Skip to main content
Log in

Thermoeconomic analysis of Earth system in relation to sustainability: a thermodynamic analysis of weather changes due to anthropic activities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recently, a new bioeconomic indicator has been introduced in order to avoid the difficulties in evaluating the process and technologies for sustainability. Indeed, the indicator has been based on the exergy and irreversibility analysis. The aim of this paper is to highlight how this new indicator could be used for the analysis of climate and weather changes. To do so, the thermoeconomic bases of the indicator are developed in order to link them to the thermodynamic analysis of the Earth system. The result is to describe analytically the effect of the anthropic activities on the Earth system, related to the variation of the Earth internal energy. So, this internal energy variation is linked to the increase in the intensity of the present rainfalls, by using the concept of mass of water vapour present in the dry air, used in the thermodynamic analysis of moist air. It is possible to point out the effect on the increase in mass of water vapour in the atmosphere, due to the increase in the mean Earth temperature and the related partial saturation pressure of water vapour itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

B :

Non-flow exergy accumulation (J)

c :

Specific heat (\(\hbox {J kg}^{-1}\hbox {K}^{-1}\))

E :

Energy (J)

\({\mathrm{EI}}\) :

Energy Intensity (J $\(^{-1}\))

F :

Heat power surface density (\(\hbox {W m}^{-2}\))

I :

New indicator for sustainability

J :

Flow energy (W)

\({\mathrm{LC}}\) :

Labour cost ($ \(\hbox {s}^{-1}\))

p :

Pressure (Pa)

\(\dot{Q}\) :

Heat power (W)

\(\dot{S}_{\mathrm{g}}\) :

Entropy generation rate (\(\hbox {W K}^{-1}\))

t :

Time (s)

T :

Temperature (K)

U :

Internal energy (J)

\(\mathbf {v}\) :

Velocity (\(\hbox {m s}^{-1}\))

V :

Volume (\(\hbox {m}^3\))

W :

Mechanical or process work (J)

\(\dot{W}\) :

Mechanical or process power (W)

\(\rho\) :

Density (\(\hbox {kg m}^{-3}\))

\(\tau\) :

Finite time of the process (s)

0:

Environment

ex:

Exergetic

\(\lambda\) :

Lost

Q:

Thermal

References

  1. Tang K, Yeoh R. Cut carbon, grow profits: business strategies for managing climate change and sustainability. London: Middlesex University Press; 2007.

    Google Scholar 

  2. WCED. Our common future. Oxford: Oxford University Press; 1987.

    Google Scholar 

  3. Hathaway M, Boff L. The tao of liberation exploring the ecology of transformation. Maryknoll: Orbis Book; 2009.

    Google Scholar 

  4. Ruth M. The economics of sustainability and the sustainability of economics. Ecol Econ. 2006;56:332.

    Google Scholar 

  5. Dincer I, Cengel YA. Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy. 2001;3:116.

    Google Scholar 

  6. Bejan A. Shape and structure, from engineering to nature. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  7. Lucia U. Irreversibility entropy variation and the problem of the trend to equilibrium. Phys A. 2007;376:289.

    Google Scholar 

  8. Lucia U. Econophysics and bio-chemical engineering thermodynamics: the exergetic analysis of a municipality. Phys A. 2016;462:421.

