Skip to main content

Advertisement

Log in

Characterization of Pharmacokinetics in the Göttingen Minipig with Reference Human Drugs: An In Vitro and In Vivo Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2016

Abstract

Purpose

This study aims to expand our understanding of the mechanisms of drug absorption, distribution, metabolism and excretion in the Göttingen minipig to aid a knowledge-driven selection of the optimal species for preclinical pharmaceutical research.

Methods

The pharmacokinetics of seven reference compounds (antipyrine, atenolol, cimetidine, diazepam, hydrochlorothiazide, midazolam and theophylline) was investigated after intravenous and oral dosing in minipigs. Supportive in vitro data were generated on hepatocellularity, metabolic clearance in hepatocytes, blood cell and plasma protein binding and metabolism routes.

Results

Systemic plasma clearance for the seven drugs ranged from low (1.1 ml/min/kg, theophylline) to close to liver blood flow (37.4 ml/min/kg, cimetidine). Volume of distribution in minipigs ranged from 0.7 L/kg for antipyrine to 3.2 L/kg for hydrochlorothiazide. A gender-related difference of in vivo metabolic clearance was observed for antipyrine. The hepatocellularity for minipig was determined as 124 Mcells/g liver, similar to the values reported for human. Based on these data a preliminary in vitro to in vivo correlation (IVIVC) for metabolic clearance measured in hepatocytes was investigated. Metabolite profiles of diazepam and midazolam compared well between minipig and human.

Conclusions

The results of the present study support the use of in vitro metabolism data for the evaluation of minipig in preclinical research and safety testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADME:

Absorption, distribution, metabolism and excretion

AUC:

Area under the curve

CYP:

Cytochrome P450

FCS:

Fetal calf serum

GFR:

Glomerular filtration rate

IVIVC:

In vitro-in vivo correlation

NCA:

Non-compartmental analysis

PBPK:

Physiologically-based pharmacokinetic

PK:

Pharmacokinetic

References

  1. Chapman KL, Holzgrefe H, Black LE, Brown M, Chellman G, Copeman C, et al. Pharmaceutical toxicology: designing studies to reduce animal use, while maximizing human translation. Regulat ToxicoL Pharmacol : RTP. 2013;66(1):88–103.

    Article  CAS  Google Scholar 

  2. Zbinden G. The concept of multispecies testing in industrial toxicology. Regulat ToxicoL Pharmacol : RTP. 1993;17(1):85–94.

    Article  CAS  Google Scholar 

  3. Forster R, Bode G, Ellegaard L, van der Laan J-W. The RETHINK project on minipigs in the toxicity testing of new medicines and chemicals: conclusions and recommendations. J Pharmacol Toxicol Methods. 2010;62(3):236–42.

    Article  CAS  PubMed  Google Scholar 

  4. Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V. Efficacy of the porcine species in biomedical research. Front Genet. 2015;6.

  5. Simianer H, Kohn F. Genetic management of the Gottingen Minipig population. J Pharmacol Toxicol Methods. 2010;62(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  6. Swindle MM, Makin A, Herron AJ, Clubb Jr FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol. 2012;49(2):344–56.

    Article  CAS  PubMed  Google Scholar 

  7. Sjogren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, et al. In vivo methods for drug absorption—comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Europ J Pharmaceut Sci : Off J Europ Fed Pharmaceut Sci. 2014;57:99–151.

    Article  CAS  Google Scholar 

  8. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res. 2013;30:1–15.

    Article  CAS  PubMed  Google Scholar 

  9. Suenderhauf C, Tuffin G, Lorentsen H, Grimm HP, Flament C, Parrott N. Pharmacokinetics of paracetamol in Gottingen Minipigs: in vivo studies and modeling to elucidate physiological determinants of absorption. Pharm Res. 2014.

  10. Christiansen ML, Mullertz A, Garmer M, Kristensen J, Jacobsen J, Abrahamsson B, et al. Evaluation of the use of Gottingen minipigs to predict food effects on the oral absorption of drugs in humans. J Pharm Sci. 2015;104(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  11. Holzgrefe H, Ferber G, Champeroux P, Gill M, Honda M, Greiter-Wilke A, et al. Preclinical QT safety assessment: cross-species comparisons and human translation from an industry consortium. J Pharmacol Toxicol Methods. 2014;69(1):61–101.

    Article  CAS  PubMed  Google Scholar 

  12. Markert M, Stubhan M, Mayer K, Trautmann T, Klumpp A, Schuler-Metz A, et al. Validation of the normal, freely moving Gottingen minipig for pharmacological safety testing. J Pharmacol Toxicol Methods. 2009;60(1):79–87.

