Skip to main content
Log in

Effects of (−)-Sesamin on Chronic Stress-Induced Anxiety Disorders in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study investigated the effects of (−)-sesamin on chronic electric footshock (EF) stress-induced anxiety disorders in mice. Mice were treated with (−)-sesamin (25 and 50 mg/kg) orally once a day for 21 days prior to exposure to EF stress (0.6 mA, 1 s every 5 s, 3 min). Mice treated with (−)-sesamin (25 and 50 mg/kg) exhibited less severe decreases in the number of open arm entries and time spent on open arms in the elevated plus-maze test and the distance traveled in the open field test following exposure to chronic EF stress. Similarly, mice treated with (−)-sesamin exhibited significantly less severe decreases in brain levels of dopamine, norepinephrine, and serotonin following exposure to chronic EF stress. Increases in serum levels of corticosterone and expression of c-Fos were also less pronounced in mice treated with (−)-sesamin (25 and 50 mg/kg). These results suggest that (−)-sesamin may protect against the effects of chronic EF stress-induced anxiety disorders by modulating dopamine, norepinephrine, and serotonin levels, c-Fos expression, and corticosterone levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 48:766–777

    Article  CAS  PubMed  Google Scholar 

  2. Zhao TT, Shin KS, Choi HS, Lee MK (2015) Ameliorating effects of gypenosides on chronic stress-induced anxiety disorders in mice. BMC Complem Altern Med 15(323):1–10

    Google Scholar 

  3. Sheikh N, Ahm A, Siripurapu KB, Kuchibhotla VK, Singh S, Pali G (2007) Effect of Bacopa monniera on stress induced changes in plasma corticosterone and brain monoamines in rats. J Ethnopharmacol 111:671–676

    Article  PubMed  Google Scholar 

  4. Sheline YI (2000) 3D MRI studies of neuroanatomic changes in unipolar major depression: the role of stress and medical comorbidity. Biol Psychiatry 48:791–800

    Article  CAS  PubMed  Google Scholar 

  5. Chen X, Herbert J (1995) Regional changes in c-fos expression in the basal forebrain and brainstem during adaptation to repeated stress: correlations with cardiovascular, hypothermic and endocrine. Neuroscience 64:675–685

    Article  CAS  PubMed  Google Scholar 

  6. Imaki T, Katsumata H, Konishi SI, Kasagi Y, Minami S (2003) Corticotropin-releasing factor type-1 receptor mRNA is not induced in mouse hypothalamus by either stress or osmotic stimulation. J Neuroendocrinol 15:916–924

    Article  CAS  PubMed  Google Scholar 

  7. Russell JA, Shipston MJ (2015) Neuroendocrinology of stress. In: Hale MW, Lowry CA (eds) Brain m onoaminergic s ystems in s tress n euroendocrinology, Chap. 2. Wiley, New York, pp 19–42

    Google Scholar 

  8. Broderick PA, Phelix CF (1997) Serotonin (5-HT) within dopamine reward circuits signals open-field behavior. II. Basis f or 5-HT-DA interaction in cocaine dysfunctional behavior. Neurosci Biobehav Rev 21:227–260

    Article  CAS  PubMed  Google Scholar 

  9. Espejo EF (1997) Selective dopamine depletion within the medial prefrontal cortex induces anxiogenic-like effects in rats placed on the elevated plus maze. Brain Res 762:281–284

    Article  CAS  PubMed  Google Scholar 

  10. G riebel G, R odgers RJ, Perrault G, S anger DJ (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rate levated plus-maze test. Pharmacol Biochem Behav 57:817–827

    Article  CAS  Google Scholar 

  11. Han AR, Kim HJ, Shin M, Hong M, Kim YE, Bae H (2008) Constituents of Asarum sieboldii with inhibitory activity on lipopolysaccharide (LPS)-induced NO production in BV-2 microglial cells. Chem Biodivers 5:346–351

    Article  CAS  PubMed  Google Scholar 

  12. Peñalvo JL, Hopia A, Adlercreutz H (2006) Effect of sesamin on serum cholesterol and triglycerides levels in LDL receptor-deficient mice. Eur J Nutr 45:439–444

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suzuki Y, Yuzurihara M, Hibino T, Yano S, Kase Y (2009) Aqueous extract of Asiasari Radix inhibits formalin-induced hyperalgesia via NMDA receptors. J Ethnopharmacol 123:128–133

    Article  PubMed  Google Scholar 

  14. Han Y, Kim SJ (2003) Memory enhancing actions of Asiasari Radix extracts via activation of insulin receptor and extracellular signal regulated kinase (ERK) I/II in rat hippocampus. Brain Res 974:193–201