    Google Scholar 

  9. Lucia U, Grisolia G. Exergy inefficiency: an indicator for sustainable development analysis. Energy Rep. 2019;5:62.

    Google Scholar 

  10. Lucia U. Stationary open systems: a brief review on contemporary theories on irreversibility. Phys A. 2013;392:1051.

    Google Scholar 

  11. Lucia U. Carnot efficiency: Why? Phys A. 2013;392:3513.

    Google Scholar 

  12. Lucia U. Entropy generation in technical physics. Kuwait J Sci Eng. 2012;39:91.

    Google Scholar 

  13. Lucia U. Exergy flows as. Phys A. 2013;392:6284.

    Google Scholar 

  14. Kleidon A. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Philos Trans R Soc A. 2010;368:181.

    CAS  Google Scholar 

  15. Lovelock JE. A physical basis for life detection experiments. Nature. 1965;207:568.

    CAS  PubMed  Google Scholar 

  16. Schwartzman DW, Volk T. Biotic enhancement of weathering and the habitability of earth. Nature. 1989;340:457.

    Google Scholar 

  17. Berner RA. The rise of plants and their effect on weathering and atmospheric CO\(_2\). Science. 1997;276:544.

    CAS  Google Scholar 

  18. Kleidon A. How does the Earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet? Philos Trans R Soc A. 2012;370:1012.

    CAS  Google Scholar 

  19. Kleidon A. Nonequilibrium thermodynamics and maximum entropy production in the Earth system. Naturwissenschaften. 2009;96:653.

    CAS  PubMed  Google Scholar 

  20. Kleidon A. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production. Philos Trans R Soc A. 2010;365:1303.

    CAS  Google Scholar 

  21. Trenberth KE, Fasullo JT, Kiehl J. Earth’s global energy budget. Bull Am Meteorol Soc. 2009;90:311.

    Google Scholar 

  22. Trenberth KE, Fasullo JT. Tracking Earth’s energy: from El Niño to global warming. Surv Geophys. 2012;33:413.

    Google Scholar 

  23. Lucia U, Grisolia G. Unavailability percentage as energy planning and economic choice parameter. Renew Sustain Energy Rev. 2017;75:197.

    Google Scholar 

  24. Lucia U, Grisolia G. Cyanobacteria and microalgae: thermoeconomic considerations in biofuel production. Energies. 2018;11:156.

    Google Scholar 

  25. Grisolia G, Fino D, Lucia U. Thermodynamic optimisation of the biofuel production based on mutualism. Energy Rep. 2020;6:1561.

    Google Scholar 

  26. Bejan A. Entropy generation through heat and mass fluid flow. New York: Wiley; 1982.

    Google Scholar 

  27. Bejan A. Entropy generation minimization. Baca Raton: CRC Press; 1995.

    Google Scholar 

  28. Bejan A, Tsatsatronis A, Moran M. Thermal design and optimization. New York: Wiley; 1996.

    Google Scholar 

  29. Bejan A, Lorente S. The constructal law and the thermodynamics of flow systems with configuration. Int J Heat Mass Transf. 2004;47:3203.

    Google Scholar 

  30. Bejan A, Lorente S. The constructal law of design and evolution in nature. Philos Trans R Soc B. 2010;365:1335.

    Google Scholar 

  31. Bejan A. Advanced engineering thermodynamics. New York: Wiley; 2006.

    Google Scholar 

  32. Sertorio L. Thermodynamics of complex systems. Singapore: World Scientific Publishing; 1990.

    Google Scholar 

  33. Klein MJ. Thermodynamics in Einstein’s thought. Science. 1967;157:509.

    CAS  PubMed  Google Scholar 

  34. Ozawa H, Ohmura A, Lorenz RD, Pujol T. The second law of thermodynamics and the global climate system: a review of the maximum entropy production principle. Rev Geophys. 2003;41:1018.

    Google Scholar 

  35. Janeselli R. Celle convettive e variazioni periodiche del gradiente verticale del campo elettro-atmosferico. Ann Geophys. 1969;22:85.

    Google Scholar 

  36. Lucia U. Maximum or minimum entropy generation for open systems? Phys A. 2012;391:3392.

    Google Scholar 

  37. Chandrasekhar S. Hydrodynamic and hydromagnetic stability. New York: Oxford Univ Press; 1961.

    Google Scholar 

  38. Lucia U. Entropy and exergy in irreversible renewable energy systems. Renew Sustain Energy Rev. 2013;20:559.

    Google Scholar 

  39. Volk T, Pauluis O. It is not the entropy you produce, rather, how you produce it. Philos Trans R Soc B. 2010;365:1317.

    Google Scholar 

  40. Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys. 2014;52:522.