    Article  CAS  PubMed  Google Scholar 

  13. Forster R, Bode G, Ellegaard L, van der Laan JW. The RETHINK project: minipigs as models for the toxicity testing of new medicines and chemicals: an impact assessment. J Pharmacol Toxicol Methods. 2010;62(3):158–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, et al. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods. 2010;62(3):196–220.

    Article  CAS  PubMed  Google Scholar 

  15. van der Laan JW, Brightwell J, McAnulty P, Ratky J, Stark C. Regulatory acceptability of the minipig in the development of pharmaceuticals, chemicals and other products. J Pharmacol Toxicol Methods. 2010;62(3):184–95.

    Article  PubMed  Google Scholar 

  16. Mahl JA, Vogel BE, Court M, Kolopp M, Roman D, Nogués V. The minipig in dermatotoxicology: methods and challenges. Exp Toxicol Pathol. 2006;57(5–6):341–5.

    Article  PubMed  Google Scholar 

  17. Dalgaard L. Comparison of minipig, dog, monkey and human drug metabolism and disposition. J Pharmacol Toxicol Methods. 2014.

  18. Skaanild MT. Porcine cytochrome P450 and metabolism. Curr Pharm Des. 2006;12(11):1421–7.

    Article  CAS  PubMed  Google Scholar 

  19. Puccinelli E, Gervasi PG, Longo V. Xenobiotic metabolizing cytochrome P450 in pig, a promising animal model. Curr Drug Metab. 2011;12(6):507–25.

    Article  CAS  PubMed  Google Scholar 

  20. Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol. 2013;9(2):127–39.

    Article  CAS  PubMed  Google Scholar 

  21. Vree TB, Beneken Kolmer EW, Peeters A. Comparison of the metabolism of four sulphonamides between humans and pigs. Vet Quarter. 1991;13(4):236–40.

    CAS  Google Scholar 

  22. Anzenbacherova E, Anzenbacher P, Svoboda Z, Ulrichova J, Kvetina J, Zoulova J, et al. Minipig as a model for drug metabolism in man: comparison of in vitro and in vivo metabolism of propafenone. Biomed Papers Med Faculty Univ Palacky, Olomouc, Czechoslovakia. 2003;147(2):155–9.

    Article  CAS  Google Scholar 

  23. Marini S, Longo V, Mazzaccaro A, Gervasi PG. Xenobiotic-metabolizing enzymes in pig nasal and hepatic tissues. Xenobiotica. 1998;28(10):923–35.

    Article  CAS  PubMed  Google Scholar 

  24. Baggot JD. Pharmacokinetic-pharmacodynamic relationship. Annales de recherches veterinaires. Ann Vet Res. 1990;21 Suppl 1:29s–40s.

    CAS  Google Scholar 

  25. Martinez M, Amidon G, Clarke L, Jones WW, Mitra A, Riviere J. Applying the biopharmaceutics classification system to veterinary pharmaceutical products. part II. physiological considerations. Adv Drug Deliv Rev. 2002;54(6):825–50.

    Article  CAS  PubMed  Google Scholar 

  26. Toutain PL, Ferran A, Bousquet-Melou A. Species differences in pharmacokinetics and pharmacodynamics. Handb Exp Pharmacol. 2010;199:19–48.

    Article  CAS  PubMed  Google Scholar 

  27. Van Peer E, Verbueken E, Saad M, Casteleyn C, Van Ginneken C, Van Cruchten S. Ontogeny of CYP3A and P-Glycoprotein in the liver and the small intestine of the göttingen minipig: an immunohistochemical evaluation. Basic Clin Pharmacol Toxicol. 2014;114:387–94.

    Article  PubMed  Google Scholar 

  28. Van Peer E, De Bock L, Boussery K, Van Bocxlaer J, Casteleyn C, Van Ginneken C, et al. Age-related differences in CYP3A abundance and activity in the liver of the Gottingen minipig. Basic Clin Pharmacol Toxicol. 2015.

  29. Heckel T, Schmucki R, Berrera M, Ringshandl S, Badi L, Steiner G, et al. Functional analysis and transcriptional output of the Gottingen minipig genome. BMC Genomics. 2015;16(1):932.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koljonen M, Hakala KS, Ahtola-Satila T, Laitinen L, Kostiainen R, Kotiaho T, et al. Evaluation of cocktail approach to standardise Caco-2 permeability experiments. Europ J Pharmaceut Biopharmaceut : Off J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2006;64(3):379–87.