    Article  CAS  PubMed  Google Scholar 

  15. Park HJ, Zhao TT, Lee KS, Lee SH, Shin KS, Park KH et al (2015) Effects of (−)-sesamin on 6-hydroxydopamine-induced neurotoxicity in PC12 cells and dopaminergic neuronal cells of Parkinson’s disease rat models. Neurochem Int 83–84:19–27

    Article  PubMed  Google Scholar 

  16. Guo HL, Xiao Y, Tian Z, Li XB, Wang DS, Wang XS, Zhang ZW, Zhao MG, Liu SB (2016) Anxiolytic effects of sesamin in mice with chronic inflammatory pain. Nutr Neurosci 19:231–236

    Article  CAS  PubMed  Google Scholar 

  17. Kumar B, Kuhad A, Chopra K (2011) Neuropsychopharmacological effect of sesamol in unpredictable chronic mild stress model of depression: behavioral and biochemical evidences. Psychopharmacology (Berl) 214:819–828

    Article  CAS  Google Scholar 

  18. Li CY, Chow TJ, Wu TS (2005) The epimerization of sesamin and asarinin. J Nat Prod 68:1622–1624

    Article  CAS  PubMed  Google Scholar 

  19. Choi HS, Zhao TT, Shin KS, Kim SH, Hwang BY, Lee CK (2013) Anxiolytic effects of herbal ethanol extract from Gynostemma pentaphyllum after exposure to chronic stress in mice. Molecules 18:4342–4356

    Article  CAS  PubMed  Google Scholar 

  20. Zhao TT, Shin KS, Kim KS, Park HJ, Kim HJ, Lee KE, Lee MK (2016) Effects of (−)-sesamin on motor and memory deficits in an MPTP-lesioned mouse model of Parkinson’ s disease treated with L-DOPA. Neuroscience 339:644–654

    Article  CAS  PubMed  Google Scholar 

  21. Lister RG (1987) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 92:180–185

    CAS  Google Scholar 

  22. Verma P, Hellemans KGC, Choi FY, Yu W, Weinberg J (2010) Circadian phase and sex effects on depressive/anxiety-like behaviors and HPA axis responses to acute stress. Physiol Behav 99:276–285

    Article  CAS  PubMed  Google Scholar 

  23. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24:125–132

    Article  CAS  PubMed  Google Scholar 

  24. Zhao TT, Shin KS, Choi HS, Lee MK (2013) Effects of gypenosides on acute stress in mice. Nat Prod Sci 19:337–341

    CAS  Google Scholar 

  25. Rodgers RJ, Haller J, Holmes A, Halasz J, Walton TJ, Brain PF (1999) Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol Behav 68:47–53

    Article  CAS  PubMed  Google Scholar 

  26. Skórzewska A, Lehner M, Wisłowska-Stanek A, Krząścik P, Ziemba A, Płaźnik A (2014) The effect of chronic administration of corticosterone on anxiety- and depression-like behavior and the expression of GABA-A receptor alpha-2 subunits in brain structures of low- and high-anxiety rats. Horm Behav 65:6–13

    Article  PubMed  Google Scholar 

  27. Shi SN, Shi JL, Liu Y, Wang YL, Wang CG, Hou WH, Guo JY (2014) The anxiolytic effects of valtrate in rats involves changes of corticosterone levels. Evid-Based Compl Alt 325948:1–8

    Google Scholar 

  28. Smith SM, Vale WW (2006) The role of the hypothalamic–pituitary–adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8:383–395

    PubMed  PubMed Central  Google Scholar 

  29. Ohshima H, Bartsch H (1994) Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat Res 305:253–264

    Article  CAS  PubMed  Google Scholar 

  30. Hou RCW, Huang HM, Tzen JTC, Jeng KCG (2003) Protective effects of sesamin and sesamolin on hypoxic neuronal and PC12 cells. J Neurosci Res 74:123–133

    Article  CAS  PubMed  Google Scholar 

  31. Hamada N, Fujita Y, Tanaka A, Naoi M, Nozawa Y, Ono Y et al (2009) Metabolites of sesamin, a major lignan in sesame seeds, induce neuronal differentiation in PC12 cells through activation of ERK1/2 signaling pathway. J Neural Transm 116:841–852

    Article  CAS  PubMed  Google Scholar 

  32. Kuo PC, Lin MC, Chen GF, Yiu TJ, Tzen JTC (2011) Identification of methanol-soluble compounds in sesame and evaluation of antioxidant potential of its lignans. J Agric Food Chem 59:3214–3219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Research Foundation of Korea (Grant No. 2013R1A1A2058230, 2015–2016), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung Koo Lee.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T.T., Shin, K.S., Park, H.J. et al. Effects of (−)-Sesamin on Chronic Stress-Induced Anxiety Disorders in Mice. Neurochem Res 42, 1123–1129 (2017). https://doi.org/10.1007/s11064-016-2146-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2146-z

Keywords

Navigation