    Google Scholar 

  41. Nag PK. Engineering Thermodynamics. 5th ed. New York: McGraw Hill; 2016.

    Google Scholar 

  42. Faber M, Proops JLR, Ruth M, Michaelis P. Economy-environment interactions in the long-run: a neo-Austrian approach. Ecol Econ. 1990;2:27.

    Google Scholar 

  43. Feidt M, Tutica D, Badea A. Energy versus environment. UPB Sci Bull Ser C Electr Eng. 2012;74:117.

    Google Scholar 

  44. Arabkoohsar A, Sadi M. Thermodynamics, economic and environmental analyses of a hybrid waste-solar thermal power plant. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09573-3.

    Article  Google Scholar 

  45. Gan T, Ming T, Fang W, Liu Y, Ren LMK, Ahmadi MH. Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J Therm Anal Calorim. 2020;141:45.

    CAS  Google Scholar 

  46. Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Energy, Exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge Systems. J Therm Anal Calorim. 2020;139:1275.

    Google Scholar 

  47. Roy R, Mandal BK. Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations: a comparative study. J Therm Anal Calorim. 2020;139:3247.

    CAS  Google Scholar 

  48. Shahdost BM, Jokar MA, Astaraei FR, Ahmadi MH. Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery). J Therm Anal Calorim. 2019;137:2081.

    Google Scholar 

  49. Shayan M, Pirouzfar V, Sakhaeinia H. Technological and economical analysis of flare recovery methods, and comparison of different steam and power generation systems. J Therm Anal Calorim. 2020;139:2399.

    CAS  Google Scholar 

  50. Saleh S, Pirouzfar V, Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants: technical, economical and design challenges. J Therm Anal Calorim. 2019;136:1817.

    CAS  Google Scholar 

  51. Namar MM, Jahanian O. Energy and exergy analysis of a hydrogen-fueled HCCI engine. J Therm Anal Calorim. 2019;137:205.

    CAS  Google Scholar 

  52. Spreng DT. Net-energy analysis. New York: Praeger; 1988.

    Google Scholar 

  53. Chen LG, Wu C, Sun FR. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn. 1999;24:327.

    CAS  Google Scholar 

  54. Chen LG. Progress in study on constructal theory and its application. Science China: Technological Sciences. 2012;55:802.

    Google Scholar 

  55. Chen LG, Xia SJ. Progresses in generalized thermodynamic dynamic-optimization of irreversible processes. Sci Sin Technol. 2019;49:981.

    Google Scholar 

  56. Chen LG, Xia SJ, Feng HJ. Progresses in generalized thermodynamic dynamic-optimization of irreversible cycles. Sci Sin Technol. 2019;49:1223.

    Google Scholar 

  57. Chen LG, Feng HJ, Xie ZH, Sun FR. Progress of constructal theory in China over the past decade. Int J Heat Mass Transf. 2019;130:393.

    Google Scholar 

  58. Bejan A. AI and freedom for evolution in energy science. Energy AI. 2020;1:100001.

    Google Scholar 

  59. Bejan A. Discipline in thermodynamics. Energies. 2020;13:2487.

    CAS  Google Scholar 

  60. Lorente S, Bejan A. Current trends in constructal law and evolutionary design. Heat Transf Asian Res. 2020;48:357.

    Google Scholar 

  61. Bejan A. Freedom and evolution: hierarchy in nature, society and science. Berlin: Springer; 2020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

UL developed the thermophysical approach. GG developed the engineering thermodynamic considerations. UL and GG developed the thermodynamic application on whether. D.F. and G.G. developed the green economy considerations. All authors contributed to the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to Umberto Lucia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lucia, U., Fino, D. & Grisolia, G. Thermoeconomic analysis of Earth system in relation to sustainability: a thermodynamic analysis of weather changes due to anthropic activities. J Therm Anal Calorim 145, 701–707 (2021). https://doi.org/10.1007/s10973-020-10006-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10006-4

Keywords

Navigation