky LS, Zhang QY (2003) The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos 31(12):1520–1525. doi:10.1124/dmd.31.12.1520

    Article  CAS  PubMed  Google Scholar 

  10. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M (2002) Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet 41(10):751–790. doi:10.2165/00003088-200241100-00005

    Article  CAS  PubMed  Google Scholar 

  11. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J (2010) The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 62(3):196–220. doi:10.1016/j.vascn.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Forster R, Bode G, Ellegaard L, van der Laan JW (2010) The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations. J Pharmacol Toxicol Methods 62(3):236–242. doi:10.1016/j.vascn.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  13. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49(2):344–356. doi:10.1177/0300985811402846

    Article  CAS  PubMed  Google Scholar 

  14. Maharaj AR, Barrett JS, Edginton AN (2013) A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J 15(2):455–464. doi:10.1208/s12248-013-9451-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maharaj AR, Edginton AN (2014) Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacomet Syst Pharmacol 3:e150. doi:10.1038/psp.2014.45

    Article  CAS  Google Scholar 

  16. Strougo A, Eissing T, Yassen A, Willmann S, Danhof M, Freijer J (2012) First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development. J Pharmacokinet Pharmacodyn 39(2):195–203. doi:10.1007/s10928-012-9241-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ginsberg G, Hattis D, Miller R, Sonawane B (2004) Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics 113(4 Suppl):973–983

    PubMed  Google Scholar 

  18. Van Peer E, Verbueken E, Saad M, Casteleyn C, Van Ginneken C, Van Cruchten S (2014) Ontogeny of CYP3A and p-glycoprotein in the liver and the small intestine of the Gottingen minipig: an immunohistochemical evaluation. Basic Clin Pharmacol Toxicol 114(5):387–394. doi:10.1111/bcpt.12173

    Article  PubMed  Google Scholar 

  19. Van Peer E, De Bock L, Boussery K, Van Bocxlaer J, Casteleyn C, Van Ginneken C, Van Cruchten S (2015) Age-related differences in CYP3A abundance and activity in the liver of the gottingen minipig. Basic Clin Pharmacol Toxicol. doi:10.1111/bcpt.12410

    PubMed  Google Scholar 

  20. Kanerva RL, Alden CL, Wyder WE (1982) The effect of uniform exsanguination on absolute and relative organ weights, and organ weights variation. Toxicol Pathol 10(1):43–44

    Article  Google Scholar 

  21. Linderkamp O, Berg D, Betke K, Koferl F, Kriegel H, Riegel KP (1980) Blood volume and hematocrit in various organs in newborn piglets. Pediatr Res 14(12):1324–1327. doi:10.1203/00006450-198012000-00010

    Article  CAS  PubMed  Google Scholar 

  22. Cesta MF (2006) Normal structure, function, and histology of the spleen. Toxicol Pathol 34(5):455–465. doi:10.1080/01926230600867743

    Article  PubMed  Google Scholar 

  23. O’Brien RT, Waller KR 3rd, Osgood TL (2004) Sonographic features of drug-induced splenic congestion. Vet Radiol Ultrasound 45(3):225–227

    Article  PubMed  Google Scholar 

  24. Wilson DV, Evans AT, Carpenter RA, Mullineaux DR (2004) The effect of four anesthetic protocols on splenic size in dogs. Vet Anaesth Analg 31(2):102–108. doi:10.1111/j.1467-2987.2004.00152.x

    Article  CAS  PubMed  Google Scholar 

  25. Greenway CV, Stark RD (1969) Vascular responses of the spleen to rapid haemorrhage in the anaesthetized cat. J Physiol 204(1):169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlesinger AE, Edgar KA, Boxer LA (1993) Volume of the spleen in children as measured on CT scans: normal standards as a function of body weight. AJR Am J Roentgenol 160(5):1107–1109. doi:10.2214/ajr.160.5.8470587

    Article  CAS  PubMed  Google Scholar 

  27. Dekaban AS (1978) Changes in brain weights during the span of human life: relation of brain weights to body heights and body weights. Ann Neurol 4(4):345–356. doi:10.1002/ana.410040410

    Article  CAS  PubMed  Google Scholar 

  28. Voigt J, Pakkenberg H (1983) Brain weight of Danish children. A forensic material. Acta Anat (Basel) 116(4):290–301

    Article  CAS  Google Scholar 

  29. Vujic A, Kosutic J, Bogdanovic R, Prijic S, Milicic B, Igrutinovic Z (2007) Sonographic assessment of normal kidney dimensions in the first year of life–a study of 992 healthy infants. Pediatr Nephrol 22(8):1143–1150. doi:10.1007/s00467-007-0478-2

    Article  PubMed  Google Scholar 

  30. Johnson TN, Tucker GT, Tanner MS, Rostami-Hodjegan A (2005) Changes in liver volume from birth to adulthood: a meta-analysis. Liver Transplant 11(12):1481–1493. doi:10.1002/lt.20519

    Article  Google Scholar 

  31. Noda T, Todani T, Watanabe Y, Yamamoto S (1997) Liver volume in children measured by computed tomography. Pediatr Radiol 27(3):250–252. doi:10.1007/s002470050114

    Article  CAS  PubMed  Google Scholar 

  32. Snoeck V, Cox E, Verdonck F, Joensuu JJ, Goddeeris BM (2004) Influence of porcine intestinal pH and gastric digestion on antigenicity of F4 fimbriae for oral immunisation. Vet Microbiol 98(1):45–53

    Article  CAS  PubMed  Google Scholar 

  33. Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH, Rasmussen SN (1990) Measurement of gastrointestinal pH and regional transit times in normal children. J Pediatr Gastroenterol Nutr 11(2):211–214

    Article  CAS  PubMed  Google Scholar 

  34. Kohn F, Sharifi AR, Simianer H (2007) Modeling the growth of the goettingen minipig. J Anim Sci 85(1):84–92. doi:10.2527/jas.2006-271

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Applied Veterinary Morphology would like to thank Ellegaard Göttingen Minipig A/S for the kind donation of animals. The authors from the University of Antwerp are members of COST Action BM1308 ‘Sharing Advances on Large Animal Models (SALAAM)’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Van Cruchten.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Peer, E., Downes, N., Casteleyn, C. et al. Organ data from the developing Göttingen minipig: first steps towards a juvenile PBPK model. J Pharmacokinet Pharmacodyn 43, 179–190 (2016). https://doi.org/10.1007/s10928-015-9463-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-015-9463-8

Keywords

Navigation