    Article  CAS  Google Scholar 

  31. Engel G, Hofmann U, Heidemann H, Cosme J, Eichelbaum M. Antipyrine as a probe for human oxidative drug metabolism: identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin Pharmacol Ther. 1996;59(6):613–23.

    Article  CAS  PubMed  Google Scholar 

  32. Collett A, Sims E, Walker D, He YL, Ayrton J, Rowland M, et al. Comparison of HT29-18-C1 and Caco-2 cell lines as models for studying intestinal paracellular drug absorption. Pharm Res. 1996;13(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  33. Reeves PR, McAinsh J, McIntosh DA, Winrow MJ. Metabolism of atenolol in man. Xenobiotica. 1978;8(5):313–20.

    Article  CAS  PubMed  Google Scholar 

  34. Sitsen JMA, Maris FA, Timmer CJ. Concomitant use of mirtazapine and cimetidine: a drug–drug interaction study in healthy male subjects. E J Clin Pharmacol. 2000;56(5):389–94.

    Article  CAS  Google Scholar 

  35. Somogyi A, Gugler R. Clinical pharmacokinetics of cimetidine. Clin Pharmacokinet. 1983;8(6):463–95.

    Article  CAS  PubMed  Google Scholar 

  36. Olkkola KT, Ahonen J. Midazolam and other benzodiazepines. Handb Exp Pharmacol. 2008;182:335–60.

    Article  CAS  PubMed  Google Scholar 

  37. Beermann B, Groschinsky-Grind M, Rosen A. Absorption, metabolism, and excretion of hydrochlorothiazide. Clin Pharmacol Ther. 1976;19(5 Pt 1):531–7.

    Article  CAS  PubMed  Google Scholar 

  38. Patel RB, Patel UR, Rogge MC, Shah VP, Prasad VK, Selen A, et al. Bioavailability of hydrochlorothiazide from tablets and suspensions. J Pharm Sci. 1984;73(3):359–61.

    Article  CAS  PubMed  Google Scholar 

  39. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615–23.

    Article  CAS  PubMed  Google Scholar 

  40. Thummel KE, O’Shea D, Paine MF, Shen DD, Kunze KL, Perkins JD, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z-Y, Kaminsky LS. Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol. 1995;50(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  42. Lennernas H. Modeling gastrointestinal drug absorption requires more in vivo biopharmaceutical data: experience from in vivo dissolution and permeability studies in humans. Curr Drug Metab. 2007;8(7):645–57.

    Article  PubMed  Google Scholar 

  43. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  44. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Disposition: Biol Fate Chem. 2008;36:1385–405.

    Article  CAS  Google Scholar 

  45. Taylor EA, Turner P. The distribution of propranolol, pindolol and atenolol between human erythrocytes and plasma. Br J Clin Pharmacol. 1981;12(4):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paixao P, Gouveia LF, Morais JA. Prediction of drug distribution within blood. Europ J Pharmaceut Sci : Off J Europ Fed Pharmaceut Sci. 2009;36(4–5):544–54.

    Article  CAS  Google Scholar 

  47. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  48. Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42.

    Article  CAS  PubMed  Google Scholar 

  49. Mitenko PA, Ogilvie RI. Pharmacokinetics of intravenous theophylline. Clin Pharmacol Ther. 1973;14(4):509–13.

    Article  CAS  PubMed  Google Scholar 

  50. Downs TR, Wilfinger WW. Fluorometric quantification of DNA in cells and tissue. Anal Biochem. 1983;131(2):538–47.

    Article  CAS  PubMed  Google Scholar 

  51. Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83.

    Article  CAS  PubMed  Google Scholar 

  52. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  53. Carlile DJ, Zomorodi K, Houston JB. Scaling factors to relate drug metabolic clearance in hepatic microsomes, isolated hepatocytes, and the intact liver: studies with induced livers involving diazepam. Drug Metab Dispos. 1997;25(8):903–11.

    CAS  PubMed  Google Scholar 

  54. Cibulskyte D, Kaalund H, Pedersen M, Horlyck A, Marcussen N, Hansen HE, et al. Chronic cyclosporine nephrotoxicity: a pig model. Transplant Proc. 2005;37(8):3298–301.

    Article  CAS  PubMed  Google Scholar 

  55. Rowland M, Tozer TN. Clinical pharmacokinetics and pharmacodynamics : concepts and applications. 4th ed. Philadelphia: Wolters Kluwer Health/Lippincott William & Wilkins, c2011; 2005.

    Google Scholar 

  56. Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1973;1(2):123–36.

    Article  CAS  PubMed  Google Scholar 

  57. Yang J, Jamei M, Yeo KR, Rostami-Hodjegan A, Tucker GT. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab Dispos. 2007;35(3):501–2.

    Article  CAS  PubMed  Google Scholar 

  58. Sohlenius-Sternbeck AK. Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol in vitro : Int J Publ Assoc BIBRA. 2006;20(8):1582–6.

    Article  CAS  Google Scholar 

  59. Worboys PD, Bradbury A, Houston JB. Kinetics of drug metabolism in rat liver slices. II. comparison of clearance by liver slices and freshly isolated hepatocytes. Drug Metab Dispos. 1996;24(6):676–81.

    CAS  PubMed  Google Scholar 

  60. Larsson R, Erlanson P, Bodemar G, Walan A, Bertler A, Fransson L, et al. The pharmacokinetics of cimetidine and its sulphoxide metabolite in patients with normal and impaired renal function. Br J Clin Pharmacol. 1982;13(2):163–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitchell SC, Idle JR, Smith RL. The metabolism of [14C]cimetidine in man. Xenobiotica. 1982;12(5):283–92.

    Article  CAS  PubMed  Google Scholar 

  62. Dudley AJ, Brown CD. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br J Pharmacol. 1996;117(6):1139–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. O’Malley K, Crooks J, Duke E, Stevenson IH. Effect of age and sex on human drug metabolism. Br Med J. 1971;3(5775):607–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Teunissen MW, Srivastava AK, Breimer DD. Influence of sex and oral contraceptive steroids on antipyrine metabolite formation. Clin Pharmacol Ther. 1982;32(2):240–6.

    Article  CAS  PubMed  Google Scholar 

  65. Skaanild MT, Friis C. Cytochrome P450 sex differences in minipigs and conventional pigs. Pharmacol Toxicol. 1999;85:174–80.

    Article  CAS  PubMed  Google Scholar 

  66. Chenery R, Ayrton A, Oldham H, Standring P, Norman S, Seddon T, et al. Diazepam metabolism in cultured hepatocytes from rat, rabbit, dog, guinea pig, and man. Drug Metab Dispos. 1987;15(3):312–7.

    CAS  PubMed  Google Scholar 

  67. Hallifax D, Houston JB. Evaluation of hepatic clearance prediction using in vitro data: emphasis on fraction unbound in plasma and drug ionisation using a database of 107 drugs. J Pharm Sci. 2012;101(8):2645–52.

    Article  CAS  PubMed  Google Scholar 

  68. Turpeinen M, Ghiciuc C, Opritoui M, Tursas L, Pelkonen O, Pasanen M. Predictive value of animal models for human cytochrome P450 (CYP)-mediated metabolism: a comparative study in vitro. Xenobiotica. 2007;37(12):1367–77.

    Article  CAS  PubMed  Google Scholar 

  69. Parrott N, Jones H, Paquereau N, Lave T. Application of full physiological models for pharmaceutical drug candidate selection and extrapolation of pharmacokinetics to man. Basic Clin Pharmacol Toxicol. 2005;96(3):193–9.

    Article  CAS  PubMed  Google Scholar 

  70. Jones HM, Parrott N, Jorga K, Lavé T. A novel strategy for physiologically based predictions of human pharmacokinetics. Clin Pharmacokinet. 2006;45:511–42.

    Article  CAS  PubMed  Google Scholar 

  71. Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    Article  CAS  PubMed  Google Scholar 

  72. Bouzom F, Ball K, Perdaems N, Walther B. Physiologically based pharmacokinetic (PBPK) modelling tools: how to fit with our needs? Biopharm Drug Dispos. 2012;33(2):55–71.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was funded by the Roche Post-Doc Fellowship (RPF) Program. We thank all our associates for their support, in particular Anthony Vandjour, Christelle Rapp and Claudia Senn for the in vivo measurements, Hamina Daff, Sandrine Simon, Isabelle Walter, Andreas Goetschi and Pierre - Alexis Gonsard for their work on plasma protein binding and bioanalysis, Aynur Ekiciler for the hepatocellularity evaluation and in vitro intrinsic clearance determination, Peter Schrag for the blood to plasma portioning measurements, Martin Kapps for the LC/MS bioanalysis, and Michaela Marschmann for the investigation of the metabolite profiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floriane Lignet.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11095-016-2026-x.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lignet, F., Sherbetjian, E., Kratochwil, N. et al. Characterization of Pharmacokinetics in the Göttingen Minipig with Reference Human Drugs: An In Vitro and In Vivo Approach. Pharm Res 33, 2565–2579 (2016). https://doi.org/10.1007/s11095-016-1982-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1982-5

KEY WORDS

Navigation